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Abstract

We prove that the following are equivalent:

• Existence of one-way functions: the existence of one-way functions (which in turn are equivalent
to PRGs, pseudo-random functions, secure encryptions, digital signatures, commitment schemes,
and more).

• Average-case hardness of Kt-complexity: the existence of polynomials t, p such that no PPT
algorithm can determine the t-time bounded Kolmogorov Complexity for more than a 1 − 1

p(n)

fraction of n-bit strings.

In doing so, we present the first natural, and well-studied, computational problem (i.e., Kt-complexity)
that captures the feasibility of non-trivial cryptography.
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1 Introduction

We prove the equivalence of two fundamental problems in the theory of computation: (a) the existence of
one-way functions, and (b) average-case hardness of the time-bounded Kolmogorov Complexity problem.

Existence of One-way Functions: A one-way function [DH76] (OWF) is a function f that can be efficiently
computed (in polynomial time), yet no probabilistic polynomial-time (PPT) algorithm can invert f
with inverse polynomial probability for infinitely many input lengths n. Whether one-way functions
exist is unequivocally the most important open problem in Cryptography (and arguably the most im-
portantly open problem in the theory of computation, see e.g., [Lev03]): OWFs are both necessary
[IL89] and sufficient for many of the most central cryptographic tasks (e.g., pseudorandom generators
[HILL99], pseudorandom functions [GGM84], private-key encryption [GM84, BM88], digital signa-
tures [Rom90], commitment schemes [Nao91], and more). Additionally, as observed by Impagliazzo
[Gur89, Imp95], the existence of a OWF is also equivalent to the existence of polynomial-time method
for sampling hard solved instances for an NP language (i.e., hard instances together with their wit-
nesses).1

While many candidate constructions of OWFs are known—most notably based on factoring [RSA83],
the discrete logarithm problem [DH76], or the hardness of lattice problems [Ajt96]—the question of
whether there exists some natural computational problem that captures the hardness of OWFs (and thus
the feasibility of “non-trivial” cryptography) has been a long standing open problem.2 This problem
is particularly pressing given that many classic OWF candidates (e.g., based on factoring and discrete
log) can be broken by a quantum computer [Sho97].

Average-case Hardness of Kt-Complexity: What makes the string 121212121212121 less random than
604848506683403574924? The notion of Kolmogorov complexity (K-complexity), introduced by Solo-
monoff [Sol64] and Kolmogorov [Kol68], provides an elegant method for measuring the amount of
“randomness” in individual strings: The K-complexity of a string is the length of the shortest program
(to be run on some fixed universal Turing machine U ) that outputs the string x. From a computational
point of view, however, this notion is unappealing as there is no efficiency requirement on the pro-
gram. The notion of t(·)-time-bounded Kolmogorov Complexity (Kt-complexity) overcomes this issue:
Kt(x) is defined as the length of the shortest program that outputs the string x within time t(|x|). As
surveyed by Trakhtenbrot [Tra84], the problem of efficiently determining the Kt-complexity of strings
was studied in the Soviet Union since the 60s as a candidate for a problem that requires “brute-force
search” (see Task 5 on page 392 in [Tra84]). The modern complexity-theoretic study of this problem
goes back to Sipser [Sip83], Hartmanis [Har83]3 and Ko [Ko86]. Intriguingly, Trakhtenbrot also notes
that a “frequential” version of this problem was considered in the Soviet Union in the 60s: the problem
of finding an algorithm that succeeds for a “high” fraction of strings x—in more modern terms from
the theory of average-case complexity [Lev86], whether Kt can be computed by a heuristic algorithm
with inverse polynomial error, over random inputs x. We say that Kt is 1

p(·) -hard-on-average, if no
PPT algorithm succeeds in computing Kt(·) for more than an 1 − 1

p(n) fraction of n-bit strings x, for
infinitely many n.

1A OWF f directly yields the desired sampling method: pick a random string r and let x = f(r) be the instance and r the witness.
Conversely, to see why the existence of such a sampling method implies a one-way function, consider the function f that takes the
random coins used by the sampling method and outputs the instance generated by it.

2Note that Levin [Lev85] presents an ingenious construction of a universal one-way function—a function that is one-way if one-
way functions exists. But his construction (which relies on an enumeration argument) is artificial. Levin [Lev03] takes a step towards
making it less artificial by constructing a universal one-way function based on a new specially-tailored Tiling Expansion problem.

3Hartmanis’s paper considered a somewhat different notion of Kt complexity.
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Our man result shows that the existence of OWFs is equivalent to the average-case hardness of the Kt-
complexity problem. In doing so, we present the first natural (and well-studied) computational problem that
captures the feasibility of “non-trivial” cryptography.

Theorem 1.1. The following are equivalent:

• The existence of one-way functions.

• The existence of polynomials t(n) > 2n, p(n) > 0 such that Kt is 1
p(·) -hard-on-average.

1.1 Proof outline

We provide a brief outline for the proof of Theorem 1.1.

OWFs from Avg-case Kt-Hardness We show that if Kt is average-case hard for some t(n) > 2n, then a
weak one-way function exists4; the existence of (strong) one-way functions then follows by Yao’s hardness
amplification theorem [Yao82]. Let c be a constant such that every string x can be output by a program of
length |x| + c (running on the fixed Universal Turing machine U ). Consider the function f(`||M ′), where
` is of length log(n + c) and M ′ is of length n + c, that lets M be the first ` bits of M ′, and outputs `||y
where y is the output of M after t(n) steps. We aim to show that if f can be inverted with high probability—
significantly higher than 1− 1/n—then Kt-complexity of random strings z ∈ {0, 1}n can be computed with
high probability. Our heuristic H, given a string z, simply tries to invert f on `||z for all ` ∈ [n + c], and
outputs the smallest ` for which inversion succeeds. First, note that since every length ` ∈ [n+ c] is selected
with probability 1/(n+c), the inverter must still succeed with high probability even if we condition the output
of the one-way function on any particular length ` (as we assume that the one-way function inverter fails with
probability significantly smaller than 1

n ). This, however, does not suffice to prove that the heuristic works
with high probability, as the string y output by the one-way function is not uniformly distributed (whereas
we need to compute the Kt-complexity for uniformly chosen strings). But, we show using a simple counting
argument that y is not too “far” from uniform in relative distance. The key idea is that for every string
z with Kt-complexity w, there exists some program Mz of length w that outputs it; furthermore, by our
assumption on c, w ≤ n + c. We thus have that f(Un+c+log(n+c)) will output w||z with probability at least
1

n+c ·2
−w ≥ 1

n+c ·2
−(n+c) = O(2

−n

n ) (we need to pick the right length, and next the right program). So, if the
heuristic fails with probability δ, then the one-way function inverter must fail with probability at least δ

O(n) ,
which concludes that δ must be small (as we assumed the inverter fails with probability significantly smaller
than 1

n ).

Avg-case Kt-Hardness from EP-PRGs To show the converse direction, our starting point is the earlier
result by Kabanets and Cai [KC00] and Allender et al [ABK+06] which shows that the existence of OWFs
implies that Kt-complexity must be worst-case hard to compute. In more detail, they show that if Kt-
complexity can be computed in polynomial-time for every input x, then pseudo-random generators (PRGs)
cannot exists. This follows from the observations that (1) random strings have high Kt-complexity with
overwhelming probability, and (2) outputs of a PRG always have small Kt-complexity (as the seed plus the
constant-sized description of the PRG suffice to compute the output). Thus, using an algorithm that computes
Kt, we can easily distinguish outputs of the PRG from random strings—simply output 1 if theKt-complexity
is high, and 0 otherwise. This method, however, relies on the algorithm working for every input. If we only
have access to a heuristic H for Kt, we have no guarantees that H will output a correct value when we feed
it a pseudorandom string, as those strings are sparse in the universe of all strings.

4Recall that an efficiently computable function f is a weak OWF if there exists some polynomial q > 0 such that f cannot be
efficiently inverted with probability better than 1− 1

q(n)
for sufficiently large n.
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To overcome this issue, we introduce the concept of an entropy-preserving PRG (EP-PRG). This is a PRG
that expands the seed by O(log n) bits, while ensuring that the output of the PRG looses at most O(log n)
bits of Shannon entropy—it will be important for the sequel that we rely on Shannon entropy as opposed to
min-entropy. In essence, the PRG preserves (up to an additive term ofO(log n)) the entropy in the seed s. We
next show that any good heuristicH for Kt can break such an EP-PRG. The key point is that since the output
of the PRG is entropy preserving, by an averaging argument, there exists an 1/n fraction of “good” seeds
S such that conditioned on the seed belonging to S, the output of the PRG has min-entropy n − O(log n).
This means that the probability that H fails to compute Kt on outputs of the PRG, conditioned on picking a
“good” seed, can increase at most by a factor poly(n). We conclude that H can be used to determine (with
sufficiently high probability) the Kt-complexity for both random strings and for outputs of the PRG.

EP-PRGs from OWFs We start by noting that the standard Blum-Micali-Goldreich-Levin [BM84, GL89]
PRG construction from one-way permutations is entropy preserving. To see this, recall the construction:
Gf (s) = f(s)||GL(s) where f is a one-way permutation andGL(s) is a hardcore function for f—by [GL89],
every one-way permutation can be modified into a one-way permutation that has a hardcore function that
outputs O(log n) bits. Since f is a permutation, the output of the PRG fully determines the input and thus
there is actually no entropy loss. We next show that the PRG construction of [HILL99, Gol01, YLW15] from
regular OWFs also is an EP-PRG. We refer to a function f as being r-regular if for every x ∈ {0, 1}∗, f(x) has
between 2r(n)−1 and 2r(n) many preimages. Roughly speaking, the construction applies pairwise independent
hash functions (that act as strong extractors) H1, H2 to both the input and output of the OWF (parametrized
to match the regularity r) to “squeeze” out randomness from both the input and the output, and finally also
applies a hardcore function that outputs O(log n) bits: Grf (s||H1||H2) = H1||H2||H1(s)||H2(f(s))||GL(s).
As already shown in [Gol01] (see also [YLW15]), the output of the function excluding the hardcore bits is
actually 1/n2-close to uniform in statistical distance (this follows directly from the Leftover Hash Lemma
[HILL99, Vad12]), and this implies (again using an averaging argument) that the Shannon entropy of the
output is at least n − O(log n), thus the construction is an EP-PRG. We finally note that this construction
remains both secure and entropy preserving even if the input domain of the function f is not {0, 1}n, but
rather any set S of size 2n/n; this will be useful to us shortly.

Unfortunately, constructions of PRGs from OWFs [HILL99, Hol06, HHR06, HRV10] are not entropy
preserving as far as we can tell. We, however, remark that to prove that Kt is HoA, we do not actually need
a “full-fledged” EP-PRG: Rather, it suffices to have a “weak” EP-PRG G, where there exists some event E
such that (1) conditioned on E, G(Un) has Shannon entropy n−O(log n), and (2) conditioned on E, G(Un)
is pseudorandom. We next show how to adapt the above construction to yield a weak EP-PRG from any
OWF. Consider G(i||s) = Gif (s) where |s| = n and |i| = log n. We remark that for any function f , there
exists some regularity i∗ such that at least a fraction 1/n of inputs x have (approximate) regularity i∗. Let
Si∗ denote the set of these x’s. Clearly, |S| ≥ 2n/n; thus, by the above argument, Gi

∗
f (UN | S) is both

pseudorandom and has entropy n − O(log n). Finally, consider the event E that i = i∗ and s ∈ Si∗ . By
definition, G(Ulogn||Un | E) is identically distributed to Gi

∗
f (UN |S), and thus G is a weak EP-PRG from any

OWF.

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, polynomial-time algorithms, probabilis-
tic polynomial-time algorithms (PPT), non-uniform polynomial-time and non-uniform PPT algorithms. A
function µ is said to be negligible if for every polynomial p(·) there exists some n0 such that for all n > n0,
µ(n) ≤ 1

p(n) . A probability ensemble is a sequence of random variables A = {An}n∈N. We let Un the
uniform distribution over {0, 1}n.
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2.1 One-way functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a function f is one-way if it is
polynomial-time computable, but hard to invert for PPT attackers. The standard (cryptographic) definition
of a one-way function (see e.g., [Gol01]) requires every PPT attacker to fail (with high probability) on all
sufficiently large input lengths.

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be a
one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ such that for all
n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We may also consider a weaker notion of a “weak one-way function”, where we only require all PPT
attackers to fail with inverse polynomial probability:

Definition 2.2. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be a α-weak
one-way function (α-weak OWF) if for every PPT algorithm A, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1− α(n)

We say that f is simply a weak one-way function (weak OWF) if there exists some polynomial q > 0 such
that f is a 1

q(·) -weak OWF.

Yao’s hardness amplification theorem [Yao82] shows that any weak OWF can be turned into a (strong)
OWF.

Theorem 2.3. Assume there exists a weak one-way function. Then there exists a one-way function.

2.2 Kt-Complexity

Let U be some fixed Turing machine, and let U(M, 1t) be the output of the Turing machine M when M is
simulated on U for t steps. The t-time bounded Kolmogorov Complexity (Kt-Complexity) [Sip83, Tra84,
Ko86] of a string x, Kt(x) is defined as the length of the shortest machine M that outputs x (when running
on the universal turing machine U ) within t(|x|) steps. More formally,

Kt(x) = min
M
{|M | : U(M, 1t(|x|)) = x}.

A trivial observation about Kt-complexity is that the length of a string x essentially (up to an additive con-
stant) bounds the Kt-complexity of the string; this follows by considering the program Πx that has x hard-
coded and simply outputs it.

Fact 2.1. There exists a constant c such that for every function t(n) > 2n, for every x ∈ {0, 1} it holds that
Kt(x) ≤ |x|+ c.

2.3 Average-case Hard Functions

We turn to defining what it means for a function to be average-case hard (for PPT algorithms).

Definition 2.4. We say that a function f : {0, 1}∗ → {0, 1}∗ is α hard-on-average (α-HoA) if for all PPT
heuristicH, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}n : H(x) = f(x)] < 1− α(|n|)

In other words, there does not exists a PPT “heuristic” H that computes f with probability 1− α(n) for
infinitely many n ∈ N .
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2.4 Computational Indistinguishability

We recall the definition of (computational) indistinguishability [GM84].

Definition 2.5 (Indistinguishability). Two ensembles {An}n∈N and {Bn}n∈N are said to be µ(·)-indistinguishable,
if for every probabilistic machine D (the “distinguisher”) whose running time is polynomial in the length of
its first input, there exist some n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < µ(n)

We say that {An}n∈N and {Bn}n∈N simply indistinguishable if they are 1
p(·) -indistinguishable for every poly-

nomial p(·).

2.5 Statistical Distance and Shannon Entropy

For any two random variables X and Y defined over some set V , we let SD(X,Y ) = 1
2

∑
v∈V |Pr[X =

v] − Pr[Y = v]| denote the statistical distance between X and Y . For a random variable X , let H(X) =
E[log 1

Pr[X=x] ] denote the (Shannon) entropy of X , and let H∞(X) = minx∈Supp(X) log 1
Pr[X=x] denote the

min entropy of X . The following simple lemma will be useful to us.

Lemma 2.2. For every n ≥ 4, the following holds. Let X be a random variable over {0, 1}n such that
SD(X,Un) ≤ 1

n2 . Then H(Xn) ≥ n− 2.

Proof: Let S = {x ∈ {0, 1}n : Pr[X = x] ≤ 2−(n−1)}. Note that for every x /∈ S, x will contribute at least

1

2
(Pr[X = x]− Pr[Un = x]) ≥ 1

2

(
Pr[X = x]− Pr[X = x]

2

)
=

Pr[X = x]

4

to SD(X,Un). Thus,

Pr[X /∈ S] ≤ 4 · 1

n2
.

Since for every x ∈ S, log 1
Pr[X=x] ≥ n − 1 and the probability that X ∈ S is at least 1 − 4/n2, it follows

that
H(X) ≥ Pr[X ∈ S](n− 1) ≥ (1− 4

n2
)(n− 1) ≥ n− 4

n
− 1 ≥ n− 2.

3 OWFs from Avg-case Kt-Hardness

Theorem 3.1. Assume there exists polynomials t(n) > 2n, p(n) > 0 such that Kt is 1
p(·) -HoA. Then there

exists a weak OWF f (and thus also a OWF).

Proof: Let c be the constant from Fact 2.1. Consider the function f : {0, 1}n+c+log(n+c) → {0, 1}n, which
given an input `||M ′ where |`| = log(n+ c) and |M ′| = n+ c, outputs `||U(M, 1t(n)) where M is the `-bit
prefix of M ′. This function is only defined over some inputs lengths, but by an easy padding trick, it can
be transformed into a function f ′ defined over all input lengths, such that if f is (weakly) one-way (over the
restricted input lengths), then f ′ will be (weakly) one-way (over all input lengths): f ′(x′) simply truncates its
input x′ (as little as possible) so that the (truncated) input x now becomes of length m = n+ c+ log(n+ c)
for some n and output f(x).

We now show that if Kt is 1
p(·) -HoA, then f is a 1

q(·) -weak OWF, where q(n) = 22c+3np(n)2, which
concludes the proof of the theorem. Assume for contradiction that f is not a 1

q(·) -weak OWF. That is, there
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exists some PPT attacker A that inverts f with probability at least 1 − 1
q(n) ≤ 1 − 1

q(m) for infinitely many
m = n + c + log(n + c). Fix some such m,n > 2. By an averaging argument, except for a fraction 1

2p(n)
of random tapes r for A, the deterministic machine Ar (i.e., machine A with randomness fixed to r) fails to
invert f with probability at most 2p(n)

q(n) . Fix some such “good” randomness r for which Ar succeeds to invert

f with probability 1− 2p(n)
q(n) .

We next show how to use Ar to approximate Kt over random inputs z ∈ {0, 1}n. Our heuristic Hr(z)
runs Ar(i||z) for all i ∈ [n + c] where i is represented as an log(n + c) bit string, and outputs the length of
the smallest program M output by Ar that produces the string z within t(n) steps. Let S be the set of strings
z ∈ {0, 1}n for whichHr(z) fails to compute Kt(z). Note thatHr thus fails with probability

failr =
|S|
2n
.

Consider any string z ∈ S and let w = Kt(z) be its Kt-complexity. By Fact 2.1, we have that w ≤ n + c.
SinceHr(z) fails to compute Kt(z), Ar must fail to invert (w||z). But, since w ≤ n+ c, the output (w||z) is
sampled with probability

1

n+ c
· 1

2|w|
≥ 1

(n+ c)

1

2n+c
≥ 1

n22c+1
· 1

2n

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1

n22c+1
· 1

2n
=

1

n22c+1
· |S|

2n
=

failr
n22c+1

which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus conclude that

failr ≤
22c+2np(n)

q(n)

Finally, by a Union Bound, we have that H (using a uniform random tape r) fails in computing Kt with
probability at most

1

2p(n)
+

22c+2np(n)

q(n)
=

1

2p(n)
+

22c+2np(n)

2c+3np(n)2
=

1

p(n)
.

Thus,H computes Kt with probability 1− 1
p(n) for infinitely many n ∈ N, which contradicts the assumption

that Kt is 1
p(·) -HoA.

4 Avg-case Kt-Hardness from OWFs

We introduce the notion of a (weak) entropy-preserving pseudo-random generator (EP-PRG) and next show
(1) the existence of a weak EP-PRG implies thatKt is hard-on-average, and (2) OWFs imply weak EP-PRGs.

4.1 Entropy-preserving PRGs

We start by defining the notion of a weak Entropy-preserving PRG.

Definition 4.1. An efficiently computable function g : {0, 1}n → {0, 1}n+γ logn is a weak entropy-preserving
pseudorandom generator (weak EP-PRG) if there exists a sequence of events = {En}n∈N and a constant α
(referred to as the entropy-loss constant) such that the following conditions hold:

• (pseudorandomness): {g(Un|En)}n∈N and {Un+γ logn}n∈N are (1/n2)-indistinguishable;
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• (entropy-preserving): For all sufficiently large n ∈ N, H(g(Un|En)) ≥ n− α log n.

If for all n,En = {0, 1}n (i.e., there is no conditioning), we say that g is an entropy-preserving pseudorandom
generator (EP-PRG).

4.2 Avg-case Kt-Hardness from Weak EP-PRGs

Theorem 4.2. Assume that for every γ > 1, there exists a weak EP-PRG g : {0, 1}n → {0, 1}n+γ logn. Then
there exists a polynomials t(n) > 2n, p(n) > 0 such that Kt is 1

p(·) -HoA.

Proof: Let γ = 4, and let g′ : {0, 1}n → {0, 1}m′(n) where m′(n) = n + γ log n be an weak EP-PRG.
For any constant c, let gc(x) be a function that computes g′(x) and truncates the last c bits. It directly follows
that gc is also a weak EP-PRG (since g′ is so). Let t(n) > 2n be a monotonically increasing polynomial that
bounds the running time of gc for every c ≤ γ + 1, and let p(n) = 2n2(α+γ+1).

Assume for contradiction that there exists some PPT H that computes Kt with probability 1 + 1
p(m) for

infinitely many m ∈ N. Since m′(n+ 1)−m′(n) ≤ γ + 1, there must exists some constant c ≤ γ + 1 such
that H succeeds with probability 1 + 1

p(m) for infinitely many m of the form m = m(n) = n + γ log n − c.
Let g(x) = gc(x); recall that g is a weak EP-PRG (trivially, since gc is so), and let α, {En}, respectively, be
the entropy loss constant and sequence of events, associated with it.

We next show that H can be used to break the weak EP-PRG g. Towards this, recall that a random string
has high Kt-complexity with high probability: for m = m(n), we have,

Pr
x∈{0,1}m

[Kt(x) ≥ m− γ

2
log n] ≥ 2m − 2m−

γ
2
logn

2m
= 1− 1

nγ/2
,

since the total number of Turing machines with length smaller than m− γ
2 log n is only 2m−

γ
2
logn. However,

any string output by the EP-PRG, must have “low”Kt complexity: For every sufficiently large n,m = m(n),
we have that,

Pr
s∈{0,1}n

[Kt(g(s)) ≥ m− γ

2
log n] = 0,

since g(s) can be represented by combining a seed s of length n with the code of g (of a constant length), and
the running time of g(s) is bounded by t(|s|) = t(n) ≤ t(m), so Kt(g(s)) = n + O(1) = (m − γ log n +
c) +O(1) ≤ m− γ/2 log n for sufficiently large n.

Based on these observations, we now construct a PPT distinguisher A breaking g. On input 1n, x, where
x ∈ {0, 1}m(n), A(1n, x) lets w ← H(x) and outputs 1 if w ≥ m(n) − γ

2 log n and 0 otherwise. Fix some
n and m = m(n) for which H succeeds with probability 1

p(m) . The following two claims conclude that A
distinguishes Um(n) and g(Un | En) with probability 1

n2 .

Claim 1. A(1n,Um) outputs 1 with probability at least 1− 2
nγ/2

.

Proof: Recall that A(1n, x) will output 1 if x is a string with Kt-complexity larger than m− γ/2 log n and
H outputs a correct Kt-complexity for x. Thus,

Pr[A(1n, x) = 1]

≥ Pr[Kt(x) ≥ m− γ/2 log n ∧H succeeds on x]

≥ 1− Pr[Kt(x) < m− γ/2 log n]− Pr[H fails on x]

≥ 1− 1

nγ/2
− 1

p(n)

≥ 1− 2

nγ/2
.

where the probability is over a random x← Un and the randomness of A andH.

8



Claim 2. A(1n, g(Un | En)) outputs 1 with probability at most 1− 1
n + 2

nα+γ

Proof: Recall that by assumption, H fails to computes Kt(x) for random x ∈ {0, 1}m with probability at
most 1

p(m) . By an averaging argument, for at least an 1− 1
n2 fraction of random tapes r forH, the deterministic

machine Hr fails to correctly compute Kt with probability at most n2

p(m) . Fix some “good” randomness r

such thatHr computes Kt with probability at least 1− n2

p(m) . We next analyze the success probability of Ar.
Assume for contradiction thatAr outputs 1 with probability at least 1− 1

n + 1
nα+γ

on input g(Un | En). Recall
that (1) the entropy of g(Un | En) is at least n − α log n and (2) the quantity − log Pr[g(Un | En) = y] is
upper bounded by n for all y ∈ g(Un | En) since H∞(g(Un | En)) ≤ H∞(Un | En) ≤ H∞(Un) = n. By an
averaging argument, with probability at least 1

n , a random y ∈ g(Un | En) will satisfy

− log Pr[g(Un | En) = y] ≥ (n− α log n)− 1.

We refer to an output y satisfying the above condition as being “good” and other y’s as being “bad”. Let S =
{y ∈ g(Un | En) : Ar(1n, y) = 1 ∧ y is good}, and let S′ = {y ∈ g(Un | En) : Ar(1n, y) = 1 ∧ y is bad}.
Since

Pr[Ar(1n, g(Un | En)) = 1] = Pr[g(Un | En) ∈ S] + Pr[g(Un | En) ∈ S′],

and Pr[g(Un | En) ∈ S′] is at most the probability that g(Un) is “bad” (which as argued above is at most
1− 1

n ), we have that

Pr[g(Un | En) ∈ S] ≥
(

1− 1

n
+

1

nα+γ

)
−
(

1− 1

n

)
=

1

nα+γ
.

Furthermore, since for every y ∈ S, Pr[g(Un | En) = y] ≤ 2−n+α logn+1, we also have,

Pr[g(Un | En) ∈ S] ≤ |S|2−n+α logn+1

So,

|S| ≥ 2n−α logn−1

nα+γ
= 2n−(2α+γ) logn−1

However, for any y ∈ g(Un | En), if Ar(1n, y) outputs 1, then Hr(y) 6= Kt(y). Thus, the probability that
Hr fails on a random y ∈ {0, 1}m is at least

|S|/2m = 2−(2α+2γ) logn−1+c ≥ 2−2(α+γ) logn−1 =
1

2n2(α+γ)

which contradicts the fact thatHr fails with probability at most n2

p(m) <
1

2n2(α+γ) (since n < m).
We conclude that for every good randomness r, Ar outputs 1 with probability at most 1 − 1

n + 1
nα+γ

.
Finally, by Union Bound (and since a random tape is bad with probability ≤ 1

n2 ), we have that the probability
that A(g(Un | En)) outputs 1 is at most

1

n2
+

(
1− 1

n
+

1

nα+γ

)
≤ 1− 1

n
+

2

n2
,

since γ ≥ 2.

We conclude, recalling that γ ≥ 4, that A distinguishes Um and g(Un | En) with probability of at least(
1− 2

nγ/2

)
−
(

1− 1

n
+

2

n2

)
≥
(

1− 2

n2

)
−
(

1− 1

n
+

2

n2

)
=

1

n
− 4

n2
≥ 1

n2

for infinitely many n ∈ N.
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4.3 Weak EP-PRGs from OWFs

In this section, we show how to construct a weak EP-PRG from any OWF. Towards this, we first recall the
construction of [HILL99, Gol01, YLW15] of a PRG from a regular one-way function [GKL93].

Definition 4.3. A function f : {0, 1}∗ → {0, 1}∗ is called regular if there exists a function r : N → N such
that for all sufficiently long x ∈ {0, 1}∗,

2r(|x|)−1 ≤ |f−1f(x)| ≤ 2r(|x|).

We refer to r as the regularity of f .

As mentioned in the introduction, the construction, roughly speaking, proceeds in the following two steps
given a OWF f with regularity r.

• By the Goldreich-Levin Theorem [GL89], for every γ ≥ 0, f can be modified into a different regular
OWF f ′ that has γ log n-bit hard-core function GL.

• We next “massage” f ′ into a different OWF f ′′ having the property that there exists some `(n) =
n − O(log n) such that f ′′(Un) is statistically close to U`(n)—we will refer to such a OWF as being
dense. This is done by applying a pairwise-independent hash functions to both the input and the output
of f ′: f ′′(x, h1, h2) = h1||h2||h1(x)||h2(f ′(x)), where h1 and h2 are appropriately parametrized to
based on the regularity r(|x|); more precisely h1 outputs r(|x|)−O(log |x|) bits, and h2 outputs |x| −
r(|x|) − O(log |x|) bits. (Note that knowing the regularity is crucial so we know how many bits to
“extract” from the input and the outputs.) This steps also ensures that GL(x) is still hardcore.

• The final PRG is then G(x, h1, h2) = f ′′(x, h1, h2)||GL(x).

(We note that the above two steps do not actually produce a “full-fledged” PRG as the statistical distance
between the output of f ′(Un) and uniform is actually only 1

poly(n) as opposed to being negligible. [Gol01]
thus present a final amplification step to deal with this issue—for our purposes it will suffice to get a 1

poly(n)
indistinguishability gap so we will not be concerned about the amplification step.)

We remark that nothing in the above two steps requires f to be a one-way function defined on the domain
{0, 1}n—both steps still work even for one-way functions defined over domain S that are different than
{0, 1}n as long as a lower bound on the size of the domain is efficiently computable (by a minor modification
of the construction in Step 2 to account for the size of S).

Definition 4.4. Let S = {Sn} be a sequence of sets such that Sn ⊆ {0, 1}n and let f : Sn → {0, 1}∗ be a
polynomial-time computable function. f is said to be a one-way function over S (S-OWF) if for every PPT
algorithm A, there exists a negligible function µ such that for all n ∈ N,

Pr[x← Sn; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We refer to f as being regular if it satisfies Definition 4.3 with the exception that we only quantify over all
n ∈ N and all x ∈ Sn (as opposed to all x ∈ {0, 1}n).

We say that a sequence of functions {fi}i∈I is efficiently computable if there exists a polynomial-time algo-
rithm M such that M(i, x) = fi(x).

Lemma 4.1 (implicit in [Gol01, YLW15]). Let S = {Sn} be a sequence of sets such that Sn ⊆ {0, 1}n, let s
be an efficiently computable function such that s(n) ≤ log |Sn|, and let f be a S-OWF with regularity r(·).

Then, there exists some α′ ≥ 0, some c ≥ 0, an efficiently computable sequence of functions {f ′i}i∈N such
that for every γ′ ≥ 0, there exists an efficiently computable function GL(·) such that:
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• pseudorandomness: The ensembles of distributions {x← Sn, h← {0, 1}2n
c

: f ′r(n)(x, h)||GL(x)}n∈N
and {U`′(n)}n∈N are 1

`′(n)2 -indistinguishable where `′(n) = s(n) + 2nc − α′ log n+ γ′ log n.

• `(·)-density: For all sufficiently large n, the distributions {x ← Sn, h ← {0, 1}2n
c

: f ′r(n)(x, h)} and
U`(n) are 1

`(n)2
-close in statistical distance where `(n) = s(n) + 2nc − α′ log n.

Proof: Recall that given a S-OWF f which is regular over S with a γ′ log n-bit hardcore function GL5, the
construction has the form f ′r(x, h1, h2) = h1||h2||h1(x)||h2(f(x)) where |x| = n, |h1| = |h2| = nc, and
h1 : {0, 1}n → {0, 1}`1(n), h2 : {0, 1}n → {0, 1}`2(n), where c is a constant that does not depend on `1 and
`2 (as long `1(n), `2(n) < n).

The proof in [Gol01, YLW15] does not rely on the input range being {0, 1}n—rather, the only thing
needed to make the proof go through is that `1(n) ≤ r(n) − d log n, and `2(n) ≤ s(n) − r(n) − d log n for
some sufficiently large d—this makes sure that there is enough min-entropy in both the input and the output
to ensure that the extractors h1, h2 work properly.

The function f ′r thus maps n′ = n+ 2nc bits to 2nc + s(n)− 2d log n bits.

We start by observing that every OWF actually is a regular S-OWFs for a sufficiently large S .

Lemma 4.2. Let f be an one way function. There exists an integer function r(·) and a sequence of sets
S = {Sn} such that Sn ⊆ {0, 1}n, |Sn| ≥ 2n

n , and f is a S-OWF with regularity r.

Proof: The following simple claim is the crux of the proof:

Claim 3. For every n ∈ N, there exists an integer rn ∈ [n] such that

Pr[x← {0, 1}n : 2rn−1 ≤ |f−1f(x)| ≤ 2rn ] ≥ 1

n
.

Proof: For all i ∈ [n], let

w(i) = Pr[x← {0, 1}n, 2i−1 ≤ |f−1f(x)| ≤ 2i].

Since for all x, the number of pre-images that map to f(x) must be in the range of [1, 2n], we know that∑n
i=1w(i) = 1. By an averaging argument, there must exists such rn that w(rn) ≥ 1

n .

Let r(n) = rn for every n ∈ N , Sn = {x ∈ {0, 1}n : 2r(n)−1 ≤ |f−1f(x)| ≤ 2r(n)]}; regularity of f
when the input domain is restricted to S follows directly. It only remains to show that f is a S-OWF; this
follows directly from the fact that the set Sn are dense in {0, 1}. More formally, assume for contradiction that
there exists a PPT algorithm A that inverts f with probability ε(n) when the input is sampled in Sn. Since
|Sn| ≥ 2n

n , it follows that A can invert f with probability at least ε(n)/n over uniform distribution, which is
a contradiction (as f is a OWF).

We now show how to construct a weak EP-PRG from OWFs.

Theorem 4.5. Assume that there exist one way functions. Then, for every γ > 1, there exists a weak EP-PRG
g : {0, 1}n′ → {0, 1}n′+γ logn′ .

Proof: By Lemma 4.1 and Lemma 4.2, there exists a sequence of sets S = {Sn} such that Sn ⊆
{0, 1}n, |Sn| ≥ 2n

n , a S-OWF f with regularity r(·), some α′ ≥ 0, some c ≥ 0, and an efficiently computable
sequence of functions {f ′i}i∈N. Additionally, for every γ′ ≥ 0, there exists an efficiently computable function
GL(·). Let s(n) = n− log n (to ensure that s(n) ≤ log |Sn|), and `′(n) = s(n)+2nc−α′ log n+γ′ log n be

5By the Goldreich-Levin Theorem [GL89], we can assume without loss of generality that any (regular) function has such a
hardcore function.
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as in Lemma 4.1. Consider the construction g : {0, 1}logn+n+2nc → {0, 1}`′(n) that takes an input (i, x, h)
where |i| = log n, |x| = n, |h| = 2nc and outputs f ′i(x, h)||GL(x). Let n′ = log n + n + 2nc denote the
input length of g. Let {En′} be a sequence of events such that En′ = {(r(n), x, h) : x ∈ Sn, h ∈ {0, 1}2n

c}.
Note that the two distributions, g(Un′ | En′) and {x ← Sn, h ← {0, 1}2n

c
: f ′r(n)(x, h)||GL(x)}n∈N},

are identically distributed. It follows from Lemma 4.1 that {g(Un′ | En′)}n∈N and {U`′(n)}n∈N are 1
`′(n)2 -

indistinguishable. Thus, g satisfies the pseudorandomness property of a weak EP-PRG.
We further show that the output of g preserves entropy. LetXn be a random variable uniformly distributed

in Sn. By Lemma 4.1, f ′r(n)(Xn,U2nc) is 1
`(n)2

-close to U`(n) in statistical distance where `(n) = s(n) +

2nc − α′ log n. We apply Lemma 2.2 and obtain

H(f ′r(n)(Xn,U2nc)) ≥ `(n)− 2.

Then it follows that

H(f ′r(n)(Xn,U2nc), GL(Xn)) ≥ H(f ′r(n)(Xn,U2nc)) ≥ `(n)− 2.

Notice that g(Un′ | En′) and (f ′r(n)(Xn,U2nc), GL(Xn)) are identical distributions, so on inputs of length n′,
the entropy loss of g is n′ − (`(n) − 2) ≤ (α′ + 3) log n + 2 ≤ (α′ + 4) log n′, thus g satisfies the entropy
preserving property.

The function g maps n′ = log n+n+ 2nc bits to `′(n) bits, and it is thus at least `′(n)−n′ ≥ (γ′−α′−
2) log n -bit expanding. Since n′ ≤ nc+1 for sufficiently large n, if we pick γ′ > (c + 1)γ + α′ + 2, g will
expand its input by at least (γ′ − α′ − 2) log n ≥ (c+ 1)γ log n ≥ γ log n′ bits.

Finally, notice that although g is only defined over some input lengths, by taking “extra” bits in the input
and appending them to the output, g can be transformed to a weak EP-PRG g′ defined over all input lengths:
g′(x′) finds a prefix x of x′ as long as possible such that |x| is of the form n′ = log n + n + 2nc for some
n, rewrites x′ = x||y, and outputs g(x)||y. The entropy preserving and the psuedorandomness property of g′

follows directly; finally, note that if |x′| is sufficiently large, it holds that nc+1 ≥ |x′|, and thus by the same
argument as above, g′ will also expand its input by at least γ log |x′| bits.
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