
Discrete Hedging Under Piecewise Linear Risk Minimization

Thomas F. Coleman?, Yuying Li?, Maria-Cristina Patron??

? Cornell Theory Center and Department of Computer Science, Cornell University,
Ithaca, NY 14853, USA, email contact: coleman@tc.cornell.edu

?? Center of Applied Mathematics, Cornell University, Ithaca, NY 14853, USA

December 20, 2002



Abstract

In an incomplete market it is usually impossible to eliminate the intrinsic risk of an
option. In this case quadratic risk-minimization is often used to determine a hedging
strategy. However, it may be more natural to use piecewise linear risk-minimization.
We investigate hedging strategies using piecewise linear risk-minimization. We illustrate
that this criterion for risk-minimization may lead to smaller expected total hedging cost
and significantly different, possibly more desirable, hedging strategies from those of
quadratic risk minimization. The distributions of the total hedging cost and risk show
that hedging strategies obtained by piecewise linear risk-minimization have a larger
probability of small cost and risk, though they also have a very small probability of
larger cost and risk. Comparative numerical results are provided. We also prove that
the value processes of these hedging strategies satisfy put-call parity.

Keywords: incomplete market, discrete hedging, piecewise linear risk-minimization, quadratic risk-
minimization, cumulative cost, incremental risk



1. Introduction

Investors try to reduce the sensitivity of their portfolios to the fluctuations of the market
by hedging. In particular, in option hedging, one tries to construct a trading strategy that
replicates the option payoff and does not require any inflow or outflow of capital other than
initial costs. In the Black-Scholes framework, the option can be replicated by using only the
underlying asset and a bond. However, the investor’s position is only instantaneously risk-
free and therefore, it must be adjusted continuously. In practice, a natural problem that
occurs is the impossibility of hedging continuously in time coupled with the need to hedge
as little as possible due to the impact of transaction costs. If only discrete hedging times
are allowed, achieving a risk-free position at each time is no longer appropriate since this
instantaneous hedging will not last till the next rebalancing time. Moreover, the market
becomes incomplete and the Black-Scholes framework cannot be applied. Under these
conditions, there is much uncertainty regarding the choice of an optimal hedging strategy
and in defining the fair price of an option. It is not possible to totally hedge the intrinsic
risk carried by options that cannot be exactly replicated. An “optimal” hedging strategy
can be chosen to minimize a particular measure of this risk.

Different criteria for quadratic risk minimization can be found in the literature. We
mention, for example, Föllmer, and Schweizer (1989), Schäl (1994), Schweizer (1995, 2001),
Mercurio, and Vorst (1996), Heath, Platen, and Schweizer (2001a, 2001b). We only briefly
describe them here, but they are presented in more detail in Section 2.

Suppose we want to hedge an option and we only have a finite number of hedging times:
t0, t1, ..., tM . Suppose also that the discounted underlying asset price is a square integrable
process on a probability space (Ω,F , P ), with filtration (Fk)k=0,1,...,M . Denote by Ck the
cumulative cost of the hedging strategy up to time k (this includes the initial cost for setting
up the hedging portfolio and the cost for rebalancing it at the hedging times t0, ..., tk).

Currently, there are two main quadratic hedging approaches for choosing an optimal
strategy. One possibility is to control the total risk by minimizing the L2-norm E((CM −
C0)2), where E(·) denotes the expected value with respect to the probability measure P .
This is the total risk-minimization criterion. An optimal strategy for this criterion is self-
financing, that is, its cumulative cost process is constant. However, a total risk-minimization
strategy may not exist in general. The additional assumption that the discounted underlying
asset price has a bounded mean-variance tradeoff is required. In this case, there exists an
explicit strategy. The existence and the uniqueness of a total risk-minimizing strategy have
been extensively studied by Schweizer (1995).

Another possibility is to control the local incremental risk, by minimizing E((Ck+1 −
Ck)2|Fk) for all 0 ≤ k ≤ M − 1. This is the local quadratic risk-minimizing criterion.
The same assumption that the discounted underlying asset price has a bounded mean-
variance tradeoff is sufficient for the existence of an explicit local risk-minimizing strategy
(see Schäl 1994). This strategy is no longer self-financing, but it is mean-self-financing, i.e.,
the cumulative cost process is a martingale. In general, the initial costs for the local risk-
minimizing and total risk-minimizing strategies are different. As Schäl noticed, the initial
costs agree in the case when the discounted underlying asset price has a deterministic mean-
variance tradeoff. He then suggests the interpretation of this initial cost as a fair hedging
price for the option. However, as shown by Schweizer (1995), this is not always appropriate.

In order to justify the optimal hedging strategy of the quadratic risk minimization and
to ascertain the fair value of the option, it is important to analyze the dependence of the
optimal hedging strategy on the choice of the quadratic risk measure. We remark that the
optimal hedging strategy hinges on the subjective criterion for measuring the risk.
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Under the Black-Scholes assumptions, an option can be hedged with a bond and the
underlying asset, with no risk, i.e., zero incremental in or out cashflow for rebalancing.
When rebalancing can only be done at discrete times, a natural optimal hedging strategy
is the one which minimizes the expected magnitude of the incremental cashflow; this leads
to the optimization problems, minimize E(|Ck+1 − Ck| |Fk) or minimize E(|CM − C0|),
respectively.

Another argument in favor of the piecewise linear risk measure is that the costs of
rebalancing usually have a linear form. Since Ck+1 − Ck represents the change in value of
the portfolio, minimizing E(|Ck+1−Ck| |Fk) seems more likely to yield smaller rebalancing
costs.

In addition, minimizing the piecewise linear risk, E(|Ck+1 − Ck| |Fk), and minimiz-
ing the quadratic risk, E((Ck+1 − Ck)2|Fk), can lead to significantly different solutions.
Assume that pk(S) is the conditional density function of the underlying price at time
tk+1. Minimizing E((Ck+1 − Ck)2|Fk) emphasizes more on reducing the largest value of√

pk(S)|Ck+1−Ck|, whereas minimizing E(|Ck+1−Ck| |Fk) attempts to reduce the density
weighted incremental cashflow, pk(S)|Ck+1−Ck|, for each underlying value S, equally. This
suggests that minimizing E(|Ck+1 − Ck| |Fk) is more likely to yield a smaller incremental
cashflow (see subsequent example and numerical results). Moreover, focusing on reducing
the largest value of

√
pk(S)|Ck+1−Ck| does not imply minimizing the extreme incremental

cost |Ck+1 − Ck| if the density of such an extreme value is sufficiently small.
To illustrate the above discussion in more detail, consider the following comparison be-

tween the piecewise linear risk-minimization with respect to the local risk measure E(|Ck+1−
Ck| |Fk), and the quadratic risk-minimization with respect to E((Ck+1−Ck)2|Fk). Suppose
the price of the underlying asset follows the stochastic differential equation:

dSt

St
= µdt + σdZt

where Zt is a Wiener process. Let the initial value of the asset S0 = 100, the instantaneous
expected return µ = .2, the volatility σ = .2 and the riskless rate of return r = .1. Suppose
we want to statically hedge a deep in-the-money and a deep out-of-money put option with
maturity T = 1; we only have one hedging opportunity, at time 0. At the maturity T
we compare the payoff of the options with the hedging portfolio values of the strategies
obtained by the piecewise linear and quadratic local risk-minimization. The payoff and the
hedging portfolio values at time T are multiplied by the density function of the asset price
and are discounted to time 0. The first plot in Figure 1 shows the weighted payoff and
the weighted values of the hedging portfolios at the maturity T for the in-the-money put
option. The second plot presents the corresponding data for the out-of-money put option.
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Figure 1: Best fitting of the option payoff

In the case of the in-the-money put option, the weighted payoff, closer to normal, is
much easier to fit. We remark that in this case both criteria generate similar plots of
the hedging strategy values and these fit relatively well the option payoff. However, the
weighted payoff for the out-of-money put option seems more difficult to match. Despite the
small values (of order 10−3), it is important to note that the relative differences between
the weighted payoff and the weighted values of the hedging portfolios are large. (The cost
of an out-of-money put is much smaller than the cost of the in-the-money put.) We have
illustrated the hedging of only one out-of-money put option; if we want to hedge 100 put
options identical to the one considered, the absolute differences between the weighted payoff
and the weighted hedging portfolio values will also be significant. The hedging styles of the
two strategies are very different. The L2-norm (i.e., quadratic) attempts to penalize large
residuals excessively and this actually leads to a worse fit under most scenarios. Indeed,
the probability that the put option expires out of money is very large, around .97, but the
L2 hedging strategy either over or under replicates the option payoff. On the other hand,
the L1 strategy hedges exactly the option payoff when it expires out of money. Suppose
we short the out-of-money put option. At the maturity of the option, our possible losses
are never greater than the strike price. Assume now that we want to hedge our position by
buying the L2 hedging strategy. We can see from the figure that, by excessively trying to
reduce the risk in the unlikely event that the option expires in the money, the L2 strategy
actually introduces the very small probability of unlimited losses. This is not the case if we
try to hedge the short position using the L1 strategy.

Unfortunately, there are no known analytic expressions for the optimal hedging strate-
gies in the case of the risk measures E(|CM − C0|) and E(|Ck+1 − Ck| |Fk). In this paper
we concentrate on describing alternative hedging strategies for local risk-minimization. We
compare the effectiveness of the hedging strategies based on piecewise linear risk minimiza-
tion to those based on quadratic risk minimization. We first illustrate that, by generating
synthetic paths for the asset price, the piecewise linear risk minimization may lead to
smaller average total hedging cost and risk. We then confirm these results by computing
the expected total cost and risk in the binomial view of the asset price. Finally we pro-
vide numerical results which emphasize the fact that the optimal hedging strategies with
respect to piecewise linear risk-minimization are significantly different, possibly more desir-
able, having a larger probability of small cost and risk, although a very small probability
of larger cost and risk than the traditional strategies.

In Section 2 of the paper we review the criteria for quadratic risk-minimization. Al-

3



ternative criteria based on piecewise linear risk-minimization are described in Section 3.
Section 4 illustrates numerically the differences between the quadratic and the piecewise
linear local risk-minimizing strategies. In Section 5 we show that the value processes of the
hedging strategies satisfy put-call parity and and we conclude in Section 6.

2. Quadratic risk-minimization

Consider a financial market where a risky asset (called stock) and a risk-free asset (called
bond) are traded. Let T > 0 and let 0 = t0 < t1 < ... < tM = T be discrete hedging
dates. Suppose (Ω,F , P ) is a filtered probability space with filtration (Fk)k=0,1,...,M , where
Fk corresponds to the hedging time tk and w.l.o.g. F0 = {∅,Ω} is trivial. Assume the stock
price follows a stochastic process S = (Sk)k=0,1,...,M , with Sk being Fk-measurable for all
0 ≤ k ≤ M . We can set the bond price B ≡ 1 by assuming the discounted stock price
process X = (Xk)k=0,1,...,M , where Xk = Sk

Bk
,∀0 ≤ k ≤ M .

Suppose we want to hedge a European option with maturity T whose payoff is given
by a FM -measurable random variable H. For example, in the case of a European put with
maturity T and discounted strike price K, we have H = (K −XM )+.

A trading strategy is given by two stochastic processes (ξk)k=0,1,...,M and (ηk)k=0,1,...,M ,
where ξk is the number of shares held at time tk and ηk is the amount invested in the
bond at time tk. We assume ξk, ηk are Fk-measurable, for all 0 ≤ k ≤ M and ξM = 0.
Consider the portfolio consisting of the combination of the stock and bond given by the
trading strategy. The condition ξM = 0 corresponds to the fact that at time M we liquidate
the portfolio in order to cover for the payoff of the option. The value of the portfolio at any
time tk, 0 ≤ k ≤ M , is given by:

Vk = ξkXk + ηk.

For all 0 ≤ j ≤ M−1, ξj(Xj+1− Xj) represents the change in value due to the change in
the stock price at time tj+1 before any changes in the portfolio. Therefore, the accumulated
gain Gk is given by:

Gk =
k−1∑
j=0

ξj(Xj+1 −Xj), 1 ≤ k ≤ M

and G0 = 0.
The cumulative cost at time tk, Ck, is defined by:

Ck = Vk −Gk, 0 ≤ k ≤ M.

A strategy is called self-financing if its cumulative cost process (Ck)k=0,1,...,M is constant
over time, i.e. C0 = C1 = ... = CM . This is equivalent to (ξk+1 − ξk)Xk+1 + ηk+1 − ηk = 0
(a.s.), for all 0 ≤ k ≤ M − 1. In other words, any fluctuations in the stock price can be
neutralized by rebalancing ξ and η with no inflow or outflow of capital. The value of the
portfolio for a self-financing strategy is then given by Vk = V0 +Gk at any time 0 ≤ k ≤ M .

A market is complete if any claim H is attainable, that is, there exists a self-financing
strategy with VM = H (a.s.). If the market is incomplete, for instance in the case of discrete
hedging, a claim is, in general, non-attainable and a hedging strategy has to be chosen based
on some optimality criterion.

One approach to hedging in an incomplete market is to consider only self-financing
strategies. An optimal self-financing strategy is then chosen which best approximates H by
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its terminal value VM . The quadratic criterion for this total risk-minimization is given by
minimizing the L2-norm:

E((H − VM )2) = E((H − V0 −GM )2). (1)

By solving the total risk-minimization problem (1), we obtain the initial value of the
portfolio, V0, and the number of shares, (ξ0, ..., ξM−1). The amount invested in the bond,
(η0, ..., ηM ), is then uniquely determined since the strategy is self-financing. Unfortunately,
this problem does not have solution in general. Schweizer (1995) proves the existence of a
total risk-minimizing strategy when the discounted stock price has a bounded mean-variance
tradeoff, that is:

(E(Xk −Xk−1|Fk))2

Var(Xk −Xk−1|Fk)
is P-a.s. uniformly bounded.

Another approach to hedging in an incomplete market is to first impose VM = H, hence
ηM = H. Since such a strategy cannot be self-financing, we should then choose the optimal
trading strategy to minimize the incremental cost incurred from adjusting the portfolio at
each hedging time. The quadratic criterion for this local risk-minimizing strategy is given
by minimizing:

E((Ck+1 − Ck)2|Fk) , 0 ≤ k ≤ M − 1. (2)

When M = 1, the local risk-minimization and the total risk-minimization criteria coin-
cide. Under the assumption that the above mean-variance tradeoff is deterministic, Schäl
(1994) proves that the initial cost for the local risk-minimizing strategy is equal to the cost
for the total risk-minimizing strategy. He then infers that this cost is a fair hedging price.
However, this assumption is strong and in general the two initial costs are different.

These two criteria are discussed in detail in Föllmer, and Schweizer (1989), Schäl (1994),
Schweizer (1995, 2001). We will concentrate here only on the local risk-minimization (2).

The problem is to minimize the local risk:

E((Ck+1 − Ck)2|Fk) = E((Vk+1 − Vk − ξk(Xk+1 −Xk))2|Fk),

for all 0 ≤ k ≤ M − 1, starting from the final condition VM = H.
This local risk-minimization strategy has also a “global aspect”: in order to determine

the holdings in the hedging portfolio at a certain time, optimization problems need to be
solved backward in time from the maturity of the option. Since the market is incomplete,
the option values are not known at intermediate times and therefore, the hedging strategy
cannot consider only the information in the current hedging period.

If H is a square integrable random variable and X is a square integrable process with
bounded mean-variance tradeoff, then (2) is guaranteed to have a solution obtained in the
following way: starting from VM = ηM = H, for k = M−1, ..., 0 we choose ξk, ηk recursively
to minimize,

E((Vk+1 − Vk − ξk(Xk+1 −Xk))2|Fk) = E((Xk+1(ξk+1 − ξk) + (ηk+1 − ηk))2|Fk). (3)

The hedging strategy constructed in this way is given explicitly by:

ξM = 0, ηM = H

ξk = Cov(ξk+1Xk+1+ηk+1,Xk+1| Fk)

Var(Xk+1|Fk)
, 0 ≤ k ≤ M − 1

ηk = E((ξk+1 − ξk)Xk+1 + ηk+1|Fk), 0 ≤ k ≤ M − 1.

(4)
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This hedging strategy is no longer self-financing, but it has a weaker property: it is
mean-self-financing, that is E(Ck+1|Fk) = Ck, for all 0 ≤ k ≤ M − 1, or, in other words,
the cost process is a martingale. In particular, this implies C0 = E(CM ). One could
choose C0 = V0 as a fair hedging price, however, C0 depends on the subjective criterion for
measuring the risk and it may not always make sense from an economic point of view (see
Schweizer (1995)).

3. Piecewise linear local risk-minimization

An alternative way for choosing a local risk-minimizing strategy is to use the risk measure
E(|Ck+1−Ck| |Fk) in the above minimization problem. The problem of choosing a piecewise
linear local risk-minimizing strategy is then given by: starting from the final condition
VM = H, minimize,

E(|Ck+1 − Ck| |Fk) , 0 ≤ k ≤ M − 1. (5)

Problem (5) seems more natural than (2) from the financial point of view, since we are
trying to minimize the risk measured by the incremental cost for adjusting the portfolio
valued in monetary units. Moreover, as shown in the Appendix, when the risky asset price
follows a binomial model, problems (2) and (5) respectively reduce to solving L2 and L1-
minimization problems. The fact that the L2-norm overemphasizes the large values even if
these values have a very small probability of occurrence results in a poorer fit globally. This
is another reason why we believe that problem (5) is more appropriate than (2). We believe
the choice of the quadratic risk-minimization criterion in literature was made mainly because
it allows explicit results, but we will see that using piecewise linear risk-minimization often
leads to significantly different hedging strategies and possibly better hedging results.

Similar to the case of the quadratic criterion, the optimal piecewise linear strategy is
constructed recursively by first choosing ηM = H, ξM = 0, then for k = M−1, ..., 0 choosing
ξk, ηk to minimize:

E(|Xk+1(ξk+1 − ξk) + (ηk+1 − ηk)| |Fk). (6)

The strategy constructed in this way is no longer mean-self-financing. The lack of this
property is not a practical drawback since we are predominantly interested in reducing the
mean of the incremental costs and not in preserving the mean cost. However, if we insist
on mean-self-financing strategies, we can solve instead the following local risk-minimization
problem: starting from VM = H, for all k = M − 1, ..., 0, minimize

min E(|Ck+1 − Ck| |Fk)

subject to E(Ck+1|Fk) = Ck.

(7)

That is, first take ηM = H, ξM = 0, then recursively, for k = M − 1, ..., 0, choose ξk to
minimize:

E(|ξk+1Xk+1 + ηk+1 − E(ξk+1Xk+1 + ηk+1| Fk)− ξk(Xk+1 − E(Xk+1|Fk))| |Fk) (8)

and define ηk = E(ξk+1Xk+1 + ηk+1 − ξkXk+1|Fk).
We note that while in problem (6) we have the liberty of choosing both ηk and ξk, the

mean-self-financing constraint imposes a relation between these two variables.
Unfortunately, it is not possible to obtain an analytic solution for problems (6) and (8).
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4. Numerical results

Assume the writer of a European option with maturity T wants to hedge his position using
the underlying stock and a bond. Also assume there are only M hedging opportunities at
0 = t0 < t1 < ... < tM−1 < tM := T .

Suppose the price of the underlying stock follows the stochastic differential equation:

dSt

St
= µdt + σdZt, (9)

where Zt is a Wiener process.
We generate a binomial tree of possible values of the asset price choosing the parameters

such that if the number of periods in the tree is increased, in the limiting case, the binomial
process converges to the continuous process (9). The numerical results presented in this
section refer to hedging put options with maturity T = 1 and different strike prices. We
have performed numerical experiments for different values of the instantaneous expected
return, µ, volatility, σ, and riskless rate of return, r. Unless otherwise specified, the results
presented here have been obtained for the initial value of the stock S0 = 100, µ = .2, σ = .2
and r = .1. The number of periods in the binomial tree is 600. The detailed implementation
of all the three methods when using a binomial tree is presented in the Appendix.

We compute the holdings (ξ, η) in the portfolio at each node in the binomial tree using
the previously described methods of local risk-minimization:

• Method 1: Piecewise linear risk-minimization (6)

• Method 2: Quadratic risk-minimization (4)

• Method 3: Constrained piecewise linear risk-minimization (8)

We want to analyze the performance of the three methods given that the stock price
satisfies equation (9). We generate synthetic paths for the stock price based on this equation.
For each path and each of the three methods we determine the holdings in the portfolio
used to hedge the option if the stock price had the values given by the path. The portfolio
holdings are determined based on the already computed holdings in the binomial tree: at
every hedging time we find the node in the binomial tree where the stock price has the
closest value to the one on the path and we consider the holdings at that particular node.
We then compute the following:

• End of period cumulative cost:

CM = H −
M−1∑
k=0

ξk(Xk+1 −Xk).

This is the total amount of money necessary for the writer to carry on the hedging
strategy and honor the option payoff.

• Incremental risk per rebalancing time:

1
M

M−1∑
k=0

|Ck+1 − Ck|.
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This is the average of the absolute values of all the adjustments in the portfolio. It
is a measure of the unplanned intermediate costs or income of the strategy. It is
not a priori clear that the incremental risk for Method 1 should be smaller than the
incremental risk for the other two methods: Method 1 minimizes E(|Ck+1−Ck| |Fk),
for k = M − 1, ..., 0, and not their sum. As shown below, it actually happens that
Method 1 yields a larger incremental risk than the other two methods.

The numerical results will show that the performance of the three methods depends
on the moneyness of the options. Method 1, the piecewise linear risk minimization, yields
the smallest average cumulative cost and incremental risk among the three methods when
the put options are out-of-money and at-the-money, while Method 2, the quadratic risk
minimization, performs the best as the put options become more deeply in-the-money.
Method 3, the constrained piecewise linear risk minimization, is an intermediate method.
The cumulative cost and incremental risk for Method 3 follow the trend of the cumulative
cost and incremental risk for Method 1, but their values are closer to the values for Method
2. The numerical results will also illustrate that the differences between the three methods
tend to increase as we rebalance less frequently.

Let us first analyze the case of the static hedging when we only hedge once, at time 0.
Tables 1 and 2 show the average cumulative cost and incremental risk over 50000 simulated
paths.
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Table 1: Average cumulative cost over 50000 paths for one hedging opportunity

Method
Strike 1 2 3

90 0.5194 0.9598 0.6481
95 0.9672 1.7250 1.2565
100 1.6619 2.8605 2.2338
105 2.6633 4.4282 3.7382
110 4.9958 6.4504 5.9590

The table shows the average cumulative cost for the static hedging of put
options with maturity T = 1 and different strike prices. The hedging
strategies are computed by the three methods: 1 - piecewise linear risk-
minimization, 2 - quadratic risk-minimization and 3 - constrained piecewise
linear risk-minimization. The results are obtained for the initial value of the
stock, S0 = 100, instantaneous expected return, µ = .2, volatility, σ = .2,
and riskless rate of return, r = .1.

Table 2: Average incremental risk over 50000 paths for one hedging opportunity

Method
Strike 1 2 3

90 0.5194 1.1294 0.9156
95 0.9672 1.8111 1.5629
100 1.6619 2.6146 2.3863
105 2.6633 3.4483 3.2889
110 3.8395 4.2187 4.1471

The table shows the average incremental risk for the static hedging of put
options with different strike prices, by the three methods and in the setup
described in Table 1.

The average cumulative cost for Methods 1 and 3 is much smaller than the cost for
Method 2. This is especially the case for Method 1 for which the cumulative cost is almost
two thirds the cost of Method 2.

Similar results are illustrated in Table 2. Since the incremental risk accumulates the
absolute values of all the unplanned costs or profits of the strategy, it is a measure of the
riskiness of the strategy. Using this risk measure, we infer that Method 1 is the least risky
among the three methods. Method 3 is also less risky than Method 2.

We remark that, in the case of Method 1, the average values of the cumulative cost in
Table 1 and incremental risk in Table 2 are equal for the first four put options considered.
This happens because both ξ0 and η0 are zero. Therefore, with no future rebalancing
opportunities, Method 1 chooses not to hedge these particular put options. However, the
more deeply in-the-money put option with strike price 110 is hedged by Method 1, that
is, the holdings in the hedging portfolio are no longer zero. Experiments show that in-the-
money put options which are closer to expiry will also be hedged by Method 1.

Consider now that we have more hedging opportunities. Tables 3 and 4 show the average
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values over 50000 paths of the cumulative cost and incremental risk, for different number of
binomial tree periods per rebalancing time. We remark that the last column corresponds
to the above case, that is, hedging only once, at time 0.

Table 3: Average value of the cumulative cost over 50000 paths

Number of periods per rebalancing time
Strike Method 1 5 25 50 100 300 600

1 1.4257 0.9297 1.1807 0.9127 0.8219 0.6253 0.5194
90 2 1.4257 1.4214 1.3992 1.3707 1.3148 1.1338 0.9598

3 1.4257 1.3729 1.3085 1.2677 1.2071 0.8728 0.6481
1 2.3993 1.7981 2.1335 1.7798 1.6810 1.1994 0.9672

95 2 2.3993 2.3926 2.3633 2.3212 2.2480 1.9919 1.7250
3 2.3993 2.3300 2.2501 2.1984 2.1412 1.6418 1.2565
1 3.7547 3.1753 3.5134 3.1471 2.9982 2.1141 1.6619

100 2 3.7547 3.7459 3.7124 3.6666 3.5681 3.2349 2.8605
3 3.7547 3.6715 3.5838 3.5367 3.4839 2.8866 2.2338
1 5.5251 5.1157 5.3573 5.0783 4.9656 4.3046 2.6633

105 2 5.5251 5.5179 5.4826 5.4299 5.3158 4.9137 4.4282
3 5.5251 5.4359 5.3481 5.3036 5.2763 4.6740 3.7382
1 7.7189 7.6090 7.6409 7.5231 7.4193 6.9338 4.9958

110 2 7.7189 7.7120 7.6701 7.6148 7.4915 7.0380 6.4504
3 7.7189 7.6264 7.5365 7.5048 7.5083 7.0088 5.9590

The table shows the average cumulative cost for the hedging of put options
with different strike prices and number of periods per rebalancing time, by
the three methods and in the setup described in Table 1.
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Table 4: Average value of the incremental risk over 50000 paths

Number of periods per rebalancing time
Strike Method 1 5 25 50 100 300 600

1 0.0035 0.0088 0.0557 0.0874 0.1686 0.3676 0.5194
90 2 0.0035 0.0142 0.0667 0.1319 0.2580 0.6903 1.1294

3 0.0035 0.0147 0.0672 0.1304 0.2520 0.6160 0.9156
1 0.0049 0.0160 0.0843 0.1545 0.3006 0.7081 0.9672

95 2 0.0049 0.0197 0.0935 0.1861 0.3696 1.0397 1.8111
3 0.0049 0.0206 0.0951 0.1860 0.3657 0.9845 1.5629
1 0.0063 0.0256 0.1141 0.2362 0.4624 1.2406 1.6619

100 2 0.0063 0.0253 0.1205 0.2418 0.4849 1.4254 2.6146
3 0.0063 0.0265 0.1233 0.2430 0.4821 1.4100 2.3863
1 0.0075 0.0350 0.1414 0.3101 0.6074 1.8267 2.6633

105 2 0.0075 0.0302 0.1443 0.2911 0.5900 1.7990 3.4483
3 0.0075 0.0316 0.1481 0.2930 0.5857 1.8274 3.2889
1 0.0085 0.0418 0.1603 0.3622 0.7128 2.1912 3.8395

110 2 0.0085 0.0338 0.1623 0.3286 0.6725 2.1217 4.2187
3 0.0085 0.0355 0.1666 0.3300 0.6624 2.1587 4.1471

The table shows the average incremental risk for the hedging of put options
with different strike prices and number of periods per rebalancing time, by
the three methods and in the setup described in Table 1.

Consistent with the single hedging opportunity case, the average cumulative cost for
Method 1 is the smallest. Method 3 has an average cumulative cost close in value to
Method 2, although smaller in most of the cases. As mentioned above, the differences tend
to increase when rebalancing is infrequent. With respect to the risk measure chosen, Method
1 is the best for the out-of-money and at-the-money put. The incremental risk for Method
3 is also smaller (or very close) to the risk for Method 2. In the case of the in-the-money
put, Method 2 tends to be marginally better if we rebalance frequently enough.

The fact that Method 2 performs better than the other two methods as the put options
become more deeply in-the-money and the rebalancing is frequent enough is illustrated by
considering put options that are more likely to mature in the money. Suppose now that the
instantaneous expected return is µ = .15 and the riskless rate of return is r = .04 while the
other parameters remain unchanged. The average cumulative cost over 50000 for the put
options in this case is presented in Table 5.
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Table 5: Average value of the cumulative cost over 50000 paths

Number of periods per rebalancing time
Strike Method 1 5 25 50 100 300 600

1 2.5329 1.8672 2.2014 2.1110 1.8588 1.1700 0.9339
90 2 2.5329 2.5266 2.4908 2.4449 2.3506 2.0470 1.7414

3 2.5329 2.4521 2.5587 2.4527 2.1765 1.6673 1.2394
1 4.0342 3.3979 3.7302 3.6446 3.3893 2.1354 1.6568

95 2 4.0342 4.0311 3.9842 3.9188 3.8077 3.4075 2.9697
3 4.0342 3.9429 4.0780 3.9603 3.6461 3.0212 2.2798
1 6.0060 5.5982 5.7886 5.7813 5.5293 4.3262 2.7203

100 2 6.0060 5.9979 5.9554 5.8905 5.7519 5.2661 4.6908
3 6.0060 5.8998 6.0735 5.9669 5.6390 4.9550 3.9174
1 8.4531 8.4119 8.3506 8.4183 8.1996 7.4385 5.4375

105 2 8.4531 8.4454 8.3962 8.3285 8.1803 7.6329 6.9312
3 8.4531 8.3455 8.5315 8.4374 8.1286 7.4884 6.3763
1 11.3490 11.6763 11.3757 11.5254 11.3399 11.0763 9.2010

110 2 11.3490 11.3409 11.2905 11.2235 11.0757 10.4973 9.6961
3 11.3490 11.2431 11.4351 11.3555 11.0830 10.7201 9.5060

The table shows the average cumulative cost for the hedging of put options
with different strike prices and number of periods per rebalancing time,
by the three methods described in Table 1. The results are obtained for
the instantaneous expected return, µ = .15 and the riskless rate of return,
r = .04, the other parameters being unchanged.

We remark that for the out-of-money and at-the-money put options, Method 1 has the
smallest average cumulative cost. As the option is more deeply in-the-money, Method 2
tends to perform the best in terms of average cumulative cost for frequent enough rebal-
ancing. However, the relative differences between the average cumulative costs for Methods
1 and 2 are much smaller for the in-the-money put options than for the out-of-money put
options. Method 3 has an average cumulative cost close in value to the cost of Method 2,
although smaller when rebalancing is infrequent and the option is not deep in-the-money.

The values of the incremental risk for these put options are very close and we are not
going to present them. However, they follow the same trend: Method 1 has the smallest
incremental risk for out-of-money and at-the-money put options, while Method 2 slightly
outperforms it when the options are in-the-money.

The expected total cost and incremental risk can be approximated even without simu-
lation by analyzing the three methods in the binomial view of the world, where the stock
price can only follow the paths given by the binomial tree. For each method we compute
the expected cumulative cost and expected incremental risk over the entire binomial tree.

• Expected time T cumulative cost:

E(CM ) = E(H −
M−1∑
k=0

ξk(Xk+1 −Xk)).

This is the expected cost of the hedging strategy which can be easily computed once
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ξk has been computed. It is an indication of how much the hedging strategy costs on
average.

• Expected incremental risk per rebalancing time:

E(
1
M

M−1∑
k=0

E(|Ck+1 − Ck| |Fk)) =
1
M

M−1∑
k=0

E(|Ck+1 − Ck|).

This is a measure of the average unplanned intermediate costs or income of the strat-
egy. As mentioned before, it is not a priori clear that the expected incremental risk
for Method 1 should be the smallest.

The results that follow have been obtained with the first set of parameters where the
instantaneous expected return is µ = .15 and the riskless rate of return is r = .04.

The expected cost for all three methods is presented in Table 6.

Table 6: Expected cumulative cost E(CM )

Number of periods per rebalancing time
Strike Method 1 5 25 50 100 300 600

1 1.4254 0.9289 1.1780 0.9095 0.8170 0.6228 0.5213
90 2 1.4254 1.4204 1.3962 1.3669 1.3118 1.1348 0.9671

3 1.4254 1.3718 1.3057 1.2640 1.2030 0.8722 0.6516
1 2.3977 1.7969 2.1282 1.7763 1.6797 1.1971 0.9682

95 2 2.3977 2.3912 2.3593 2.3203 2.2455 1.9929 1.7353
3 2.3977 2.3284 2.2460 2.1976 2.1381 1.6401 1.2611
1 3.7499 3.1634 3.5010 3.1313 2.9887 2.1038 1.6570

100 2 3.7499 3.7422 3.7035 3.6557 3.5626 3.2321 2.8703
3 3.7499 3.6674 3.5739 3.5236 3.4766 2.8802 2.2359
1 5.5191 5.1031 5.3356 5.0523 4.9430 4.2796 2.6471

105 2 5.5191 5.5103 5.4667 5.4122 5.3045 4.9042 4.4337
3 5.5191 5.4274 5.3294 5.2836 5.2607 4.6578 3.7352
1 7.7139 7.5957 7.6202 7.4950 7.3966 6.9102 4.9857

110 2 7.7139 7.7046 7.6583 7.6000 7.4833 7.0297 6.4581
3 7.7139 7.6180 7.5224 7.4866 7.4951 6.9909 5.9606

The table shows the expected cumulative cost for the hedging of put options
with different strike prices and number of periods per rebalancing time, by
the three methods and in the setup described in Table 1.

We observe that when we rebalance the portfolio every period, all the methods yield the
same expected cost since we are able to exactly replicate the options on all the paths of the
binomial tree. When the number of periods per rebalancing time is larger than 1, Method
1 gives a smaller expected cost than Method 2. Method 3 is also better than Method 2
but the differences are less significant. We remark also that the expected cost for piecewise
linear local risk-minimization is much smaller when we rebalance infrequently.
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Let us analyze now the expected incremental risk.

Table 7: Expected incremental risk per rebalancing time

Number of periods per rebalancing time
Strike Method 1 5 25 50 100 300 600

1 0.0000 0.0075 0.0531 0.0858 0.1672 0.3637 0.5213
90 2 0.0000 0.0135 0.0656 0.1302 0.2562 0.6842 1.1273

3 0.0000 0.0129 0.0651 0.1283 0.2496 0.6111 0.9133
1 0.0000 0.0137 0.0800 0.1515 0.2982 0.7046 0.9682

95 2 0.0000 0.0188 0.0921 0.1841 0.3672 1.0339 1.8108
3 0.0000 0.0180 0.0919 0.1829 0.3622 0.9792 1.5635
1 0.0000 0.0217 0.1076 0.2296 0.4555 1.2355 1.6570

100 2 0.0000 0.0241 0.1188 0.2389 0.4817 1.4197 2.6152
3 0.0000 0.0231 0.1189 0.2381 0.4775 1.4054 2.3824
1 0.0000 0.0299 0.1332 0.3014 0.5979 1.8135 2.6471

105 2 0.0000 0.0287 0.1423 0.2878 0.5856 1.7967 3.4558
3 0.0000 0.0275 0.1426 0.2867 0.5793 1.8207 3.2905
1 0.0000 0.0357 0.1519 0.3530 0.7008 2.1749 3.8174

110 2 0.0000 0.0321 0.1598 0.3246 0.6667 2.1156 4.2214
3 0.0000 0.0308 0.1601 0.3225 0.6538 2.1468 4.1430

The table shows the expected incremental risk for the hedging of put options
with different strike prices and number of periods per rebalancing time, by
the three methods and in the setup described in Table 1.

When we rebalance the portfolio every period, we replicate the options exactly on all
the paths of the binomial tree, therefore the risk is zero for all the methods. When we
rebalance the portfolio less frequently, Method 1 yields the smallest expected incremental
risk in most of the cases and Method 3 is an intermediate method. We notice again that
the performance of the piecewise linear local risk-minimization depends on the moneyness
of the put options, the best results being obtained for out-of-money and at-the-money put
options. As shown in Table 7, the expected incremental risk per rebalancing time increases
as we rebalance less frequently.

As we can see from Tables 6 and 7, the values of the expected total cost and expected
incremental risk follow closely the values of the average cumulative cost and average incre-
mental risk.

The above numerical results show that the three methods perform differently with re-
spect to the total cost and incremental risk. Next we illustrate that their hedging styles are
also different. Consider the particular case of hedging the out-of-money put option with
strike price 95 and 12 hedging opportunities. We can compute the cumulative cost Ck of
the portfolio at each hedging time tk along a simulated path. Figure 2 shows the typical
evolution of the cumulative cost along such a path.
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Figure 2: Cumulative costs along a simulated path for the stock price

We notice that the plots of the cumulative costs for the mean-self-financing Methods 2
and 3 are almost identical. Method 1 starts with a much smaller initial investment in the
hedging portfolio and gradually increases it along the path in order to match the option
payoff. The fact that the initial cost for setting the portfolio tends to be much smaller for
Method 1 than for the other two methods is illustrated in Table 8. The initial portfolio cost
is computed by C0 = ξ0X0 + η0, where ξ0, η0 are the holdings in the binomial tree at time
0.

Table 8: Initial cost of the hedging portfolio

Number of periods per rebalancing time
Strike Method 1 5 25 50 100 300 600

1 1.4254 0.0299 0.6442 0.0837 0.0000 0.0000 0.0000
90 2 1.4254 1.4204 1.3962 1.3669 1.3188 1.1348 0.9671

3 1.4254 1.3714 1.3057 1.2640 1.2030 0.8722 0.6516
1 2.3977 0.1530 1.3139 0.3328 0.3679 0.0000 0.0000

95 2 2.3977 2.3912 2.3593 2.3203 2.2455 1.9929 1.7353
3 2.3977 2.3284 2.2460 2.1976 2.1381 1.6401 1.2611
1 3.7499 0.5544 2.3361 0.8783 0.7925 0.0000 0.0000

100 2 3.7499 3.7422 3.7035 3.6557 3.5626 3.2321 2.8703
3 3.7499 3.6674 3.5739 3.5236 3.4766 2.8802 2.2359
1 5.5191 1.5201 4.0033 2.2123 2.4485 2.6349 0.0000

105 2 5.5191 5.5103 5.4667 5.4122 5.3045 4.9042 4.4337
3 5.5191 5.4274 5.3294 5.2836 5.2607 4.6578 3.7352
1 7.7139 3.3123 6.1464 4.2234 4.1045 5.2699 2.6164

110 2 7.7139 7.7046 7.6583 7.6000 7.4833 7.0297 6.4581
3 7.7139 7.6180 7.5224 7.4866 7.4951 6.9909 5.9606

The table shows the initial cost of the hedging portfolio for put options
with different strike prices and number of periods per rebalancing time, by
the three methods and in the setup described in Table 1.
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From the last column in Table 8 we can see that when we only have one hedging
opportunity, Method 1 yields C0 = 0 for the first four put options considered. Actually, as
emphasized before in the paper, both ξ0 and η0 are 0. This is no longer the case if we hedge
the more deeply in-the-money put option with strike price 105 and the same maturity, or
in-the-money put options which are closer to expiry.

Next we analyze the distributions of the cumulative cost for the three methods with re-
spect to the hedging of the out-of-money put option with 12 rebalancing opportunities. From
Table 3 we see that the average cumulative costs for the three methods are 1.7798, 2.3212
and 2.1984, respectively. Figure 3 shows the histograms for the cumulative costs over the
50000 simulated paths.

Figure 3: Histogram of cumulative costs

We can see that Method 1 is more asymmetric about its mean compared to Methods 2
and 3. Almost 70% of the time the cumulative costs for Method 1 are less than their mean
and 53% are less than half of the mean. Since the average cumulative cost is very close to
the expected total cost, it means that almost 70% of the time the cost for rebalancing the
portfolio will be less than what we expect. In the case of Method 3, 61% of the time the
cumulative costs are less than their mean, while in the case of Method 2 this happens only
56% of the time. However, Figure 3 also shows that Method 1 has a very small probability
of having larger costs than the costs for the other two methods.

All the three methods can lead to negative cumulative costs, but this happens less
frequently in the case of Method 1. Moreover, as we can see from Figure 3, the negative
cumulative costs for Method 1 are closer in value to zero than the negative cumulative costs
for Methods 2 and 3. The minimum cumulative cost over the 50000 simulated paths is
−0.7598 for Method 1, −2.5966 for Method 2 and −2.3504 for Method 3.

The skewness of the cumulative costs is another indication of the asymmetry of the data
around the mean. In our case, the skewness for Method 1 is 2.1422, while the skewness for
Method 2 is 1.0003 and the one for Method 3 is 1.7019. The larger positive skewness for
Method 1 emphasizes again that the distribution of the cumulative costs for Method 1 has
a longer right tail than the distributions for the other two methods.

The histograms for the incremental risks over the same paths are presented in Figure 4.
The average incremental risks for the three methods are very close in value. However, the
median for Method 1 is 0.0598, while the medians for the other two methods are 0.1414 for

16



Method 2 and 0.1330 for Method 3. On the other hand, as in the case of the cumulative
cost, we can also notice that the incremental risk for Method 1 is more widely spread. The
skewness for the three methods are 1.8667, 1.3447, and 1.4572 respectively.

Figure 4: Histogram of incremental risks

The distributions of the cumulative cost and incremental risk become more and more
asymmetrical as we hedge less frequently or the put option is more deeply out-of-money. Ta-
bles 9 and 10 show the skewness of the distributions of the cumulative cost and incremental
risk for at-the-money and out-of-money puts with very few hedging opportunities.

Table 9: Skewness of the cumulative cost

Number of periods per
rebalancing time

Strike Method 100 300 600
1 1.9793 2.6503 3.4271

100 2 1.0388 1.7781 2.4873
3 1.4910 2.4317 3.3815
1 2.5225 3.5049 4.4015

95 2 1.3996 2.4512 3.5385
3 1.9894 3.3514 4.4260
1 3.3340 4.9302 6.0126

90 2 2.0013 3.6100 5.1632
3 2.8357 4.7319 6.0677

The table shows the skewness of the cumulative cost for hedging put options
with different strike prices and number of periods per rebalancing time, by
the three methods and in the setup described in Table 1.
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Table 10: Skewness of the incremental risk

Number of periods per
rebalancing time

Strike Method 100 300 600
1 1.7522 2.2281 3.4271

100 2 1.4764 2.4414 3.6322
3 1.6865 2.7503 4.0588
1 2.2394 3.0319 4.4015

95 2 1.7524 2.9765 4.7719
3 1.9347 3.2575 4.9737
1 2.9436 4.3488 6.0126

90 2 2.2774 3.9320 6.4523
3 2.4667 4.2173 6.5235

The table shows the skewness of the incremental risk for hedging put options
with different strike prices and number of periods per rebalancing time, by
the three methods and in the setup described in Table 1.

We note that the skewness increases as the number of hedging opportunities decreases
and has the largest value when the put option is deep out-of-money.

5. Discrete hedging put-call parity

In Section 4 we have only analyzed the case of put options. We will see that hedging call
options is closely related to the hedging of put options. Suppose that we have computed the
optimal holdings ξp, ηp in the portfolio for hedging a put option with maturity T , discounted
strike price K and M hedging opportunities at 0 = t0 < t1 < ... < tM−1 < tM := T . We
can derive a relation between these holdings and the corresponding optimal holdings ξc, ηc

for the call option on the same underlying asset and with the same maturity, strike price
and hedging opportunities. Namely, we have the following property:{

ξc
k = ξp

k + 1
ηc

k = ηp
k −K

, (10)

for all 0 ≤ k ≤ M − 1. Thus if we know the optimal holdings for the put option, we
can compute the optimal holdings for the call, directly, without solving any optimization
problems.

Moreover, the discounted values of the portfolios for hedging the put and the call options,
V p

k and V c
k , satisfy the following put-call parity relation for all 0 ≤ k ≤ M :

V c
k − V p

k = Xk −K. (11)

This is certainly true at time T , since:

V c
M − V p

M = Hc −Hp = XM −K,

where Hc = (XM −K)+ and Hp = (K −XM )+.
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For any 0 ≤ k ≤ M − 1, relation (11) follows immediately from (10). Indeed,

V c
k − V p

k = (ξc
k − ξp

k)Xk + ηc
k − ηp

k = Xk −K.

Similarly, we can deduce the relation between the cumulative costs for the call and put
options:

Cc
M = Cp

M + X0 −K.

Moreover, the incremental costs for the call and put options are equal, that is, for all
k = 0, 1, . . . ,M − 1:

Cc
k+1 − Cc

k = Cp
k+1 − Cp

k .

Using the above relations, we can easily translate the numerical results for hedging
put options, presented in Section 4, to the hedging of call options. Piecewise linear local
risk-minimization leads to smaller expected total hedging cost and risk for in-the-money
and at-the-money call options, while quadratic risk-minimization tends to perform better
as the call options are more deeply out-of-money. Moreover, the initial cost of the hedging
portfolio for a call option is usually much smaller for the piecewise linear risk minimization
than for the other two methods. Indeed, since Cc

0 −Cp
0 = X0 −K for all the three methods

and the initial cost Cp
0 is smaller for Method 1 than for the other two methods, Cc

0 will also
be smaller for Method 1.

Let us now prove relation (10). The proof given below is valid for all the three methods.
Recall that we have ξM = 0, ηM = H, where H is the discounted payoff. For k ≤ M−1,

in order to find the number of shares ξk and the number of units of bond ηk at time tk, we
have to solve an optimization problem of the form:

min E(f(Ck+1 − Ck)|Fk) = minξk,ηk
E(f((ξk+1 − ξk)Xk+1 + (ηk+1 − ηk))|Fk). (12)

where f(x) = x2 for Method 2 and f(x) = |x| for Methods 1 and 3. In the case of Method
3 we also have the constraint:

E(Ck+1 − Ck|Fk) = 0 ⇔ ηk = E((ξk+1 − ξk)Xk+1 + ηk+1|Fk). (13)

Let us first show that relation (10) holds at time tM−1.
For all (xp, yp), let {

xc = xp + 1
yc = yp −K.

(14)

Then

E(f(Hc − xcXM − yc)|FM−1) = E(f(Hc −XM + K − xpXM − yp)|FM−1)
= E(f(Hp − xpXM − yp)|FM−1). (15)

Conversely, for all (xc, yc), consider (xp, yp), defined by (14). We have again that rela-
tions (15) hold. It follows that:

minx,yE(f(Hc − xXM − y))|FM−1) = minx,yE(f(Hp − xXM − y))|FM−1)

and (xp, yp) is optimal for the put problem if and only if (xc, yc) is optimal for the call
problem.

We remark also that (xp, yp) satisfies the constraint (13) if and only if (xc, yc) satisfies
it. We conclude that relation (10) holds at time tM−1 for all the three methods.

Suppose now that we have proved relation (10) at time tk+1 and we want to argue it
holds at time tk. The proof follows exactly in the same way as above by keeping in mind
that the optimal holdings at time tk+1, that is (ξc

k+1, η
c
k+1) and (ξp

k+1, η
p
k+1) satisfy (10).

Therefore, (10) holds for all 0 ≤ k ≤ M − 1.
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6. Conclusions

In an incomplete market, the optimal hedging strategy depends on the criterion for mea-
suring the risk. The traditional strategies found in literature are based on quadratic risk-
minimization. We remark that the performance of the optimal hedging strategies depends
on the moneyness of the option. The numerical results presented in the paper illustrate
that piecewise linear risk-minimization leads to hedging strategies with smaller expected
total hedging cost and incremental risk for out-of-money and at-the-money put options and
respectively, in-the-money and at-the-money call options, while quadratic risk-minimization
becomes competitive and can provide a marginal improvement as the put options are more
deeply in-the-money and the hedging is frequent enough, or, respectively, the call options
are more deeply out-of-money with frequent enough rebalancing. The strategies based on
piecewise linear risk-minimization have quite different, and often preferable, properties com-
pared to traditional strategies. The distributions of the total hedging cost and risk show
that these new strategies have a larger probability of small cost and risk, though they also
have a very small probability of larger cost and risk.

Although there is no analytic solution to the piecewise linear local risk-minimization
problem, an optimal strategy can be easily computed. In order to compute the hedging
strategy for an option with maturity T , we generate a binomial tree on the time horizon [0, T ]
and compute the portfolio holdings in each state of this tree at hedging times. However,
in practice, each time we hedge we may have new information on the volatility and drift of
the stock. Therefore, a new binomial tree can be computed at any rebalancing time on the
remaining time horizon.

In a complete market, there exists a unique self-financing strategy that exactly replicates
the option payoff. By no arbitrage considerations, the option price equals the initial cost
of the hedging portfolio. Therefore, pricing and hedging are closely related. In incomplete
markets, however, options cannot be priced by arbitrage considerations alone. One may
be inclined to consider the expected total hedging cost of the optimal hedging strategy as
a fair value of the option (in the case of quadratic risk minimization, the expected total
hedging cost equals the initial cost of the hedging portfolio, C0); generally, this does not,
however, include any notion of an economic equilibrium. Bertsimas, Kogan, and Lo (2001)
emphasize the fact that the option price has to be “ the outcome of a market equilibrium in
which investor’s preferences, budget dynamics, and information structure interact through
the imposition of market-clearing conditions, i.e., supply equals demand”. This is why we
have focused in our paper on the hedging issue. Moreover, as mentioned by Schweizer
(2001), local risk-minimization tries to control the riskiness of a strategy as measured by
its incremental risk and it is, therefore, by its very nature, a hedging approach.

Our future research will address the theoretical questions related to the uniqueness
and convergence of the optimal trading strategy computed by piecewise linear local risk-
minimization. In addition, we plan to study the piecewise linear total risk-minimization
criterion. We have seen that the total risk measure E(|CM −C0|) involves M + 1 variables
(the number of shares of stock in the hedging portfolio at each time t0, ..., tM−1 and its
initial cost C0). On the other hand, the local risk measure E(|Ck+1 − Ck| |Fk) refers to
only two variables (the number of shares of stock and the number of units of the bond at
time tk). Using, for example, a binomial tree for the stock price, the local risk-minimization
can be expressed as a collection of two-variable piecewise linear minimization problems
on subtrees and it is very easy to implement a solver for this case. However, it is much
more computationally expensive to solve the total risk-minimization problem. Since CM −
C0 depends on the entire path of the stock price, a direct approach to the total risk-
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minimization problem min E(|CM−C0|) would have to consider all the paths in the binomial
tree, and therefore exponentially many variables. We are investigating the implementation
of an efficient algorithm to compute the optimal trading strategies using this criterion.
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Appendix

Let us analyze in detail the implementation of the local risk-minimizing problems (2),
(5) and (7), when using an event tree to describe the stock price. Consider the filtration
(Fk)k=0,1,...,M , given by Fk = σ(Xj |j ≤ k), the σ-field generated by the variables X0, . . . , Xk.
Suppose the stock price over the time horizon [0, T ] is modelled using a binomial tree with
N periods, but hedging can only take place on M < N dates 0 = t0 < t1 < ... < tM−1 <
N := tM . Thus, for all 0 ≤ k ≤ M , at time tk there are nk = tk + 1 possible states for the
stock price and given state j at time tk, the stock price can only move to αk = tk+1− tk +1
possible states at time tk+1:

Sj
k

- Sj
k+1 = uαk−1Sj

k
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@
@R Sj+i

k+1 = uαk−1−idiSi
k
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A
A
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A
A
A
A
A
AAU Sj+αk−1

k+1 = dαk−1Sj
k,

pαk−1

...

where pi =
(
αk−1

i

)
pαk−1−i(1− p)i for all 0 ≤ i ≤ αk − 1. The parameters u, d, p are defined

as follows:

u = e
σ
√

T
N , d =

1
u

, p =
eµ T

N − d

u− d

where σ is the volatility of the stock price and µ its instantaneous expected return.
Recall that the discounted stock price is then given by:

Xj
k =

Sj
k

Bk
, ∀0 ≤ k ≤ M, ∀0 ≤ j ≤ nk − 1.

Suppose now that at time N , the discounted payoff of the option in state j is given by
Hj .

Then, the piecewise linear risk minimization problem (5) becomes: starting from VM =
H, for all the states j at time tk, k = M − 1, . . . , 0, minimize

min E(|Ck+1 − Ck| |Xk = Xj
k). (16)

Therefore:
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• For each 0 ≤ j ≤ nM − 1 define ξj
M = 0, ηj

M = Hj .

• For each k = M − 1, ..., 0 and for each 0 ≤ j ≤ nk − 1, find the number of shares ξj
k

and the number of units of the bond ηj
k at time tk if state j occurs by solving the

minimization problem:

min
ξj
k,ηj

k

αk−1∑
l=0

pl |Xj+l
k+1(ξ

j+l
k+1 − ξj

k) + (ηj+l
k+1 − ηj

k)|. (17)

If we want to express (17) in a more compact way, for each k = M −1, ..., 0 and for each
0 ≤ j ≤ nk − 1, denote by:

A =

 p0 p0X
j
k+1

...
...

pαk−1 pαk−1X
j+αk−1
k+1

 , b =

 p0(X
j
k+1ξ

j
k+1 + ηj

k+1)
...

pαk−1(X
j+αk−1
k+1 ξj+αk−1

k+1 + ηj+αk−1
k+1 )

 , x =

[
ηj

k

ξj
k

]
.

Then (17) becomes:
minx∈IR2 ||Ax− b||1. (18)

As we mentioned before, when the stock price follows a binomial model, the piecewise
linear risk-minimization (5) reduces to solving L1-minimization problems of the form (18).
In order to solve these two-dimensional L1-optimization problems, we have implemented
an L1-solver similar to the solver for the L1-norm fit of a straight line described by Karst
(1958) and Sadovski (1974).

The constrained piecewise linear risk-minimization method is implemented in a similar
way. Using a binomial model for the stock price, problem (7) becomes: starting from
VM = H, for all the states j at time tk, k = M − 1, . . . , 0, minimize

min E(|Ck+1 − Ck| |Xk = Xj
k)

subject to E(Ck+1 − Ck|Xk = Xj
k) = 0.

(19)

Problem (8) is therefore given by:

• For each 0 ≤ j ≤ nM − 1 define ξj
M = 0, ηj

M = Hj .

• For each k = M − 1, ..., 0 and for each 0 ≤ j ≤ nk − 1, find the number of shares ξj
k

at time tk if state j occurs by solving the minimization problem:

min
ξj
k

αk−1∑
l=0

pl|Xj+l
k+1 ξj+l

k+1−
αk−1∑
s=0

ps(X
j+s
k+1ξ

j+s
k+1 +ηj+s

k+1)−ξj
k(X

j+l
k+1−

αk−1∑
s=0

ps Xj+s
k+1)| (20)

then define: ηj
k =

∑αk−1
l=0 pl(ξ

j+l
k+1 Xj+l

k+1 + ηj+l
k+1 − ξj

kX
j+l
k+1).

We can also express this in a more compact way similar to problem (17). For each
k = M − 1, ..., 0 and for each 0 ≤ j ≤ nk − 1, consider the matrices A and b defined before.
Denote by A(1), A(2) the columns of the matrix A. Consider also the vector e = [1, ..., 1]T .
Then (19) can be expressed as:
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
minx∈IR2 ||Ax− b||1

subject to: [1 , eT A(2)] x = eT b,

(21)

with x =

[
ηj

k

ξj
k

]
.

The above problem can be transformed in a one dimensional minimization problem by
substituting ηj

k:

minx∈IR||(A(2) − (eT A(2))A(1))x− b + (eT b)A(1)||1{
ξj
k = x

ηj
k = eT b− (eT A(2)) x.

(22)

Therefore, the constrained piecewise linear risk-minimization problem (7) reduces to
solving one-dimensional L1-minimization problems of the form (22) for which a solver is
very easily implemented.

Finally, in the framework of the binomial model for the stock price, the quadratic local
risk-minimization problem (2) becomes: starting from VM = H, for all the states j at time
tk, k = M − 1, . . . , 0, minimize

min E((Ck+1 − Ck)2 |Xk = Xj
k). (23)

The explicit hedging strategy solving this problem is given by:

• For each 0 ≤ j ≤ nM − 1 define ξj
M = 0, ηj

M = Hj .

• For each k = M − 1, ..., 0 and for each 0 ≤ j ≤ nk − 1 defineξk = Cov(ξk+1Xk+1+ηk+1,Xk+1|Xk=Xj
k)

Var(Xk+1|Xk=Xj
k)

ηk = E((ξk+1 − ξk)Xk+1 + ηk+1|Xk = Xj
k),

(24)

where

Cov(ξk+1Xk+1 + ηk+1, Xk+1|Xk = Xj
k) =

αk−1∑
l=0

pl(ξ
j+l
k+1X

j+l
k+1 + ηj+l

k+1)X
j+l
k+1−

(
αk−1∑
l=0

pl(ξ
j+l
k+1X

j+l
k+1 + ηj+l

k+1))(
αk−1∑
l=0

plX
j+l
k+1),

Var(Xk+1|Xk = Xj
k) =

αk−1∑
l=0

pl(X
j+l
k+1)

2 − (
αk−1∑
l=0

plX
j+l
k+1)

2

and

E((ξk+1 − ξk)Xk+1 + ηk+1|Xk = Xj
k) =

αk−1∑
l=0

pl(ξ
j+l
k+1X

j+l
k+1 + ηj+l

k+1 − ξj
kX

j+l
k+1).
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