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Abstract

In this paper we are concerned with the analysis of heavy-tailed data when a
portion of the extreme values are unavailable. This research was motivated by an
analysis of the degree distributions in a large social network. The degree distributions
of such networks tend to have power law behavior in the tails. We focus on the Hill
estimator, which plays a starring role in heavy-tailed modeling. The Hill estimator for
this data exhibited a smooth and increasing “sample path” as a function of the number
of upper order statistics used in constructing the estimator. This behavior became
more apparent as we artificially removed more of the upper order statistics. Building
on this observation, we introduce a new parameterization into the Hill estimator
that is a function of δ and θ, that correspond, respectively, to the proportion of
extreme values that are unavailable and the proportion of upper order statistics used
in the estimation. As a function of (δ, θ), we establish functional convergence of the

∗The authors would like to thank Zhi-Li Zhang for providing the Google+ data. This research is funded
by ARO MURI grant W911NF-12-1-0385.
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normalized Hill estimator to a Gaussian random field. An estimation procedure is
developed based on the limit theory to estimate the number of missing extremes and
extreme value parameters including the tail index and the bias of Hill’s estimate. We
illustrate how this approach works in both simulations and real data examples.

Keywords: Hill estimator; Heavy-tailed distributions; Missing extremes; Functional con-
vergence
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1 Introduction

In studying data exhibiting heavy-tailed behavior, a widely used model is the family of

distributions that are regular varying. A distribution F is regular varying if

F̄ (tx)

F̄ (t)
→ x−α (1)

as t → ∞ for all x > 0, where α > 0 and F̄ (t) = 1 − F (t) is the survival function. The

parameter α is called the tail index or the extreme value index, and it controls the heaviness

of the tail of the distribution. This is perhaps the most important parameter in extreme

value theory and a great deal of research has been devoted to its estimation. The most

used and studied estimate of α is based on the Hill estimator for its reciprocal γ = 1/α

(see Hill 1975, Drees et al. 2000 and de Haan and Ferreira 2006 for further discussion on

this estimator). The Hill estimator is defined by

Hn(k) =
1

k

k∑
i=1

logX(n−i+1) − logX(n−k),

where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics of the sample X1, X2, . . . , Xn ∼

F (x). As an illustration, the left panel of Figure 1 shows the Hill plot of 1000 independent

and identically distributed (iid) observations from a Pareto distribution with γ = 2 (F (x) =

1− x−0.5 for x ≥ 1 and 0 otherwise).

If the largest several observations in the data are removed, the Hill curve behaves very

differently. For example, when the 100 largest observations of the previous Pareto sample

have been removed, the Hill plot renders a much smoother curve that is generally increasing

(see the right panel of Figure 1).
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Figure 1: Hill plot of iid Pareto (α = 0.5) variables (n = 1000). x-axis: number k of upper

order statistics used in the calculation. y-axis: Hn(k). Left: without removal. Right: top

100 removed

A similar phenomenon is observed when we study the tail behavior of the in- and out-

degrees in a large social network, which in fact is the motivation for this research. We

looked at data from a snapshot of Google+, the social network owned and operated by

Google, taken on October 19, 2012. The data contain 76,438,791 nodes (registered users)

and 1,442,504,499 edges (directed connections). The in-degree of each user is the number

of other users following the user and the out-degree is the number of others followed by

the user. The degree distributions in natural and social networks are often heavy-tailed

(see Newman 2010). The resulting Hill plot for the in-degrees of the Google+ data (the

first plot in Figure 2) resembles the curve of the Hill plot for the Pareto observations with

the largest extremes removed. This raises the question of whether some extreme in-degrees

of the Google+ data are also unobserved. For example, some users with extremely large

in-degrees may have been excluded from the data. This pattern of a smooth curve becomes

even more pronounced when we apply an additional removal of the top 500 and 1000 values

of the in-degree (the second and the third plots in Figure 2).
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Figure 2: Hill plots of in-degrees of the Google+ network. Left: without removal. Middle:

500 largest values removed. Right: 1000 largest values removed

In order to understand the behavior of the Hill curves of samples in which some of the

top extreme values have been removed, we introduce a new parametrization to the Hill

estimator. Specifically, we define the Hill estimator without the extremes (HEWE) as a

function of parameters δ and θ, which are, respectively, the proportion of the extreme values

that are unavailable and the proportion of upper order statistics used in the estimation.

This new parametrization allows one to examine the missing of extreme values both visually

and theoretically. The Hill estimator curve of the data without the top extremes exhibits

a strikingly smooth and increasing pattern, in contrast to the fluctuating shapes when no

extremes are missing. And the differences in the shape of the curves are explained by the

functional properties of the limiting process of the HEWE. Under a second-order regular

varying condition, we show that the HEWE, suitably normalized, converges in distribution

to a continuous Gaussian random field with mean zero and covariance depending on δ and

parameters of the distribution F including the tail index α.

Based on the likelihood function of the limiting random field, an estimation procedure

5



is developed for δ and the parameters of the distribution, in particular, the tail index α.

The proposed approach may also have value in assessing the fidelity of the data to the

heavy-tailed assumptions. Specifically, one would expect consistency of the estimation of

the tail index when more extremes are artificially removed from the data.

There have been recent works (Aban et al. 2006, Beirlant et al. 2016a,b) that involve

adapting classical extreme value theory to the case of truncated Pareto distributions. The

truncation is modeled via an unknown threshold parameter and the probability of an obser-

vation exceeding the threshold is zero. Maximum likelihood estimators (MLE) are derived

for the threshold and the tail index.

Our focus here is to study the path behavior of the HEWE if any arbitrary number of

largest values are unavailable. Moreover, the estimation procedure we propose has a built-in

mechanism to compensate for the bias introduced by non-Pareto heavy-tailed distributions.

Ultimately, the HEWE provides a graphical and theoretical method for estimation and

assessment of modeling assumptions. In addition, we feel the proposed approach may shed

some useful insight on classical extreme value theory even when extreme values are not

missing in the observed data. It is possible to remove a number of top extreme values

artificially and study the effect of the artificial removal on the estimation of the tail index.

In this case we know the true value of δ.

This paper is organized as follows. Section 2 introduces the HEWE process and states

the main result of this paper dealing with the functional convergence of the HEWE to a con-

tinuous Gaussian random field. Section 3 explains the details of the estimation procedure

based on the asymptotic results. Section 4 demonstrates how our estimation procedure

works on simulated data from both Pareto and non-Pareto distributions. Section 5 applies

our procedure to several interesting real data sets. All the proofs are postponed to the

Appendix.
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2 Functional Convergence of HEWE

In this section we set up the framework for studying the reparametrized Hill estimator. To

start, let X1, X2, . . . be iid random variables with distribution function F satisfying the

regular varying condition (1). Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics of

X1, . . . , Xn. For integer kn ∈ {1, . . . , n}, the HEWE process is defined by setting for δ ≥ 0

and θ > 0

Hn(δ, θ) =


1

bθknc
∑bθknc

i=1 logX(n−bδknc−i+1) − logX(n−bδknc−bθknc), θ ≥ 1/kn,

0, θ < 1/kn.
(2)

The HEWE will play a key role in estimating relevant parameters such as δ and α. To see

the idea behind this definition, imagine that the top bδknc observations are not available

in the data set and the Hill estimator is computed based on bθknc extreme order statistics

of the remaining observations. Viewed as a function of the observable part of the sample,

Hn is the usual Hill estimator based on the bθknc upper order statistics. A special case is

when δ = 0 and no extreme values are missing, then Hn(0, θ) corresponds to the usual Hill

estimator based on the upper bθknc observations.

In order to obtain the functional convergence of Hn(δ, θ), a second-order regular varia-

tion condition, which provides a rate of convergence in (1) is needed. This condition can

be found, for example, in de Haan and Ferreira (2006), and it states that for x > 0,

lim
t→∞

F̄ (tx)

F̄ (t)
− x−α

A( 1
F̄ (t)

)
= x−α

xα·ρ − 1

ρ/α
, (3)

where ρ ≤ 0 and A is a positive or negative function with limt→∞A(t) = 0. Assume that

the sequence kn →∞ used to define Hn satisfies

lim
n→∞

√
knA(n/kn) = λ, (4)
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where λ is a finite constant. Note condition (4) implies that n/kn →∞.

Distributions that satisfy the second-order condition include the Cauchy, Student’s tν ,

stable, Weibull and extreme value distributions (for more discussion on the second-order

condition, see, for example, Drees 1998 and Drees et al. 2000). In fact, any distribution

with F̄ (x) = c1x
−α + c2x

−α+αρ(1 + o(1)) as x → ∞, where c1 > 0, c2 6= 0, α > 0 and

ρ < 0, satisfies the second-order condition with the indicated values of α and ρ (de Haan

and Ferreira 2006).

Pareto distributions with tail index α > 0 (F̄ (x) = x−α for x ≥ 1 and zero otherwise),

however, do not satisfy the second-order condition, as the numerator on the left side of (3)

is zero when t is large enough. As will be seen later, the results can be readily extended to

the case of Pareto distributions by replacing terms involving ρ with zero.

We now state the main result of this paper which establishes the functional convergence

of the HEWE to a Gaussian random field.

Theorem 2.1. Assume the second-order condition (3) holds and (4) is satisfied for a given

sequence kn and λ. Then as n→∞,√
kn

(
Hn(·, ·)− g(·, ·)

α

)
− bρ(·, ·)

d→ 1

α
G(·, ·)

in D([0,∞)× (0,∞)), where

g(δ, θ) =

1, δ = 0,

1− δ
θ

log
(
θ
δ

+ 1
)
, δ > 0,

bρ(δ, θ) =


λ

1−ρ
1
θρ
, δ = 0,

1+(θ/δ)ρ−(θ/δ+1)ρ

(θ/δ)(1−ρ)ρ
λ

(δ+θ)ρ
, δ > 0,

8



and G is a continuous Gaussian random field with mean zero and the following covariance

function. If δ1 ∨ δ2 > 0, then

Cov
(
G(δ1, θ1), G(δ2, θ2)

)
=

1

θ1θ2

[
(δ1 + θ1) ∧ (δ2 + θ2)− (δ1 ∨ δ2)

− (δ1 + δ2) log

(
(δ1 + θ1) ∧ (δ2 + θ2)

δ1 ∨ δ2

)
+

δ1δ2

δ1 ∨ δ2

− δ1δ2

(δ1 + θ1) ∧ (δ2 + θ2)

]
.

If δ1 = δ2 = 0,

Cov
(
G(0, θ1), G(0, θ2)

)
=

1

θ1 ∨ θ2

.

Remark. For fixed θ, the functions g and bρ are continuous at δ = 0. For iid Pareto

variables X1, X2, . . . with tail index α > 0, the result of Theorem 2.1 still holds with the

bias term bρ replaced by zero.

It is demonstrated next that the parameters, especially α and δ, are identifiable via the

path of the reparametrized Hill estimator. Figure 3 shows the Hill estimates of the same

sample from the Pareto distribution with α = 0.5 as in Figure 1. We choose kn = 100 and

δ = 1 so that the top 100 observations are removed from the original sample. In the left

panel of Figure 3, the Hill estimates are overlaid with the mean curves of the Gaussian

random field g(δ, θ)/α with different values of δ while fixing the true value of α = 0.5. The

right panel of Figure 3 shows the mean curves with different values of α while fixing the

true value δ = 1. In both plots, the Hill plot is closest to the mean curve corresponding to

the true value of the parameter.
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Figure 3: Fitting mean curves with different values of parameters to the Hill plot for the

Pareto sample as in Figure 1. Left: fixing α = 0.5. Right: fixing δ = 1

In order to demonstrate the variability generated by the limiting Gaussian random

field, we compare the Hill plots for samples from Pareto and Cauchy distributions with

their Gaussian process approximations given by Theorem 2.1. Figure 4 presents the Hill

plots for the same Pareto sample as in Figures 1 and 3, without removal of extremes (left)

and with the top 100 observations removed (right), along with 50 independent realizations

from the corresponding Gaussian processes with bias bρ ≡ 0.
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Figure 4: Observed Hill plots for the Pareto sample (bold lines) and realizations from

corresponding Gaussian processes (thin lines). Left: with the original sample. Right: top

100 extreme values removed
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Figure 5 shows the Hill plots for a Cauchy sample (n = 1000, kn = 100, α = 1 and

ρ = −2), without removal of extremes and with the top 100 extremes removed, along with

50 independent realizations from the corresponding Gaussian processes with non-zero bρ.
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Figure 5: Observed Hill plots for a Cauchy sample (bold lines) and realizations from cor-

responding Gaussian processes (thin lines). Left: with the original sample. Right: top 100

extreme values removed

3 Parameter Estimation

Let X1, X2, . . . Xn be a sample from a distribution F satisfying the second-order regular

variation condition (3), and let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the increasing order

statistics of {Xi}. Suppose the bδknc largest observations are unobserved in the data. In

this section, we develop an approximate maximum likelihood estimation procedure for the

unknown parameters δ, α and ρ given the observed data. The procedure is based on the

asymptotic distribution of the two-parameter Hill estimator Hn(δ, θ). When δ is fixed, we

use the single-parameter notation Hn(θ).

By Theorem (2.1), for fixed (θ1, . . . , θs) the joint distribution of (Hn(θ1), . . . , Hn(θs))

can be approximated, when kn is large, by a distribution with density function at h =

11



(h1, . . . , hs) given by

1√
(2π)s|Σα,δ|

exp

[
− 1

2

(
h− gδ

α
− bδ,ρ√

kn

)>
Σ−1
α,δ

(
h− gδ

α
− bδ,ρ√

kn

)]
, (5)

where

{gδ}i =

1, δ = 0,

1− δ
θi

log
(
θi
δ

+ 1
)
, δ > 0,

{bδ,ρ}i =


λ

1−ρ
1
θρi
, δ = 0,

1+(θi/δ)ρ−(θi/δ+1)ρ

(θi/δ)(1−ρ)ρ
λ

(δ+θi)ρ
, δ > 0,

and

Σα,δ(i, j) =


1

α2kn
1

θi∨θj , δ = 0,

1
α2kn

(θi∧θj)2
δθiθj

v
( θi∧θj

δ

)
, δ > 0,

with

v(θ) =
1

θ
− 2 log(θ + 1)

θ2
+

1

θ(θ + 1)
.

To simplify the calculation for the maximum likelihood estimator of α, δ and ρ, let

Ti = Hn(θi)−
θi−1

θi
Hn(θi−1),

where θ0 = 0 is introduced for convenience. Note that the Ti are asymptotically independent

with the joint density function at t = (t1, . . . , ts) being

1√
(2π)s|Σ̃α,δ|

exp

[
− 1

2

(
t−m

)>
Σ̃−1
α,δ

(
t−m

)]
, (6)

where

mi =
1

α

(
{gδ}i −

θi−1

θi
{gδ}i−1

)
+

1√
kn

(
{bδ,ρ}i −

θi−1

θi
{bδ,ρ}i−1

)
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and Σ̃α,δ is a diagonal matrix, in which

Σ̃α,δ(i, i) =


1

α2kn

(
1
θi
− θi−1

θ2i

)
, δ = 0,

1
α2knδ

(
v
(
θi
δ

)
−
( θi−1

θi

)2
v
( θi−1

δ

))
, δ > 0.

The log-likelihood corresponding to the density (6) is

C + s log(α) +
1

2

s∑
i=1

log(wi)−
1

2
α2kn

s∑
i=1

wi(ti −mi)
2, (7)

where C is a constant independent of α, δ and ρ. For δ > 0,

wi = δ

/(
v
(θi
δ

)
−
(θi−1

θi

)2

v
(θi−1

δ

))
.

For δ = 0,

wi = 1

/(
1

θi
− θi−1

θ2
i

)
.

For fixed α and δ, the only part of the log-likelihood (7) that needs to be optimized is

the weighted sum of squares
s∑
i=1

wi(ti −mi)
2, (8)

and it is minimized over the values of ρ and λ. Note the value of λ depends on the choice

of kn through (4). When kn is fixed, λ is viewed as an independent nuisance parameter

and appears in mi via

1√
kn

(
{bδ,ρ}i −

θi
θi−1

{bδ,ρ}i−1

)
=

λ√
kn
{fδ,ρ}i,

where

{fδ,ρ}i =


1

1−ρ
1
θρi
− θi−1

θi

1
1−ρ

1
θρi−1

, δ = 0,

1+(θi/δ)ρ−(θi/δ+1)ρ

(θi/δ)(1−ρ)ρ
1

(δ+θi)ρ
− θi−1

θi

1+(θi−1/δ)ρ−(θi−1/δ+1)ρ

(θi−1/δ)(1−ρ)ρ
1

(δ+θi−1)ρ
, δ > 0.

13



Minimizing (8) over λ and ρ results in

ρ̂α,δ = arg min
ρ≤0

s∑
i=1

wi

(
ti −

1

α

(
{gδ}i −

θi−1

θi
{gδ}i−1

)
− λ̂α,δ,ρ√

kn
{fδ,ρ}i

)2

,

where

λ̂α,δ,ρ =
√
kn

∑s
i=1wi

(
ti − ({gδ}i − θi−1

θi
{gδ}i−1)/α

)
{fδ,ρ}i∑s

i=1wi{fδ,ρ}2
i

.

Note that this estimation approach, in which λ is viewed as a nuisance parameter, adjusts

for the choice of kn automatically. If a different kn is selected, the estimate of λ will adapt

to reflect this change.

Once we have found the optimal values of ρ and λ, we optimize the resulting expression

in (7) by examining its values on a fine grid of (α, δ). Alternatively, an iterative procedure

can be used, where in each step one of α, δ, ρ is updated given values of the other two

parameters until convergence of the log-likelihood function.

4 Simulation Studies

In this section we test our procedure on simulated data. In each of the following simulations,

we generate 200 independent samples of size n from a regular-varying distribution function

with tail index α. Given a kn, we remove the largest bδknc observations from each of the

original samples and apply the proposed method to the samples after the removal.

For comparison, we also apply the method in Beirlant et al. (2016a) to the same samples.

In Beirlant et al. (2016a), α and the threshold T over which the observations are discarded

are estimated with the MLE based on the truncated Pareto distribution. The odds ratio

of the truncated observations under the un-truncated Pareto distribution is estimated by

solving an equation involving the estimates of α and T . Finally, the number of truncated

observations is calculated given the odds ratio and the observed sample size.

14



For each combination of distribution and parameters, we start from θ1 = 5/kn and

let θi = θi−1 + 1/kn for 1 < i ≤ s. We consider a sequence of different endpoints θskn

to examine the influence of the range of order statistics included in the estimation. For

each value of θs, we solve for the estimates of α and δ based on the asymptotic density of

(Hn(θ1), . . . , Hn(θs)) following the procedure described in Section 3.

Simulations from both Pareto and non-Pareto distributions show that the proposed

method provides reliable estimates of the tail index and performs particularly well in esti-

mating the number of missing extremes. The advantages of the proposed method become

more apparent in dealing with non-Pareto samples.

4.1 Pareto Samples

First we examine Pareto samples with n = 500 and α = 0.5. Let kn = 50 and δ = 1 so that

δkn = 50 top extreme observations are removed from the original data. Figures 6 and 7 show

the averaged estimates of α and δkn as well as the estimated mean squared errors (MSE)

with different θskn. Estimates by the proposed method are plotted in solid lines while

those by the method in Beirlant et al. (2016a) are in dashed lines. The proposed method

overestimates the tail index α, especially when the number of upper order statistics included

in the estimation is small. This is not unexpected, as the method does not assume the data

are from a Pareto distribution and thus does not benefit from the extra information that

the bias term in the likelihood should be zero. However, the proposed method estimates

the number of missing extreme values accurately, and the estimation is robust to different

numbers of upper order statistics included.
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Figure 6: Estimated number of missing extremes and
√
MSE for Pareto samples. n = 500,

α = 0.5, kn = 50, δ = 1
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Figure 7: Estimated tail index and
√
MSE for Pareto samples. n = 500, α = 0.5, kn = 50,

δ = 1

We also examine the efficacy of the estimation procedure for 200 independent Pareto

samples without any extreme values missing (δ = 0). Figure 8 shows that both methods

give accurate estimates of the tail index and are able to estimate the number of missing

extremes to be close to zero.
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Figure 8: Estimated number of missing extremes and tail index for Pareto samples. n =

500, α = 0.5, kn = 50, δ = 0

4.2 Non-Pareto Samples

Next we examine the scenarios when the data are not from Pareto distributions. Obser-

vations used here are generated from Cauchy and Student’s t-distributions. The following

results show that the proposed method continues to perform well in estimating the num-

ber of missing extremes, even for distributions whose tail indices are more challenging to

estimate when the top extremes are unobserved.

4.2.1 Cauchy Samples

Figures 9 and 10 show averaged estimates for 200 independent Cauchy samples with the

largest 100 observations removed from each sample.
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Figure 9: Estimated number of missing extremes and
√
MSE for Cauchy samples. n = 2000,

α = 1, kn = 100, δ = 1
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Figure 10: Estimated tail index and
√
MSE for Cauchy samples. n = 2000, α = 1, kn = 100,

δ = 1

Figure 11 shows the estimates for 200 independent Cauchy samples without any ex-

tremes missing. Both methods produce accurate results for the zero number of missing

extremes and the tail index.
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Figure 11: Estimated number of missing extremes and tail index for Cauchy samples.

n = 2000, α = 1, kn = 100, δ = 0

4.2.2 Student’s t2.5 Samples

Figures 12 and 13 show the estimates for 200 independent samples from the Student’s t-

distribution with degrees of freedom df = 2.5. The tail index α = df . In each sample there

are n = 10000 observations originally. Let kn = 200 and δ = 1 so that the largest 200

observations have been removed from each of the original samples.
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Figure 12: Estimated number of missing extremes and
√
MSE for Student’s t2.5 samples.

n = 10000, α = 2.5, kn = 200, δ = 1
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Figure 13: Estimated tail index and
√
MSE for Student’s t2.5 samples. n = 10000, α = 2.5,

kn = 200, δ = 1

5 Applications

We now apply the proposed method to real data. In practice, the number of missing

extreme values and the reason for their absence are usually unknown. The consistency of an

estimation procedure can be tested by artificially removing a number of additional extremes

from the observed data. Consistency requires that, in a certain range, such additional

removal should not have a major effect on the estimated tail index. Further, the estimated

number of the originally missing upper order statistics should stay, approximately, the

same after accounting for the artificially removed observations. Here we examine a massive

Google+ social network dataset and a moderate-sized earthquake fatality dataset, and in

both cases the proposed procedure provides reasonable results.
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5.1 Google+

We first apply our method to the data from the Google+ social network introduced in

Section 1. The data contain one of the largest weakly connected components of a snapshot

of the network taken on October 19, 2012. A weakly connected component of the network

is created by treating the network as undirected and finding all nodes that can be reached

from a randomly selected initial node. There are 76,438,791 nodes and 1,442,504,499 edges

in this component. The quantities of interest are the in- and out-degrees of nodes in the

network, which often exhibit heavy-tailed properties (see, for example, Newman 2010).

We use, as the data set for estimation purposes, the largest 5000 values of the in-degree.

We choose kn = 200. Next, we repeat the estimation procedure after artificially removing

400 largest of the 5000 values of the in-degree. In the estimation, we start from θ1 = 1/kn

and let θi = θi−1 + 1/kn for 1 < i ≤ s. As in the simulation studies, we consider a sequence

of different endpoints θskn and obtain estimates corresponding to different values of θskn.

For comparison, we also apply the estimation procedure of Beirlant et al. (2016a) to the

dataset.

Figures 14 and 15 show, respectively, the estimates of the number of missing extremes

and the tail index of the in-degree, before and after the artificial removal. It can be seen

by comparing the plots on the left and right panels of Figure 14 that the estimates by the

proposed method reflect reasonably well the additional removal of 400 top values. The tail

index is mostly estimated to be in the range of 0.5− 0.6 and the estimates are reasonably

consistent before and after the artificial removal (Figure 15).
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Figure 14: Estimated number of missing extremes. Left: with the original 5000 observa-

tions. Right: top 400 values removed
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Figure 15: Estimated tail index. Left: with the original 5000 observations. Right: top 400

values removed

5.2 Earthquakes

While power-law distributions are widely used to model natural disasters such as earth-

quakes, forest fires and floods, some studies (Burroughs and Tebbens 2001a,b, 2002, Clark

2013, Beirlant et al. 2016a,b) have observed evidence of truncation in the data available for

such events. Causes for the truncation are complex. Possible explanations include physical
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limitations on the magnitude of the events (Clark 2013), spatial and temporal sampling

limitations and changes in the mechanisms of the events (Burroughs and Tebbens 2001a,b,

2002). In addition, improved detection and rescue techniques might have led to reduction

in disaster-related fatalities occurred in recent years.

We apply our method to the dataset of earthquake fatalities (http://earthquake.

usgs.gov/earthquakes/world/world_deaths.php) published by the U.S. Geological Sur-

vey, which was also used for demonstration in Beirlant et al. (2016a). The dataset is of

moderate sample size. It contains information of 125 earthquakes causing 1,000 or more

deaths from 1900 to 2014. In the estimation procedure we choose kn = 10. Initially the

procedure is applied to the original data set. Then we repeat the procedure after artificially

removing 10 largest of the 125 values. In the estimation, we start from θ1 = 1/kn and let

θi = θi−1 + 1/kn for 1 < i ≤ s. We consider a sequence of different endpoints θskn and

estimate the number of missing extremes and the tail index with different values of θskn.

Since the top k order statistics in the data after removing the top 10 extreme values are

the top k+10 in the original data without the 10 largest observations, in comparing results

before and after the removal, the range of θskn for the data after the removal is shifted to

the left by 10.

Figures 16 and 17 show the estimates of the number of missing extremes and the tail

index of the fatalities. After removing the top 10 earthquakes with the most fatalities, the

estimates by the proposed method reflect reasonably well the additional removal (see the

left and right panels of Figure 16). The estimates of the tail index are reasonably consistent

and remain to be in the range of 0.25− 0.3 after the additional removal (Figure 17).

23

http://earthquake.usgs.gov/earthquakes/world/world_deaths.php
http://earthquake.usgs.gov/earthquakes/world/world_deaths.php


●
●

● ● ●

●
●

● ● ● ●

40 45 50 55 60

10
20

30
40

50
60

δkn

θskn

● ●
●

● ●
●

● ● ● ● ●

●

●

Proposed
B−A−G

●
●

●

●

●

●
●

●
●

●
●

30 35 40 45 50

10
20

30
40

50
60

δkn

θskn

●

●

●

●
●

●

●
●

● ●
●

●

●

Proposed
B−A−G

Figure 16: Estimated number of missing extremes. Left: with the original 125 observations.

Right: with top 10 values removed
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Figure 17: Estimated tail index. Left: with the original 125 observations. Right: with top

10 values removed
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Appendix

In the following we address the technical details of the proof of Theorem 2.1. Before proving

the main result, we establish some preliminary results. Suppose X1, X2, . . . are iid Pareto

random variables with distribution function F (x) = 1 − x−α for x ≥ 1 and 0 otherwise,

where α ∈ (0,∞). Since Ei := α logXi are iid exponential random variables with mean 1,

we have

Hn(δ, θ) =
1

α

1

bθknc

bθknc∑
i=1

E(n−bδknc−i+1) − E(n−bδknc−bθknc)

where E(1) ≤ E(2) ≤ · · · ≤ E(n) are increasing order statistics of Ei, . . . , En. Applying

Rényi’s representation (de Haan and Ferreira 2006),

{E(i)}ni=1
d
=

{ i∑
j=1

1

n− j + 1
Ej

}n
i=1

, (9)

so that for all δ ≥ 0 and θ ≥ 1/kn,

Hn(δ, θ) =
1

α

1

bθknc

bθknc∑
i=1

E(n−bδknc−i+1) − E(n−bδknc−bθknc)

d
=

1

α

1

bθknc

bθknc∑
i=1

n−bδknc−i+1∑
j=n−bδknc−bθknc+1

1

n− j + 1
Ej

=
1

α

1

bθknc

n−bδknc∑
i=n−bδknc−bθknc+1

i∑
j=n−bδknc−bθknc+1

1

n− j + 1
Ej

=
1

α

1

bθknc

n−bδknc∑
j=n−bδknc−bθknc+1

n− bδknc − j + 1

n− j + 1
Ej. (10)

Lemma 5.1. Suppose X1, X2, . . . are iid Pareto random variables with distribution func-

tion F (x) = 1− x−α for x ≥ 1 and 0 otherwise, where α ∈ (0,∞). Let

Wn(δ, θ) = α
√
kn(Hn(δ, θ)− EHn(δ, θ)), (11)
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then as n→∞,

Wn(·, ·) fidi→ G(·, ·),

where fidi→ is convergence in finite dimensional distributions and G is as in Theorem (2.1).

Proof. By (10), the distribution of the process {Wn(δ, θ)} is the same as the distribution

of the process
√
kn

bθknc

n−bδknc∑
j=n−bδknc−bθknc+1

n− bδknc − j + 1

n− j + 1
(Ej − 1).

For any θ > 0, δ ≥ 0 and ε > 0,

E

[ n−bδknc∑
j=n−bδknc−bθknc+1

(
n− bδknc − j + 1

n− j + 1

)2+ε

(Ej − 1)2+ε

]
≤ θknE(E1 − 1)2+ε = Ckn,

where C = θE(E1 − 1)2+ε is a finite constant, and

Var
( n−bδknc∑
j=n−bδknc−bθknc+1

n− bδknc − j + 1

n− j + 1
(Ej − 1)

)
= Var

( bθknc∑
j=1

j

j + bδknc
Ej

)

=

bθknc∑
j=1

( j

j + bδknc

)2

= bθknc − 2bδknc
bθknc∑
j=1

1

j + bδknc
+ bδknc2

bθknc∑
j=1

( 1

j + bδknc

)2

. (12)

If δ = 0, then (12) is bθknc. If δ > 0, then as n→∞,

bθknc∑
j=1

1

j + bδknc
=

bδknc+bθknc∑
j=bδknc+1

1

j
→ log

(θ
δ

+ 1
)
,

bθknc∑
j=1

( 1

j + bδknc

)2

=

bδknc+bθknc∑
j=bδknc+1

1

j2
∼ 1

bδknc
− 1

bδknc+ bθknc
,

and hence there exists a finite constant C ′, such that

Var
( n−bδknc∑
j=n−bδknc−bθknc+1

n− bδknc − j + 1

n− j + 1
(Ej − 1)

)
∼ C ′kn.
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Since Ckn/(C ′kn)1+ε/2 → 0 as n → ∞, it follows by the Lyapunov central limit theorem

that √
kn

bθknc

n−bδknc∑
j=n−bδknc−bθknc+1

n− bδknc − j + 1

n− j + 1
(Ej − 1) (13)

converges weakly to a Normal distribution with mean zero. Further by the multivariate

Lyapunov central limit theorem, the finite dimensional distributions of Wn(δ, θ) converges

to multivariate Normal distribution with mean zero. Assume that δ1 > δ2 and put δl+θl =

(δ1 + θ1) ∧ (δ2 + θ2). Then the covariance

Cov(Wn(δ1, θ1),Wn(δ2, θ2))

=
kn

bθ1kncbθ2knc
E

[ n−bδ1knc∑
j=n−bδ1knc−bθ1knc+1

n− bδ1knc − j + 1

n− j + 1
(Ej − 1)

·
n−bδ2knc∑

j=n−bδ2knc−bθ2knc+1

n− bδ2knc − j + 1

n− j + 1
(Ej − 1)

]

=
kn

bθ1kncbθ2knc

n−bδ1knc∑
j=n−bδlknc−bθlknc+1

(
1− bδ1knc

n− j + 1

)(
1− bδ2knc

n− j + 1

)
+ o(1)

=
kn

bθ1kncbθ2knc

(
(bδlknc+ bθlknc − bδ1knc)

− (bδ1knc+ bδ2knc)
n−bδ1knc∑

j=n−bδlknc−bθlknc+1

1

n− j + 1

+ bδ1kncbδ2knc
n−bδ1knc∑

j=n−bδlknc−bθlknc+1

1

(n− j + 1)2

)
+ o(1)

∼ 1

θ1θ2

(
δl + θl − δ1 − (δ1 + δ2) log

(δl + θl
δ1

)
+ δ1δ2

( 1

δ1

− 1

δl + θl

))
.

By Slutsky’s theorem,

Wn(δ, θ)
fidi→ G(δ, θ).
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The following lemma states that the process {Wn(δ, θ)} satisfies a sufficient condition

for tightness given by Bickel and Wichura (1971).

Lemma 5.2. There exists a constant C, such that for all kn ∈ N and non-negative integers

M1,M2, N1, N2 satisfying M1 < M2 and εkn < N1 < N2, where ε > 0 is a fixed constant,

E(|W (B)|6) ≤ Cλ(B)3/2. (14)

Here λ is the Lebesgue measure, B = (M1/kn,M2/kn]× (N1/kn, N2/kn] and

W (B) = Wn

(M2

kn
,
N2

kn

)
−Wn

(M1

kn
,
N2

kn

)
−
(M2

kn
,
N1

kn

)
+Wn

(M1

kn
,
N1

kn

)
.

In addition,

E

∣∣∣∣Wn

(
M2

kn
,
N1

kn

)
−Wn

(
M1

kn
,
N1

kn

)∣∣∣∣6 ≤ C

(
M2 −M1

kn

)3/2

(15)

and

E

∣∣∣∣Wn

(
M1

kn
,
N2

kn

)
−Wn

(
M1

kn
,
N1

kn

)∣∣∣∣6 ≤ C

(
N2 −N1

kn

)3/2

. (16)

Proof. By (10),{
Wn

(Mp

kn
,
Nq

kn

)}
p,q=1,2

d
=

{√
kn
Nq

n−Mp∑
j=n−Mp−Nq+1

n−Mp − j + 1

n− j + 1
(Ej − 1)

}
p,q=1,2

,

where {Ej} are iid standard exponential variables. For simplicity, let Ẽj = Ej − 1 and

Cp,q(j) =
1

Nq

n−Mp − j + 1

n− j + 1
.

First assume that M2 −M1 < N2 −N1 and M2 −M1 < N1. Then we have

W (B)
d
=
√
kn

[ n−M2∑
j=n−M2−N2+1

C2,2(j)Ẽj −
n−M2∑

j=n−M2−N1+1

C2,1(j)Ẽj
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−
n−M1∑

j=n−M1−N2+1

C1,2(j)Ẽj +

n−M1∑
j=n−M1−N1+1

C1,1(j)Ẽj

]

=
√
kn

[ n−M1−N2∑
j=n−M2−N2+1

C2,2(j)Ẽj (17)

+

n−M2−N1∑
j=n−M1−N2+1

[C2,2(j)− C1,2(j)]Ẽj (18)

+

n−M1−N1∑
j=n−M2−N1+1

[C2,2(j)− C1,2(j)− C2,1(j)]Ẽj (19)

+

n−M2∑
j=n−M1−N1+1

[C2,2(j)− C1,2(j)− C2,1(j) + C1,1(j)]Ẽj (20)

+

n−M1∑
j=n−M2+1

[C1,1(j)− C1,2(j)]Ẽj

]
, (21)

and the ranges of the sums in (17) - (21) are disjoint. To show (14), we need to examine

the upper bound of
k3
n(E|W (B)|6)

(M2 −M1)3/2(N2 −N1)3/2
. (22)

To further simplify the notation, introduce the following coefficients

dj =



knC2,2(j)

(M2−M1)1/4(N2−N1)1/4
, n−M2 −N2 + 1 ≤ j ≤ n−M1 −N2,

kn(C2,2(j)−C1,2(j))

(M2−M1)1/4(N2−N1)1/4
, n−M1 −N2 + 1 ≤ j ≤ n−M2 −N1,

kn(C2,2(j)−C1,2(j)−C2,1(j))

(M2−M1)1/4(N2−N1)1/4
, n−M2 −N1 + 1 ≤ j ≤ n−M1 −N1,

kn(C2,2(j)−C1,2(j)−C2,1(j)+C1,1(j))

(M2−M1)1/4(N2−N1)1/4
, n−M1 −N1 + 1 ≤ j ≤ n−M2,

kn(C1,1(j)−C1,2(j))

(M2−M1)1/4(N2−N1)1/4
, n−M2 + 1 ≤ j ≤ n−M1,

so that (22) becomes

E

[ n−M1∑
j=n−M2−N2+1

djẼj

]6

,
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which, by convexity, is bounded by

K · E
[( n−M1−N2∑

j=n−M2−N2+1

djẼj

)6

+

( n−M2−N1∑
j=n−M1−N2+1

djẼj

)6

+

( n−M1−N1∑
j=n−M2−N1+1

djẼj

)6

+

( n−M2∑
j=n−M1−N1+1

djẼj

)6

+

( n−M1∑
j=n−M2+1

djẼj

)6]
, (23)

whereK is a constant independent ofMi, Ni and kn. For n−M2−N2+1 ≤ j ≤ n−M1−N2,

|dj| =
∣∣∣∣ knC2,2(j)

(M2 −M1)1/4(N2 −N1)1/4

∣∣∣∣ =
kn

(M2 −M1)1/4(N2 −N1)1/4

1

N2

n−M2 − j + 1

n− j + 1

≤ kn
(M2 −M1)1/4(N2 −N1)1/4

1

M2 +N2

:= d̃1,

for n−M1 −N2 + 1 ≤ j ≤ n−M2 −N1,

|dj| =
∣∣∣∣ kn(C2,2(j)− C1,2(j))

(M2 −M1)1/4(N2 −N1)1/4

∣∣∣∣ =

∣∣∣∣ kn
(M2 −M1)1/4(N2 −N1)1/4

1

N2

M1 −M2

n− j + 1

∣∣∣∣
≤ kn

(M2 −M1)1/4(N2 −N1)1/4

1

N2

M2 −M1

M2 +N1 + 1
:= d̃2,

for all n−M2 −N1 + 1 ≤ j ≤ n−M1 −N1,

|dj| =
∣∣∣∣kn(C2,2(j)− C1,2(j)− C2,1(j))

(M2 −M1)1/4(N2 −N1)1/4

∣∣∣∣
=

kn
(M2 −M1)1/4(N2 −N1)1/4

(
1

N2

M2 −M1

n− j + 1
+

1

N1

n−M2 − j + 1

n− j + 1

)
≤ kn

(M2 −M1)1/4(N2 −N1)1/4

1

N1

n−M1 − j + 1

n− j + 1

≤ kn
(M2 −M1)1/4(N2 −N1)1/4

1

N1

(M2 −M1) +N1

M2 +N1

:= d̃3

and for n−M2 + 1 ≤ j ≤ n−M1,

|dj| =
∣∣∣∣ kn(C1,1(j)− C1,2(j))

(M2 −M1)1/4(N2 −N1)1/4

∣∣∣∣
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=
kn

(M2 −M1)1/4(N2 −N1)1/4

n−M1 − j + 1

n− j + 1

(
1

N1

− 1

N2

)
≤ kn

(M2 −M1)1/4(N2 −N1)1/4

M2 −M1

M2

N2 −N1

N1N2

:= d̃5.

Thus (23) is bounded by

K ·
[
d̃6

1E

( n−M1−N2∑
j=n−M2−N2+1

Ẽj

)6

+ d̃6
2E

( n−M2−N1∑
j=n−M1−N2+1

Ẽj

)6

+ d̃6
3E

( n−M1−N1∑
j=n−M2−N1+1

Ẽj

)6

+ E

( n−M2∑
j=n−M1−N1+1

djẼj

)6

+ d̃6
5E

( n−M1∑
j=n−M2+1

Ẽj

)6]
, (24)

Denote the number of Ẽj in the sum with coefficient dj by si, then s1 = s3 = s5 = M2−M1

and s2 = (N2 − N1) − (M2 −M1). Expanding terms in (24), by the independence of the

Ẽj and that E(Ẽj) = 0, the non-zero terms are those consist of the second and higher

moments of {Ẽj} only. Therefore,

d̃6
1E

( n−M1−N2∑
j=n−M2−N2+1

Ẽj

)6

≤ 6! d̃6
1

(
E(Ẽj)

6 + s2
1E(Ẽj)

2E(Ẽj)
4 + s2

1(E(Ẽj)
3)2 + s3

1(E(Ẽj)
2)3
)
,

and to show it is bounded by a constant, it suffices to show s1d̃
2
1 is bounded by a constant,

as d̃1 is bounded and the moments of Ẽj are finite. For i = 1,

s1d̃
2
1 = (M2 −M1)

k2
n

(M2 −M1)1/2(N2 −N1)1/2

1

(M2 +N2)2
≤ 1

ε2
.

The same argument applies to i = 2, 3, 5. For i = 2,

s2d̃
2
2 = ((N2 −N1)− (M2 −M1))

k2
n

(M2 −M1)1/2(N2 −N1)1/2

1

N2
2

(M2 −M1)2

(M2 +N1 + 1)2

≤ (N2 −N1)
k2
n

(M2 −M1)1/2(N2 −N1)1/2

1

N2
2

(M2 −M1)2

(M2 +N1 + 1)2
≤ 1

ε2
,

for i = 3,

s3d̃
2
3 = (M2 −M1)

k2
n

(M2 −M1)1/2(N2 −N1)1/2

1

N2
1

((M2 −M1) +N1)2

(M2 +N1)2
≤ 1

ε2
,

31



and for i = 5,

s5d̃
2
5 = (M2 −M1)

k2
n

(M2 −M1)1/2(N2 −N1)1/2

(M2 −M1)2

M2
2

(N2 −N1)2

N2
1N

2
2

≤ 1

ε2
.

Finally, note

E

( n−M2∑
j=n−M1−N1+1

djẼj

)6

(25)

≤ 6!

(∑
j

d6
jE(Ẽj)

6 +
∑
i,j

d3
i d

3
j(E(Ẽi)

3)2 +
∑
i,j

d2
i d

4
jE(Ẽi)

2E(Ẽj)
4 +

∑
i,j,k

d2
i d

2
jd

2
k(E(Ẽi)

2)3

)
,

where

dj =
kn(C2,2(j)− C1,2(j)− C2,1(j) + C1,1(j))

(M2 −M1)1/4(N2 −N1)1/4

=
kn

(M2 −M1)1/4(N2 −N1)1/4

M2 −M1

n− j + 1

(
1

N1

− 1

N2

)
for n−M1 −N1 + 1 ≤ j ≤ n−M2. Therefore (25) is bounded by a constant times∑
j

d6
j +

∑
i,j

(d3
i d

3
j + d2

i d
4
j) +

∑
i,j,k

d2
i d

2
jd

2
k

=

(
kn(M2 −M1)

(M2 −M1)1/4(N2 −N1)1/4

N2 −N1

N1N2

)6( N1+M1∑
j=M2+1

1

j6
+
∑
i,j

(
1

i3
1

j3
+

1

i2
1

j4

)
+
∑
i,j,k

1

i2
1

j2

1

k2

)

≤
(

1

ε

(M2 −M1)3/4

N
1/4
2

)6(
N1

(M2 + 1)6
+

7

12M4
2

+
1

M3
2

)
≤ 3

ε6
,

as 1/(j + 1)k ≤
´ j+1

j
(1/tk)dt for k > 1. Therefore (24) is bounded and the condition (14)

holds.

IfM2−M1 < N2−N1 andM2−M1 ≥ N1 (if equation holds then E
(∑n−M1−N1+1

j=n−M2
djẼj

)6

disappears), then in the above calculations, terms that are different are

|dj| ≤
kn

(M2 −M1)1/4(N2 −N1)1/4

1

N1

(M2 −M1) +N1

M2 +N1

:= d̃3
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for n−M2 −N1 + 1 ≤ j ≤ n−M2 with s3 = N1, and

|dj| ≤
kn

(M2 −M1)1/4(N2 −N1)1/4

1

N2

M2 −M1

M2

:= d̃4

for n−M2 + 1 ≤ j ≤ n−M1 −N1 with s4 = (M2 −M1)−N1, and

|dj| ≤
kn

(M2 −M1)1/4(N2 −N1)1/4

1

M1 +N1

N2 −N1

N2

:= d̃5

for n−M1 −N1 + 1 ≤ j ≤ n−M1 with s5 = N1. It can be shown sid̃2
i ≤ 1/ε2 still holds

for each coefficient. The case of M2 −M1 ≥ N2 −N1 and conditions (15) and (16) can be

shown similarly.

Now we are ready for the proof of the main result.

Proof of Theorem (2.1). It suffices to show that for all 0 < m < M the weak convergence

holds on the Skorokhod space D([0,M ]×[m,M ]). Details about the structure of D([0,M ]×

[m,M ]) can be found in Straf (1972).

Let U be the left-continuous inverse function of 1/F̄ . The second-order regular varying

condition (3) implies that (Drees 1998 and de Haan and Ferreira 2006)

lim
t→∞

x−1/α U(tx)
U(t)
− 1

A(t)
=
xρ − 1

ρ
,

which is equivalent to

lim
t→∞

logU(tx)− logU(t)− log(x)/α

A(t)
=
xρ − 1

ρ
.

Moreover, there exists A0(t) ∼ A(t) that is regular varying with index ρ (denoted by

|A0| ∈ RV(ρ)), such that for all ε > 0, there exists t0 = t0(ε), and for all t ≥ t0 and x ≥ 1,∣∣∣∣ logU(tx)− logU(t)− log(x)/α

A0(t)
− xρ − 1

ρ

∣∣∣∣ ≤ εxρ+ε. (26)
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Let Yi = eEi , where E1, E2, . . . are iid standard exponential random variables. Note

U(Y(i))
d
= X(i), and thus

{Hn(δ, θ)} d
=

{
1

bθknc

bθknc∑
i=1

logU(Y(n−bδknc−i+1))− logU(Y(n−bδknc−bθknc))

}
.

Without loss of generality, we replace X(i) with U(Y(i)) in the following arguments.

Let t = min(δ,θ)∈[0,M ]×[m,M ] Y(n−bδknc−bθknc). Since Y(n−bδknc−i+1)/Y(n−bδknc−bθknc) ≥ 1 for

all i = 1, . . . , bθknc, (26) implies that on {min(δ,θ)∈[0,M ]×[m,M ] Y(n−bδknc−bθknc) ≥ t0}, for all

(δ, θ) ∈ [0,M ]× [m,M ],∣∣∣∣α√knHn(δ, θ)−
√
knH

E
n (δ, θ)

− α

ρ

√
knA0(Y(n−bδknc−bθknc))

1

bθknc

bθknc∑
i=1

[(
Y(n−bδknc−i+1)

Y(n−bδknc−bθknc)

)ρ
− 1

] ∣∣∣∣
≤ ε α

√
kn|A0(Y(n−bδknc−bθknc))|

1

bθknc

bθknc∑
i=1

(
Y(n−bδknc−i+1)

Y(n−bδknc−bθknc)

)ρ+ε

,

where

HE
n (δ, θ) =

1

bθknc

bθknc∑
i=1

E(n−bδknc−i+1) − E(n−bδknc−bθknc).

Let Wn(δ, θ) = α
√
kn(HE

n (δ, θ)− EHE
n (δ, θ)), it follows that∣∣∣∣√kn

(
αHn(δ, θ)− g(δ, θ)

)
− αbρ(δ, θ)−Wn(δ, θ)

∣∣∣∣
≤
√
kn
∣∣E(HE

n (δ, θ))− g(δ, θ)
∣∣ (27)

+ α

∣∣∣∣1ρ√knA0(Y(n−bδknc−bθknc))
1

bθknc

bθknc∑
i=1

[(
Y(n−bδknc−i+1)

Y(n−bδknc−bθknc)

)ρ
− 1

]
− bρ(δ, θ)

∣∣∣∣ (28)

+ ε · α
√
kn |A0(Y(n−bδknc−bθknc))|

1

bθknc

bθknc∑
i=1

(
Y(n−bδknc−i+1)

Y(n−bδknc−bθknc)

)ρ+ε

. (29)
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Now we show (27)-(29) convergence to zero uniformly in (δ, θ) ∈ [0,M ]× [m,M ]. For (27),

by (10),√
kn|E(HE

n (δ, θ))− g(δ, θ)|

=
√
kn

∣∣∣∣ 1

bθknc

n−bδknc∑
j=n−bδknc−bθknc+1

n− bδknc − j + 1

n− j + 1
−
(

1− δ

θ
log
(θ
δ

+ 1
))∣∣∣∣

=
√
kn

∣∣∣∣δθ log
(θ
δ

+ 1
)
− bδknc
bθknc

bδknc+bθknc∑
j=bδknc+1

1

j

∣∣∣∣. (30)

If δkn ≥ 1, then (30) is bounded by

√
kn

∣∣∣∣δθ − bδkncbθknc

∣∣∣∣ log

(
θ

δ
+ 1

)
+
√
kn
bδknc
bθknc

∣∣∣∣ log

(
θ

δ
+ 1

)
−
bδknc+bθknc∑
j=bδknc+1

1

j

∣∣∣∣. (31)

For the first part of (31),√
kn

∣∣∣∣δθ − bδkncbθknc

∣∣∣∣ log

(
θ

δ
+ 1

)
≤
√
kn
δ

θ

1

δkn ∧ bθknc
log

(
θ

δ
+ 1

)
,

which converges uniformly to zero. For the second part,

√
kn
bδknc
bθknc

[
log

(
θ

δ
+ 1

)
−
bδknc+bθknc∑
j=bδknc+1

1

j

]
(32)

≤
√
kn
bδknc
bθknc

∣∣∣∣ log

(
θ

δ
+ 1

)
− log

(
bδknc+ bθknc
bδknc

)∣∣∣∣+

∣∣∣∣ log

(
bδknc+ bθknc
bδknc

)
−
bδknc+bθknc∑
j=bδknc+1

1

j

∣∣∣∣,
where ∣∣∣∣ log

(
θ

δ
+ 1

)
− log

(
bδknc+ bθknc
bδknc

)∣∣∣∣ ≤ (1 + o(1))

(
2

bδknc+ bθknc
+

1

δkn

)
and ∣∣∣∣ log

(
bδknc+ bθknc
bδknc

)
−
bδknc+bθknc∑
j=bδknc+1

1

j

∣∣∣∣ ≤ 1

bδknc
− 1

bδknc+ bθknc
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by the error bound of the Riemann sum. Therefore (32) converges to zero uniformly. If

δkn < 1, then for kn ≥ 1/m,

√
kn
δ

θ
log

(
θ

δ
+ 1

)
<

√
δ

θ
log

(
θ

δ
+ 1

)
and thus converges to zero uniformly as n→∞.

Next we show (28) converges to zero uniformly in probability. Since |A0| ∈ RV(ρ), by

Potter’s inequalities (de Haan and Ferreira 2006), for any ε̃ > 0, there exists t̃0 > 0, such

that whenever n/(δkn + θkn) > t̃0 and Y(n−bθknc−bθknc) > t̃0,

(1− ε̃)(Ãρ+ε̃
δ,θ ∧ Ã

ρ−ε̃
δ,θ ) <

A0(Y(n−bδknc−bθknc))

A0( n
δkn+θkn

)
< (1 + ε̃)(Ãρ+ε̃

δ,θ ∨ Ã
ρ−ε̃
δ,θ ), (33)

where

Ãδ,θ =
δkn + θkn

n
Y(n−bδknc−bθknc).

By Lemma 2.4.10 of de Haan and Ferreira (2006), for all β > 0, given n → ∞, K → ∞

and K/n→ 0,

sup
K−1≤s≤1

s1/2+β

∣∣∣∣√K(Ksn Y(n−[Ks]) − 1

)
− Bn(s)

s

∣∣∣∣ = oP (1), (34)

where {Bn(s)} is a sequence of Brownian motions. Let K = 2Mkn, s = (bδknc+bθknc)/K,

then (mkn−1)/(2Mkn) ≤ s ≤ 1. Consider kn large enough such that (mkn−1)/(2Mkn) ≥

m/3M > K−1, then for all 0 < ε′ < ε,

P

(
sup
δ,θ

∣∣∣∣bδknc+ bθknc
n

Y(n−bδknc−bθknc) − 1

∣∣∣∣ > ε

)
≤ P

(
sup

m/3M≤s≤1

√
K

∣∣∣∣Ksn Y(n−[Ks]) − 1

∣∣∣∣ > ε
√
K

)
≤ P

(
sup

m/3M≤s≤1

∣∣∣∣Bn(s)

s

∣∣∣∣ > ε
√
K − ε′

)
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+ P

(
sup

m/3M≤s≤1

∣∣∣∣√K(Ksn Y(n−[Ks]) − 1

)
− Bn(s)

s

∣∣∣∣ ≥ ε′
)
.

Since supm/3M≤s≤1 |B(s)| <∞, a.s., as K →∞,

P

(
sup

m/3M≤s≤1

∣∣∣∣Bn(s)

s

∣∣∣∣ > ε
√
K − ε′

)
≤ P

(
sup

m/3M≤s≤1

|Bn(s)| > (ε
√
K − ε′) m

3M

)
→ 0.

By (34),

P

(
sup

m/3M≤s≤1

∣∣∣∣√K(Ksn Y(n−[Ks]) − 1

)
− Bn(s)

s

∣∣∣∣ ≥ ε′
)

≤ P

(
sup

m/3M≤s≤1

s1/2+β

∣∣∣∣√K(Ksn Y(n−[Ks]) − 1

)
− Bn(s)

s

∣∣∣∣ ≥ ( m

3M

)1/2+β

ε′
)
→ 0.

Since (bδknc+ bθknc)/(δkn + θkn)→ 1 uniformly, it follows that

sup
δ,θ

∣∣∣∣δkn + θkn
n

Y(n−bδknc−bθknc) − 1

∣∣∣∣ = oP (1).

Therefore by (33),

sup
δ,θ

√
kn

∣∣∣∣A0(Y(n−bδknc−bθknc))

A0

(
n

δkn+θkn

) ∣∣∣∣ = 1 + oP (1),

where √
kn

∣∣∣∣A0

( n

δkn + θkn

)∣∣∣∣ ∼√kn

∣∣∣∣A0

( n
kn

)∣∣∣∣(δ + θ)−ρ → λ

(δ + θ)ρ

uniformly in (δ, θ) (de Haan and Ferreira 2006). Similarly,

sup
δ,θ

∣∣∣∣ 1

bθknc

bθknc∑
i=1

[(
Y(n−bδknc−i+1)

Y(n−bδknc−bθknc)

)ρ
− 1

]
− 1

bθknc

bθknc∑
i=1

[(
δkn + θkn
δkn + i− 1

)ρ
− 1

] ∣∣∣∣ = oP (1),

and the Riemann sum

1

bθknc

bθknc∑
i=1

[(
δkn + θkn
δkn + i− 1

)ρ
− 1

]
→
ˆ 1

0

(
δ/θ + 1

δ/θ + x

)ρ
dx− 1,
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which is
1 + (θ/δ)ρ− (θ/δ + 1)ρ

(θ/δ)(1− ρ)

if δ > 0 and ρ/(1− ρ) if δ = 0. The error bounded is given by

1

bθknc

[
1−

(
δ/θ + 1

δ/θ

)ρ]
≤ 1

bθknc
,

which converges to zero uniformly.

It can be shown along the same lines for (29) that

sup
δ,θ

∣∣∣∣ 1

bθknc

bθknc∑
i=1

( Y(n−bδknc−i+1)

Y(n−bδknc−bθknc)

)ρ+ε

− b̃ρ,ε(δ, θ)
∣∣∣∣ = oP (1),

where

b̃ρ,ε(δ, θ) =
(θ/δ + 1)− (θ/δ + 1)ρ+ε

(θ/δ)(1− ρ− ε)
if δ > 0 and 1/(1− ρ− ε) if δ = 0, which is bounded on (δ, θ) ∈ [0,M ]× [m,M ] when ε is

small enough. Therefore, (29) converges to zero uniformly in probability when ε→ 0.

Since

P
(

min
(δ,θ)∈[0,M ]×[m,M ]

Y(n−bδknc−bθknc) ≥ t0

)
→ 1

as n→∞, given the convergence results for (27)-(29), we have that for all ε̃ > 0,

P

(
sup

(δ,θ)∈[0,M ]×[m,M ]

∣∣∣∣√kn
(
αHn(δ, θ)− g(δ, θ)

)
− αbρ(δ, θ)−Wn(δ, θ)

∣∣∣∣ > ε̃

)
→ 0.

By Lemma (5.1) and Lemma (5.2), Wn(·, ·) d→ G(·, ·) (Bickel and Wichura 1971), and the

desired weak convergence follows.

38



SUPPLEMENTARY MATERIAL

Technical proofs: Detailed proof of Lemma 5.2.

R Code for simulations and real data examples: Code for R algorithms used to pro-

duce illustrations in Sections 1 and 2 and estimation results in 4 and 5. (.r files)

Earthquake fatality data set: Data set used in the illustration in section 5. (comma-

separated values (CSV) file)
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