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This dissertation discusses the results of three-dimensional ground-penetrating 

radar (GPR) data and magnetometry data conducted at the archaeological site of Los 

Naranjos, Honduras during the summer of 2003 and spring of 2007.  The goals of 

these surveys were to augment limited archaeological excavations of a joint Cornell 

University – University of California, Berkeley field program and to non-invasively 

image the subsurface in three dimensions to identify potential archaeological and 

geological features that may relate to specific occupations of the site.  Non-invasive 

geophysical methods are particularly attractive at sites like Los Naranjos, as the 

Instituto Hondureño de Antropología e Historia (IHAH) designated a portion of the 

site as the Parque Eco-Arqueológico Los Naranjos to be preserved and protected from 

future extensive excavations.  

Closely-spaced GPR profiles that resulted in three-dimensional grids of data, 

individual GPR transects, and grids of magnetometry data were acquired within a 

region of Los Naranjos approximately 1 hectare in size, adjacent to Structure IV, a 

large earthen platform mound located within the Principal Group.  Extensive velocity 

analyses performed on the six common mid-point (CMP) profiles collected at Los 

Naranjos provided accurate time to depth conversions of GPR data.  Three-

dimensional migration corrected GPR reflection profiles so that they accurately 

represent the subsurface and increased the resolution of features. 



 

Ground-penetrating radar delineated Quaternary stratigraphy at depths ranging 

from 2 to 6 meters in almost all areas of the site and proved effective at identifying 

buried geological features such as basins, complex layering, strata onlaps, 

unconformities, and possible volcanic marker horizons and faults.  Archaeological 

features such as a presumed buried structure and potential buried sculpture were also 

imaged by GPR.  The GPR results have also been useful at distinguishing between 

natural and anthropogenic features exposed at the site as well as probing the interior of 

a portion of Structure IV.  Correlation with magnetometry data helped distinguish 

between different lithologic materials and artifact compositions.  The GPR results 

obtained at Los Naranjos demonstrate considerable potential for this technology in 

delineating both geological and anthropogenic structures.  Most importantly, GPR and 

magnetometry have proven especially effective for probing this protected site in a 

non-invasive and non-destructive manner. 
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INTRODUCTION 

 

This dissertation developed out of an archaeological and geophysical field 

program at the site of Los Naranjos, Honduras (Figure 1) during the summer of 2003 

that was co-sponsored by Cornell University and the University of California, 

Berkeley.  Ground-penetrating radar (GPR) and magnetometry data were acquired in 

the vicinity of the excavations during this project (Figure 2).  Beyond the obvious 

pedagogical objectives, an initial goal of the geophysical data collection was to test the 

efficacy of these techniques at the site, as they represented some of the first uses of 

geophysical methods in Honduras.  It was also hoped that these datasets could provide 

useful information to help interpret partially excavated features or to pinpoint features 

of interest that could be targeted for excavation in the future.  Additional Cornell – 

Berkeley archaeological excavations during the summer of 2004 (Figure 2) focused on 

locating Early Formative occupations and were not aimed at testing specific 

hypotheses about the geophysical data.   

Analysis of the 2003 GPR data indicated an area of limited penetration to the 

west of Structure IV where both Early and Late Formative occupations were 

encountered during excavations.  Additional, higher-frequency GPR data were then 

collected during the spring of 2007 (Figure 2) in hopes of providing higher resolution 

images of at least some of these occupations.  Additional magnetometry data, with a 

closer transect spacing, were also acquired during this field season (Figure 2).  All of 

the archaeological and geophysical data discussed in this dissertation were collected in 

an area approximately 1 hectare in size immediately surrounding Structure IV (Figure 

2).  

 Although the entire suite of geophysical data includes GPR and magnetometry 

data, the main focus of this dissertation is on the GPR data.  This is partially an artifact 
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of my personal bias, but it is also related to the usefulness of GPR over other 

geophysical techniques.  Cross-sectional views, which are representations of 

subsurface stratigraphy, provide information that cannot be obtained from other 

methods.    

 

 
 
Figure 1: Location of Los Naranjos, Honduras.  
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Figure 2: Location of all geophysical grids and archaeological excavations at Los 
Naranjos.  All data were acquired in the immediate vicinity of Structure IV, a large 
earthen platform mound. 

 

This dissertation is organized into six chapters that represent individual papers, 

and all chapters deal with some aspect of the geophysical data collected at Los 

Naranjos.  Chapters 2, 3, and 4 are methodological, whereas Chapters 1, 5, and 6 focus 
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on the archaeological and geological interpretations of the data.  Preliminary results of 

all of these chapters have been presented at national and international geological and 

archaeological conferences since the spring of 2005.  These conferences include the 

Society of Exploration Geophysicists / American Geophysical Union Joint Meeting 

(Tchakirides et al., 2005), the 11th International Conference on Ground-penetrating 

Radar (Tchakirides et al., 2006a), the Symposium on the Application of Geophysics to 

Engineering and Environmental Problems Annual Meeting (Tchakirides et al., 2006b), 

the American Geophysical Union Annual Meeting (Tchakirides et al., 2006c), the 

Society for American Archaeology Annual Meetings (Tchakirides et al., 2007; 

Tchakirides and Henderson, 2008), the Geological Society of America Annual 

Meeting (Tchakirides and Henderson, 2007), and the Three-dimensional Archaeology 

and Cultural Heritage Management Workshop in Honduras (Tchakirides and Brown, 

2009). 

 

Chapter 1 

 In Chapter 1, I present a brief introduction to some of the earliest 

interpretations of the geophysical data collected at Los Naranjos in 2003.  Many of the 

original interpretations of these data are still valid, but my data processing and image-

making abilities have obviously improved with time.  Chapter 1 was published 

originally in the Proceedings of the Symposium on the Application of Geophysics to 

Engineering and Environmental Problems, April 2-6, 2006, Seattle, WA, p. 1400-

1429. 

 

Chapter 2 

Chapter 2 represents an early attempt to discriminate between the numerous 

diffraction hyperbolae generated within GPR Grid 0 at Los Naranjos.  Grid 0, located 
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just to the north of Structure IV (Figure 2), contains more than 400 individual 

diffraction hyperbolae in unmigrated GPR data.  Initially, the coordinates of each were 

plotted in three-dimensions, but no specific features of interest were delineated by 

their spatial distribution.  Therefore, we attempted to constrain the dimensions of the 

buried diffracting objects, and thus help discriminate natural from anthropogenic 

features, by analyzing variations in apparent velocity (from diffraction curvature) and 

peak amplitudes.  The results indicated that amplitudes were too variable to be 

explained by geometry alone and must be related to different lithologies. 

The analyses in this chapter were somewhat limited because we were dealing 

only with unmigrated data.  It was entirely possible, therefore, that hyperbolae 

generated on multiple adjacent cross-sectional views stemmed only from one feature.  

From this study, it became apparent that something more sophisticated was needed to 

delineate specific features of interest, namely three-dimensional migration.  In 2006, 

when this chapter was written, it was difficult for us to migrate GPR data using our 

seismic data processing programs, and our GPR programs did not yet include this as a 

viable option.  Three-dimensional migration of the Grid 0 GPR data is addressed in 

greater detail in Chapter 4.  Chapter 2 was published originally in the Proceedings of 

the 11th International Conference on Ground-Penetrating Radar, June 19-22, 2006, 

Columbus, Ohio, USA, p. 1-8. 

 

Chapter 3 

Common mid-point (CMP) data obtained using ground-penetrating radar 

provide in situ velocity estimates that can be used to discriminate lithology as well as 

convert images from time into depth domain.  Initial analyses of the six CMP data 

from Los Naranjos produced inconsistent velocity estimates when calculated using 

different curve-fitting procedures (visual best-fit line versus formal regression 
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analyses).  More quantitative analyses were carried out to evaluate the effect of 

reflection picking criteria as applied to the direct air and ground waves and reflections.  

We found that routine variations in velocity estimates translate into significant 

uncertainties in both interval velocity and depth estimates.  These results indicate that 

a consistent picking criteria should be applied before velocities are used to identify 

either lithology or depth variations within a given survey grid.  Chapter 3 is ready to 

be submitted to Geophysics. 

 

Chapter 4  

Migration has been a standard processing technique in the seismic industry 

since it was used to process the first seismic data collected in the early 1920s (Bednar, 

2005; Neal, 2004; Sheriff and Geldart, 1995), but its use has not been as widespread in 

GPR projects (Hogan, 1988).  Three-dimensional migration has proven critical to the 

interpretation of GPR results from Los Naranjos.  In GPR Grid 0, numerous 

diffraction hyperbolae dominate the GPR cross-sections, ranging in depth from about 

0.30 to 1.20 meters.  Although these diffractions vary in amplitude, discriminating 

among them on the unmigrated imagery is problematic at best, as was shown in 

Chapter 2.  Although 2D migration suggests differences in diffractor shape, only 3D 

migration provides the necessary detail to identify anomalous features.   

Fundamentally, the goals of migration are to correct GPR reflection data so 

that they accurately represent the subsurface (Neal, 2004) and to increase the 

resolution of features in reflection profiles (Hogan, 1988).  There are many techniques 

for implementing migration. Here we use a form of Kirchhoff summation, in which 

energy is summed along an appropriate diffraction hyperbola, thus focusing reflected 

energy at its apex (Hogan, 1988; Schneider, 1978).  Diffractions collapse back to their 

respective point sources.  We focus mainly on the use of migration in this paper as it is 
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applied to point source features because Grid 0 provides an excellent test case in 

which to demonstrate the effectiveness of collapsing the numerous diffraction 

hyperbolae.  The most distinctive diffractor on the 3D migrated imagery corresponds 

with a prominent magnetic anomaly.  The dimensions of this diffractor, as deduced 

from the 3D imagery, and its magnetic properties suggest that this feature may 

correspond to buried sculpture with a basaltic composition, rather than detrital rocks 

(limestone) or building blocks (sandstone) shed from nearby structures.  We suggest 

that this feature marks a previously unrecognized sculpture similar to the distinctive 

Olmec-style columns and statuary that have been recovered at the surface of Los 

Naranjos.  Chapter 4 is in preparation for Archaeological Prospection. 

 

Chapter 5 

Chapters 5 and 6 are intimately related, with Chapter 5 providing only a partial 

discussion of the 2003 and 2007 geophysical data collected at Los Naranjos.  Chapter 

5 developed into a separate chapter because of an invitation to present research on the 

use of three-dimensional methods at archaeological sites in Honduras.  This 

international workshop, Three-dimensional Archaeology and Cultural Heritage 

Management in Honduras, was held at the Visitor’s Center at the Copán 

Archaeological Park, in Copán, Honduras in April 2009 and was sponsored by the 

Instituto Hondureño de Antropología e Historia and the University of New Mexico.   

The paper I presented was the only one to focus on geophysical methods and 

the only one to discuss 3D subsurface datasets.  Since the original audience for this 

paper had no previous background in the methods or theory of geophysical techniques, 

the paper is more of an overview and is less technical than some of the other chapters 

in this dissertation.  The main goals of this paper were to introduce the techniques of 

GPR and magnetometry, discuss the principal results, and provide an example of what 
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can be achieved through the use of non-invasive geophysical methods.  This chapter 

was submitted to the Instituto Hondureño de Antropología e Historia for publication in 

a special edition of Yaxkin in December 2009.  Due to coup-related activities since the 

spring of 2009, the exact date of publication is now unknown.   

 

Chapter 6 

Chapter 6 presents a comprehensive analysis of all aspects of the geophysical 

research at Los Naranjos, including both the 2003 and 2007 GPR and magnetometry 

data.  All data have been processed and analyzed, making it possible to draw more 

extensive conclusions about the archeological significance.  Key features revealed by 

the GPR data include a previously unrecognized buried structure, small depocenters 

(basins), buried sculpture (possibly Olmec in nature?), a stone-lined path, faults, and a 

possible volcanic marker horizon.  The GPR results have also been useful at probing 

the interior of Structure IV as well as determining a geological origin for an exposed 

rock “wall” within the plaza and an anthropogenic origin for a large basalt boulder 

known as the “Volkswagen.”  Correlation with magnetometry data helped identify a 

basaltic lithology for the buried sculpture and a highly magnetic material for the 

buried structure.  The results obtained at Los Naranjos show considerable potential for 

this technology in defining geological setting and mapping buried anthropogenic 

structures.  Most importantly, these geophysical methods have proven especially 

effective for probing this protected site in a non-invasive and non-destructive manner.  

Chapter 6 is in preparation for Archaeological Prospection. 
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CHAPTER 1 

INTEGRATION, CORRELATION, AND INTERPRETATION OF GEOPHYSICAL 

AND ARCHAEOLOGICAL DATA AT LOS NARANJOS, HONDURAS∗  

 

Abstract 

During the summer of 2003, ground-penetrating radar (GPR) and 

magnetometry surveys were conducted at the Maya archaeological site of Los 

Naranjos on the shore of Lake Yojoa in Central Honduras.  Los Naranjos was 

occupied from the Early Formative to the Early Postclassic Periods and is of particular 

interest as Olmec-style artifacts have been recovered in situ at the site.  GPR surveys 

were collected with 50, 100, 200, and 250 MHz antennae in both 2-D grids and linear 

profiles.  Results of GPR, magnetometry, and resistivity surveys are being integrated 

with archaeological data to improve our understanding of the spatial relationships of 

partially excavated features as well as to target areas for future excavation.  The 

surveys covered both apparent archeological and natural features, with GPR 

penetration in excess of 5 meters at 100 MHz.  GPR proved especially effective in 

both delineating Quaternary stratigraphy and mapping localized buried features.  

Correlation between magnetic and resistivity anomalies and GPR-imaged features is 

highly variable, suggesting that a range of lithologies and artifact compositions are 

being imaged.  Both types of data are essential guides for future archaeological 

excavations, with calibration boreholes and excavation test units planned for 2006. 

 

                                                 
∗ Published originally as: Tchakirides, T.F., Brown, L.D., Henderson, J.S.. and Blaisdell-Sloan, K. 
(2006). Integration, Correlation, and Interpretation of Geophysical and Archaeological Data at Los 
Naranjos, Honduras.  In Proceedings of the Symposium on the Application of Geophysics to 
Engineering and Environmental Problems: April 2-6, 2006, Seattle, WA, p. 1400-1429. 
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Introduction  

Over the past few decades, geophysical methods have been integrated into 

traditional archaeological endeavors with a great deal of success, covering larger areas 

and penetrating deeper than many traditional excavations permit due to time and 

monetary constraints.  By systematically collecting three-dimensional subsurface data 

over key portions of a site, calibrated by targeted excavations to establish both 

stratigraphic control and identification of likely artifacts, it is possible to reconstruct 

the topographic and geographic environment at different times of occupation and to 

map modifications to that configuration over time.  Ground-penetrating radar (GPR) 

and magnetometry are two of the most widely used geophysical methods in 

archaeology (Kvamme, 2003).  

Geophysical data were acquired at the early Maya site of Los Naranjos, 

Honduras during the summer of 2003.  This project was undertaken in conjunction 

with an archaeological field school that was co-sponsored by the Department of 

Anthropology/Archaeology Program at Cornell University and the Department of 

Anthropology at the University of California, Berkeley.  The excavations were led by 

Prof. Rosemary Joyce (Berkeley) and Prof. John Henderson (Cornell).  During this 

fieldwork, GPR, magnetometry, and resistivity were integrated into archaeological 

endeavors for the purpose of obtaining three-dimensional coverage of the subsurface 

while excavating in areas dictated by preliminary analysis of the GPR data.  

Although geophysical methods have proven to be effective in supporting 

archaeology in numerous locations, their application to studies in the Maya world has 

been limited to date.  Some successful examples include reconstructing the topography 

of Cerén, El Salvador (Conyers, 1995), mapping Maya plazas at Ma’ax Na, Belize 

(Aitken and Stewart, 2004), and surveying several sites in the Yucatan region (Sauck, 
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1998), but no attempts have been made to apply these methodologies at Early 

Formative sites.  

 

Study Site  

Los Naranjos, Honduras (Figure 3) is situated on the current shoreline of Lake 

Yojoa, in the present-day Parque Arqueológico – Ecológico Los Naranjos, which is 

operated by the Instituto Hondureño de Antropología e Historia.  This site is one of the 

earliest Maya settlements in Mesoamerica (Joyce and Henderson, 2002), with 

continuous occupation dating from the Early Formative to the Early Postclassic (1600 

B.C. – A.D. 1200) (Joyce, 2004a).  Numerous earthen platform mounds (Figure 4a), 

which are the “largest pre-Columbian structures in Honduras” (Joyce, 2004c, p. 10), 

comprise the site, some measuring up to 75 x 50 meters wide x 16 meters tall.  Many 

of the platform mounds are clustered into groups, the largest of which, the Principal 

Group, has been the focus of previous excavations.  These excavations have 

uncovered elaborate burials, complete with jade ornaments and Olmec-style artifacts 

located in situ at depth (Baudez and Becquelin, 1973; Joyce and Henderson, 2002).  

The size and extent of the early platforms, the early evidence of ranking represented 

by the burials, and the presence of Olmec-style artifacts from the deepest levels 

drastically differ from most other early Maya sites.  Some scholars have suggested the 

platform mounds and associated ditches served as fortifications against enemies 

(Webster, 1976), but their significance has not yet been determined.  Los Naranjos, 

therefore, offers an especially attractive opportunity to integrate geophysical methods 

with geological and archaeological studies to address key issues related to the 

emergence and evolution of social, economic, and political institutions that 

characterize Maya civilization.  
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Figure 3: Location of Los Naranjos, Honduras.  Note also the distance to Veracruz, 
Mexico in the “Olmec Heartland.” 

 

 
 
Figure 4: Cultural features at Los Naranjos.  (a) Stone ramp on west side of platform 
mound (Structure IV); (b) anthropomorphic Olmec-style statuary; (c) Plaza NW of 
Structure IV where additional statuary may be located.  Much of the geophysical data 
discussed here were collected in this area. 

 

In addition to the platform mounds, several basalt sculptures in Olmec style 

have been located dotting the landscape (Stone, 1934, p. 126) (Figure 4b).  The 

original locations of these sculptures remain uncertain, but several were found in the 

vicinity of the Principal Group.  Very little research has been undertaken on these 

figures, but since they are located in open spaces adjacent to pyramid mounds (Figure 

4c), they are likely public monuments or displays.  At the archaeological site of La 
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Venta, Mexico, Olmec sculptures are located in the open areas between mounds and 

are likely images of political leaders placed in relation to the platform mounds 

(Drucker et al., 1959; Grove, 1999).  They may have served a similar function at Los 

Naranjos. Five figures have been located to date; three are anthropomorphic, one has 

features of “transformation,” combining representations of fleshed and skeletal states, 

and one is a hybrid, having features of serpents, jaguars, and sharks.  

The Olmec culture had a substantial impact on most of the later Mesoamerican 

civilizations, but large-scale monumental construction and sculptures are concentrated 

in the “Olmec Heartland” on the Gulf Coast of Mexico, near Veracruz (Figure 3).  Los 

Naranjos and the nearby site of Puerto Escondido are the easternmost communities in 

which Olmec materials have been found, and the Olmec sculptures at Los Naranjos 

are also one of the largest clusters of Olmec sculpture outside of the Gulf Coast.  

Understanding Olmec occupation at Los Naranjos can potentially resolve the critical 

issue of the relationships among the Gulf Coast and the rest of Olmec Mesoamerica.  

 

Geophysical Data Collection  

During the summer of 2003, Prof. Larry Brown (Cornell) directed the 

collection of GPR, GPS, and resistivity data (Figure 5), during the joint Berkeley-

Cornell field school.  In addition, Kira Blaisdell-Sloan supervised the magnetometry 

surveys over much the same area.  In addition to their pedagogic value, these surveys 

were also designed to test the effectiveness of these methods in delineating 

archaeologically significant features at the site.  Results of the GPR surveys were 

especially encouraging, with penetration often in excess of 5 meters at 100 MHz 

(Lisman et al., 2005; Tchakirides et al., 2005).  GPR data were collected with a 

Noggin 250 cart-mounted system (provided courtesy of GeoRad Surveys, Inc.), which 

is ideal for 3D surveys, and Cornell’s pulseEKKO 100 bistatic system (50, 100 and 
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250 MHz antennae), which provided deeper penetration profiles, additional 3D 

coverage, and high-quality common mid-point (CMP) data for in situ radar velocity 

estimation, which are essential for accurate depth estimation.  Magnetometry data 

were collected using a Geometrics G-858 magnetometer, which is owned by the 

University of California.  A limited amount of resistivity data was collected with 

Cornell’s Bison Earth Resistivity Meter, Model 2350A; those results proved too 

insubstantial to be of use in this study, and therefore will not be discussed further.  

 

 
 
Figure 5:  Site map of Los Naranjos and 2003 geophysical data collection.  All 
geophysical data have been collected in the immediate vicinity of Structure IV.  (a) 
GPR data collection with the pulseEKKO 100; (b) GPR data collection with the 
Noggin 250; (c) Magnetometry data collection with the Geometrics G-858.  Numbers 
within grids refer to GPR grids. 
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Ground-penetrating Radar  

GPR is a shallow geophysical method that transmits electromagnetic energy 

into the ground and receives reflections from subsurface features or interfaces back at 

the surface (Conyers, 2004).  In this study, GPR data were acquired in linear profiles 

and 2-dimensional grids, using both the pulseEKKO and Noggin systems.  The 

Noggin system failed due to heat problems during the surveying of Grid 6; thus all 

subsequent work was done with the pulseEKKO 100.  All archaeological test units 

(Op 1 – Op 4) were surveyed with GPR prior to excavation (Figure 5) so as to target 

specific areas to excavate and to correlate all archaeological features with stratigraphic 

information in the GPR profiles.  For grids collected with the pulseEKKO system 

(Grids 9, 10, 11, and 12), the transmitting and receiving antennae were spaced 1 meter 

apart, data were collected every 20 centimeters along a transect, and individual 

transects within each grid were spaced 50 centimeters apart.  Transects were also 

spaced 50 centimeters apart within each Noggin grid (Grids 0, 2, 3, 4, 5, and 6).  All 

GPR data were processed using the Sensors and Software suite of processing 

programs at Cornell.  

 

GPR Grid 0  

Grid 0, located immediately to the north of the base of Structure IV (Figure 5), 

with GPR penetration to a depth of about 2 meters at 250 MHz, provides an excellent 

example of the variety of subsurface features and structures seen at Los Naranjos.  

Diffraction hyperbolae are common beneath this grid (Figure 6) and range in depth 

from about 0.3 to 1.2 meters.  The sources of these hyperbolae are unclear at the 

present time, but several possibilities come to mind.  Many of them are likely due to 

buried rocks or perhaps building detritus from the construction or subsequent 

alteration of Structure IV.  Archaeological excavations within this grid (Op 1) 
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encountered evidence of construction activity including packed surfaces and building 

debris (numerous stones and fragments of wattle and daub).  

 

 
 
Figure 6: Examples of GPR and magnetometry data from Grid 0.  (Top) 
Magnetometry data from Grid 0, located just north of Structure IV.  On the right are 
the magnetometry results along the NS profile indicated by the dashed line.  Numbers 
at the top of the profile are in units of nanoTesla.  (Middle) Horizontal depth slice of 
GPR data from Grid 0, representing a depth of 1.2 to 1.3 meters.  (Bottom) GPR 
section through Grid 0 along the EW dashed line, showing numerous diffractions that 
might be of archaeological significance.  Also noted are the reflections corresponding 
to the amplitude anomalies (bright spots) in the horizontal slice map. 
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However, given the Olmec-style sculptures that have been previously found at 

Los Naranjos, it is certainly plausible that some of these hyperbolic reflections may 

mark such statuary still in the ground.  As the area of Grid 0 is also located between 

Structures IV and III, it is possible that this area was used as a public space, where 

monumental sculptures were displayed.  

GPR surveys in Grid 0 also delineated a domed bright spot located at about the 

77.5 meter mark along the x-axis (Figure 6).  At first, this high-amplitude anomaly 

appeared to be a large buried mound, either artificial or natural.  On closer inspection, 

however, it appears that it is a natural geological feature, as it is part of the intact 

stratigraphy (Figure 6 bottom).  If it is natural, it is intriguing that it is so strong in 

several of the cross-sectional views.  Also of interest in this grid is a high-amplitude 

anomaly located at about 67.5 meters along the x-axis (Figure 6).  In map view, this 

reflection is strongest in the depth slice from 1.2 – 1.3 meters.  This small circular 

feature is significant in that it might represent a buried sculpture or monument, 

possibly Olmec in nature.  Future research planned for 2006 is aimed at determining 

the genesis of these features.  

 

Structure IV  

GPR profiles across the flank of Structure IV, one of the main pyramid 

mounds within the Principal Group, raise equally interesting questions.  As shown in 

Figure 7, the strong reflectivity from stratigraphy at the northern base of the structure 

is abruptly truncated as the survey moves onto the pyramid mound.  It appears that 

conductive materials may have been used as fill, thereby preventing penetration of the 

GPR signal.  Clay coating on the face of the pyramid mound would also produce a 

similar shielding effect, which might be characteristic of the pyramid mounds in 

general.  Geophysical and archaeological surveys were specifically planned at the 
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perimeter of Structure IV, rather than on top of it, due to the complex nature of its 

stratigraphy, so no subsurface information exists at present.  In any case, the 

experience indicates that even the lack of data is an important clue to construction 

technique/delineation of space.  In spite of the more limited penetration, shallow 

structural variations are indicated on the top of the pyramid, though these may arise 

from the backfill of previous archaeological excavations conducted by Baudez and 

Becquelin in the 1960s.  

 

 
 
Figure 7: GPR cross-sectional composite view across Structure IV.  Note the dramatic 
shielding effect on the pyramid itself and the high-frequency arcuate events below 2.5 
meters on the pyramid.  The high-frequency arcuate events below 2.5 meters on the 
pyramid top and flank are interpreted as backscatter (clutter) from the vegetation 
canopy.  

 

GPR Grids 2, 3, and 4  

Although the GPR method was successful at penetrating to depths in excess of 

5 meters at several locations throughout the site, several of the grids contained 

materials exhibiting much poorer penetration, presumably due to more conductive 

materials (Figure 8).  Data acquired in GPR Grids 2 and 3 (Figure 5), for example, 

show penetration to depths of less than 0.5 meters, and few features can be delineated.  

The lack of penetration within these grids was disappointing, as they were planned to 
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correlate directly with the archaeological excavations at Op 2 and Op 4 that were

located within them.  Subsequent archaeological excavations at Op 4 during the 

summer of 2003 unearthed thick lenses of uniform yellow clay, likely eroded form

west facing of Structure IV, and deeply buried burned clay floors associated with 

Early Formative occupa
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Figure 8: Cross-sectional vi
Subsequent excavations indica
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rids 10-12  

GPR Grids 10 – 12 were established in the main courtyard of the site, to the 

north/northwest of Structure IV (Figure 5).  Data collected in this area are dominated 

by a SW to NE trending antiformal structure, with well-defined onlap of shallow s

on the NW flank, and indications of fault control on the SE flank (Figure 9).  The 

antiform suggests a possible natural causeway between two of the major monume

structures at Los Naranjos.  A key conclusion from surveys in this area was tha

previous identifications of natural versus anthropogenic structures were likely 

erroneous.  A feature mapped as a “wall” by previous surface studies seems to be part 
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of a natural ridge of basement material.  Likewise a large block (“the Volkswagen”) o

volcanic rock, originally thought to be a simple outcrop, appears to be allochthonous 

given the undisrupted nature of adjacent stratigraphy on a GPR profile.  Whether this

large block was emplaced naturally by 

f 

 

a landslide or flooding or was transported by 

habitants remains to be determined.  
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grids to the west of Structure IV.  A
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tometry  

During the summer of 2003, more than 50 grids of magnetometry data were 

collected (Figure 5 and Figure 10).  Almost all of the areas that were surveyed with 

GPR were also then surveyed with magnetometry to allow for direct correlation of the 

two data sets.  For each grid, transects were spaced 1 meter apart and data points we

collected every 2 meters along each transect.  Data were processed usin

e and were then imported into Surfer and ArcGIS for analysis.  

To take advantage of the large areal coverage of the magnetometry grids, all 

data were plotted on the same map to determine how the values ranged throughout the

site.  In order to do this, all data were imported into ArcGIS, and the color scales for 
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each grid were first normalized so that all grids were plotted to the same scale.  Values 

between the grids ranged more than 7,500 nanoTesla, so slight variations within m

of the grids were obliterated, as they all fell within the range of one of the color

within the scheme. Whereas a broad scale view of the site is possible with this 

mapping scheme, it is still necessary to refer to each corresponding subset to recognize 

smaller scale variation

any 

s 

s within each grid and to compare them to the corresponding 

GPR data (Figure 6).  

 

 

za.  
 

hat is 
also visible in the magnetometry data.  The SE to NW trend of higher magnetic 
amplitudes in the magnetometry data has not yet been noted in the GPR data. 

 
Figure 10: Correlation between magnetometry and GPR data from within the pla
(Left) Magnetometry map of Los Naranjos, showing some of the magnetometry grids
to the west of Structure IV.  Black lines indicate outlines of GPR grids.  (Right) 
Corresponding GPR data from Grids 11 and 12 show the antiformal structure t
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At a larger scale, however, it is possible to see that the SW to NE antiformal 

structure seen in GPR Grids 11 and 12 is also exhibited in the magnetometry grids th

correspond to the same areas (

at 

10).  In the magnetometry data, a general SE to 

W trend to the data below GPR Grids 11 and 12 is also noticeable.  This trend has 

 data.  

 

f the 

cating 

 

d 

h-

orrelation between these datasets suggests the anomaly is magnetic in nature, 

ther volcanic rock (detritus) or sculpture from volcanic material.  

 

search 

Figure 

N

not yet been noted in the GPR

Correlation with GPR Data  

The magnetometry data contain strong anomalies associated with some o

buried features that are evident on the GPR sections, which we interpret as indi

the presence of volcanic materials, although whether natural (rocks) or formed 

(sculpture?) has yet to be determined (Figure 10).  For several of the GPR and 

magnetometry grids, there was excellent correlation between the two datasets.  

Compare, for example, the magnetometry plot from Grid 0 with the corresponding

GPR depth slice and section (Figure 6).  Note that the strong circular anomaly locate

about 67 meters along the x-axis is similar in appearance and location to the hig

amplitude reflection detected in the same location in the GPR horizontal slice.  The 

c

consistent with ei

Conclusions  

GPR at Los Naranjos was successful at detailing stratigraphy to depths up to 5 

meters.  Pronounced variations in penetration, numerous diffractions, and material 

suspected to be clay facings all provide clues that may correlate with habitation areas 

and construction activity at the site.  Correlation of the GPR and magnetometry data 

helps constrain the likely composition of buried features.  The focus of future re

is to use geophysics, particularly GPR and magnetometry, to reconstruct the 
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text of Los Naranjos.  These 

surveys should help determine if a shift in the environment and/or ecology in the Lake 

ettlement of Los Naranjos.  

n and 

 

s. 

, 

os 

d expertise during the 

field work.  Joel Haenlein directed the collection of much of the Noggin data.  

Photographs are by Dr. John Henderson and Dr. Larry Brown. 

topographic and geographic environment at the time of occupation and to map 

modifications to that configuration over time.  In addition, we plan to collect 

complementary geophysical data near and on Lake Yojoa and associated meander 

systems to build a broader view of the geological con

Yojoa region led to the s
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CHAPTER 2 

ESTIMATION OF DIFFRACTOR MORPHOLOGY FROM ANALYSIS OF 

AMPLITUDE AND TRAVEL TIME CURVATURE AT THE MAYA 

ARCHAEOLOGICAL SITE OF LOS NARANJOS, HONDURAS∗ 

 

Abstract 

During the summer of 2003, ground-penetrating radar (GPR) data were 

acquired at the site of Los Naranjos on the shore of Lake Yojoa in Central Honduras.  

These surveys were undertaken in conjunction with magnetometry and limited 

archaeological excavations to understand this early Maya site.  Los Naranjos was 

occupied from the Early Formative to the Early Postclassic Periods and is of particular 

interest as Olmec-style artifacts have been recovered in situ near one of the numerous 

large earthen platform mounds that comprise the site.  GPR successfully penetrated to 

depths in excess of 5 meters at 100 MHz.  Both natural and anthropogenic features 

were targeted by a number of 2D survey grids.  One GPR grid located immediately 

north of the largest platform mound was characterized by numerous (more than 400) 

diffractions imaged at depths between 0.3 to 1.2 meters.  Several of these correlate 

with pronounced magnetic anomalies within the same grid.  In an attempt to constrain 

the dimensions of the buried diffracting objects, and thus help discriminate natural 

from anthropogenic features, variations in apparent velocity (from diffraction 

curvature) and peak amplitudes were analyzed.  The observed variations do not follow 

the systematics expected if diffractor size were the dominant control on both velocity 

                                                 
∗ Published originally as: Tchakirides, T.F., Brown, L.D., & Henderson, J.S. (2006). Estimation of 
Diffractor Morphology from Analysis of Amplitude and Travel Time Curvature at the Maya 
Archaeological Site of Los Naranjos, Honduras., Proceedings of the 11th International Conference on 
Ground Penetrating Radar: June 19-22, Columbus, Ohio, p. 1-8. 
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and reflectivity.  Proper evaluation of the utility of these measures awaits calibration 

by excavation scheduled for the future.    

 

Introduction 

The integration of geophysical methods into traditional archaeological 

endeavors over the past few decades has been met with great success, especially when 

employed from the outset of the survey and used in direct association with 

archaeological excavations.  In this way, results of the geophysical surveys can be 

used to target specific areas to excavate, and the archaeological data can be used for 

calibration by establishing stratigraphic control and identification of likely artifacts.  

Ground-penetrating radar and magnetometry are two of the most widely used 

geophysical methods in archaeology (Kvamme, 2003), and both were used in this 

study.   

During the summer of 2003, GPR and magnetometry data were acquired at the 

early Maya site of Los Naranjos, Honduras, as part of an archaeological field school 

that was co-sponsored by the Department of Anthropology at Cornell University and 

the Department of Anthropology at the University of California, Berkeley.  Professors 

Rosemary Joyce (Berkeley) and John Henderson (Cornell) supervised the excavations, 

and Professor Larry Brown (Cornell) and Kira Blaisdell-Sloan (Berkeley) directed the 

collection of the GPR and magnetometry data, respectively.  This geophysical work 

was carried out in advance of archaeological excavations to obtain detailed three-

dimensional coverage of the subsurface that could be used to target specific areas of 

the site to excavate. 

GPR data from a grid located immediately north of one of the largest platform 

mounds at the site (Structure IV) is dominated by diffraction hyperbolae that are of 

particular archaeological interest.  Due to time constraints during fieldwork, most of 
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these diffractions could not be directly identified.  Excavations in that area, however, 

did unearth evidence of building debris that could explain at least some of the 

diffractions.  Since it is unlikely that all diffractions will be identified in future 

excavations, one objective of this analysis was to tease out constraints on the 

morphology (size) of these objects from analysis of diffraction amplitudes and travel 

time curvature.    

 

Study Site 

Los Naranjos, Honduras (Figure 11) is situated on the current shoreline of 

Lake Yojoa in Central Honduras, within the present-day Parque Arqueológico – 

Ecológico Los Naranjos (Figure 12).  The Instituto Hondureño de Antropología e 

Historia operates the site, which represents one of the earliest Maya settlements in 

Mesoamerica (Joyce and Henderson, 2002), with continuous occupation dating from 

the Early Formative to the Early Postclassic (1600 B.C. – A.D. 1200) (Joyce, 2004a).  

Numerous earthen platform mounds, which are the “largest pre-Columbian structures 

in Honduras” (Joyce, 2004c) comprise the site, some measuring up to 75 x 50 meters 

wide x 16 meters tall.   

Many of the platform mounds are clustered into groups, the largest of which, 

the Principal Group, has been the focus of previous excavations.  These excavations 

have uncovered elaborate burials, complete with jade ornaments and Olmec-style 

artifacts located in situ at depth (Baudez and Becquelin, 1973; Joyce and Henderson, 

2002).  The size and extent of the early platforms, the early evidence of ranking 

represented by the burials, and the presence of Olmec-style artifacts from the deepest 

levels drastically differ from most other early Maya sites.  Some scholars have 

suggested the platform mounds and associated ditches served as fortifications against 

enemies (Webster, 1976), but their significance has not yet been determined.  Los 
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Naranjos, therefore, offers an especially attractive opportunity to integrate geophysical 

methods with geological and archaeological studies to address key issues related to the 

emergence and evolution of social, economic, and political institutions that 

characterize Maya civilization.   

 

 
 
Figure 11: Location of Los Naranjos, Honduras.  Note the distance to Veracruz, 
Mexico in the “Olmec Heartland.” 

 

In addition to the platform mounds, several basalt sculptures in Olmec style 

have been located dotting the landscape (Stone, 1934) (Figure 13).  The original 

locations of these sculptures remain uncertain, but several were found in the vicinity 

of the Principal Group.  Very little research has been undertaken on these figures, but 

since they are located in open spaces adjacent to platform mounds, they are likely 
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public monuments or displays.  At the archaeological site of La Venta, Mexico, Olmec 

sculptures are located in the open areas between mounds and are likely images of 

political leaders placed in relation to the platform mounds (Grove, 1999; Stone, 1934).  

They may have served a similar function at Los Naranjos.  Five figures have been 

located to date; three are anthropomorphic, one has features of “transformation,” 

combining representations of fleshed and skeletal states, and one is a hybrid, having 

features of serpents, jaguars, and sharks.   

 

 
 
Figure 12: Location of Los Naranjos in relation to Lake Yojoa. 

 

The Olmec culture had a substantial impact on most of the later Mesoamerican 

civilizations, but large-scale monumental construction and sculptures are concentrated 

in the “Olmec Heartland” on the Gulf Coast of Mexico, near Veracruz (Figure 11).  
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Los Naranjos and the nearby site of Puerto Escondido are the easternmost 

communities in which Olmec materials have been found, and the Olmec sculptures at 

Los Naranjos are also one of the largest clusters of Olmec sculpture outside of the 

Gulf Coast.  Understanding Olmec occupation at Los Naranjos can potentially resolve 

the critical issue of the relationships among the Gulf Coast and the rest of Olmec 

Mesoamerica. 

 

 
 
Figure 13: Cultural features of note at Los Naranjos.  (a) Anthropomorphic Olmec-
style statuary; (b) Plaza NW of Structure IV where additional statuary may be located. 

 

Geophysical Data Collection 

In addition to their pedagogic value, these surveys were also designed to test 

the effectiveness of these methods in delineating archaeologically significant features 

at the site.  GPR data were collected with a Noggin 250 cart-mounted system 

(provided courtesy of GeoRad Surveys, Inc.), which is ideal for 3D surveys, and 

Cornell’s pulseEKKO 100 bistatic system (50, 100 and 200 MHz antennae), which 

provided deeper penetration profiles, additional 3D coverage, and high-quality 

common mid-point (CMP) data for in situ radar velocity estimation, which are 

essential for accurate depth estimation (Figure 14).  Magnetometry data were collected 

using a Geometrics G-858 magnetometer, which is owned by the University of 

California.   
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Figure 14: Location of all 2003 geophysical data in relation to Structure IV.  (Left) 
GPR reflection profiling with the pulseEKKO 100; (Middle) GPR data collection with 
the Noggin 250; (Right) Magnetometry data collection with the Geometrics G-858.  
Numbers within grids refer to GPR grids. 

 

In this study, GPR data were acquired in linear profiles and 2-dimensional 

grids, using both the pulseEKKO and Noggin systems.  All archaeological test units 

(Op 1 – Op 4) were surveyed with GPR prior to excavation (Figure 14) so as to target 

specific areas to excavate and to correlate all archaeological features with stratigraphic 
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information in the GPR profiles.  For grids collected with the pulseEKKO system 

(Grids 9, 10, 11, and 12), the transmitting and receiving antennae were spaced 1 meter 

apart, data were collected every 20 centimeters along a transect, and individual 

transects within each grid were spaced 50 centimeters apart.  Transects were also 

spaced 50 centimeters apart within each Noggin grid (Grids 0, 2, 3, 4, 5, and 6).  All 

GPR data were processed using the Sensors and Software suite of processing 

programs at Cornell.   

These surveys covered both apparent archeological and natural features, and 

GPR proved especially effective in both delineating Quaternary stratigraphy and 

mapping localized buried features at numerous locations throughout the site 

(Tchakirides et al., 2006b).  One of the most interesting grids of data, Grid 0, located 

immediately to the north of Structure IV, one of the largest platform mounds at the site 

(Figure 15), is the focus of this paper.   

 

 
 
Figure 15: Stone-lined ramp on west side of Structure IV.  GPR Grid 0 is located to 
the north of this platform mound. 
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Grid 0 

Grid 0 measures 20 x 10 meters.  Surveys within this grid were undertaken to 

determine the possible use of space between Structures IV and III (Figure 14) and to 

learn as much as possible about the construction and use of Structure IV, without 

actually excavating within it.  Platform mounds are rarely excavated because of their 

complex construction history and resulting stratigraphy, but much can be learned 

about them by studying the sediments that surround them.   

Grid 0 was surveyed with the Noggin 250 and the magnetometer, with 

subsequent archaeological excavation to depths of about 0.5 m. GPR penetrated to a 

depth of about 2 meters at 250 MHz.  Data from Grid 0 are dominated by a domed 

bright spot located at about the 77.5 meter mark along the x-axis (Figure 16).  At first, 

this high amplitude anomaly appeared to be a large buried mound, either artificial or 

natural.  Careful inspection, however, suggests that it is part of a continuous 

stratigraphic sequence that is simply less reflective away from the dome. The origin of 

the high amplitudes remains to be determined, and this structure is a prime candidate 

for excavation or coring in a future field season.  

The most interesting features of the rest of the grid are the numerous 

diffractions.  One in particular, a high-amplitude anomaly located at about 67.5 meters 

along the x-axis (Figure 16), stands out.  In map view, this reflection is strongest in the 

depth slice from 1.2 – 1.3 meters.  The prominence of this feature has made it a prime 

suspect for a piece of buried sculpture, possibly Olmec in nature.  However, this 

speculation does not resolve the identity of all of the diffractions.  It is hoped that at 

least some of these will be unearthed during future field excavations, but even if 

excavations are eventually implemented, it is not clear that one can uncover all of the 

diffraction sources within all of the GPR grids.  We have, therefore, explored methods 
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that might help provide useful constraints on the nature of these objects from the GPR 

data alone, or in combination with the magnetometry data.   

 

 
 
Figure 16: Comparison of GPR and magnetometry data from Grid 0.  (Top) 
Magnetometry results over Grid 0.  On the right are the magnetometry data along the 
NS profile indicated by the dashed line.  Numbers at the top of the profile are in units 
of nanoTesla.  Op 1 test units are noted.  (Middle) Horizontal depth slice of GPR data 
from Grid 0, representing a depth of 1.2 to 1.3 meters.  (Bottom) GPR section through 
Grid 0 along the EW dashed line, showing numerous diffractions that might be of 
archaeological significance.  Also noted are the reflections corresponding to the 
amplitude anomalies (bright spots) in the horizontal slice map.  Archaeological 
excavations within this grid went to a depth of about 0.5 meters, as denoted by the 
dashed line. 
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Grid 0 exhibits more than 400 diffraction hyperbolae, with apices ranging from 

10 to 70 nanoseconds (about 0.3 to 1.2 meters) (Figure 17 and Figure 18).  The 

sources of these hyperbolae are unclear at the present time, but several possibilities 

come to mind.  Some, or perhaps many, are likely due to naturally accumulated rocks 

or building detritus from the construction or subsequent alteration of Structure IV.  

Archaeological excavations within this grid (Op 1) encountered evidence of 

construction activity, including packed surfaces and building debris (numerous stones 

and fragments of wattle and daub).  However, given the Olmec-style sculptures that 

have been previously found at Los Naranjos, it is certainly plausible that some of these 

hyperbolic reflections may mark such statuary, or fragments thereof, still in the 

ground.  If this area were used as a public space, monumental sculptures might likely 

have been displayed.   

 

 
 
Figure 17: 3D view of the locations of all the 413 diffractions visually identified in 
Grid 0. 
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Figure 18: Vertical time slice showing the depths (in time) of the 413 diffractions in 
Grid 0. 

 

Methodology 

The obvious approach to focusing on the source of these diffractions would be 

3D migration.  It is not clear, however, that migration would be very effective in 

dealing with diffractions smaller than the usual Fresnel limits.  Moreover, migration 

artifacts might well obscure some of the information containing the diffraction 

patterns.  Here we attempt to exploit the expectation that both peak amplitude and 

travel time curvature of small body diffractions are expected to be dependent upon the 

body’s morphology, specifically its size.  Our analysis began with manual picking of 

diffraction curves within the grid along each survey line, recording the peak 

amplitudes for each diffraction, and then velocity estimation using the diffraction 
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travel times by assuming point sources.  We then evaluated the systematics of the 

variations in amplitude and velocity for evidence of dependence on diffractor size.   

 

Diffraction Picking 

Diffraction picking was accomplished by visual inspection of all of the 

unmigrated vertical time slices from Grid 0.  To identify a manageable subset for 

subsequent analysis, the locations of all were plotted in various spatial views (e.g. 

Figure 19).  Obviously events tagged on adjacent lines are likely from the same 3D 

source.  Given this expectation, inspection of Figure 19 reveals no immediately 

significant spatial clustering.  Thus, the following analysis targeted eleven diffractions 

that seemed to be relatively well-defined and spatially diverse. 
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Figure 19: Map view of the 413 diffractions in Grid 0.  Circle sizes are inversely 
scaled according to depth, with the larger circles representing diffractions at the 
shallowest depths. 
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Once these diffractions were selected, the apex and at least four additional 

points were digitized on each.  Care was taken to select points across substantial 

aperture, so that a reasonably accurate representation of the diffraction shape (and 

resulting velocity) could be obtained.   

 

Velocity Analysis 

Two types of velocity analyses were performed on the GPR data from Los 

Naranjos.  First, common mid-point (CMP) data that were collected with the 

pulseEKKO system were analyzed using the T2-X2 method (Reynolds, 1997).  An 

average velocity of about 0.060 m/ns was characteristic of all of the CMPs.  Similar 

velocity analyses were then performed on each of the 11 diffractions selected from 

Grid 0.  The results obtained from these analyses were comparable, ranging from 

about 0.059 to 0.070 m/ns.  The goal of this study was to determine if the variations in 

these estimates might be linked to diffractor size.  

Figure 20 shows the variation in apparent velocity expected from T2-X2 

analysis of diffractions from a source with apex at 1 m depth with varying radii of 

curvature.  Here we have assumed a true ground velocity of 0.060 meters/nanosecond. 

 

Amplitude Analysis 

It is well-known that the amplitude of a reflection from a curved interface is 

dependent upon the curvature of the interface relative to curvature of the illuminating 

wavefront.  Assuming the optical model applies in this case, we can compute the 

expected amplitude variations due to reflector (diffractor) curvature using the 

“brighten up” ratio: 
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where A is the amplitude of reflection from the curved interface, z is the depth to the 

crest of the interface, and R is the radius of curvature of the interface (upwardly 

concave features having a negative radius of curvature).  Figure 21 shows the expected 

variation in amplitude for a diffractor of variable radius, relative to a reference 

diffractor at 1 meter with a radius of 0.10 meter.  Relatively significant variations in 

apparent velocity can be expected by reasonable variations in diffractor size.  

 

 
 
Figure 20: Variation in apparent velocity due to changing radius of curvature of a 
source diffractor. 
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Figure 21: Variation in apparent amplitude of a diffractor with apex at 1 meter due to 
changes in diffractor curvature. 

 

In Figure 22, we plot the theoretical relationship expected between apparent 

velocity and apparent peak amplitude if the diffractor size were the only relevant 

variable (e.g. all sources and intervening media were of constant lithology).  The 

observed peak amplitudes for each of the 11 diffractions are shown in Figure 23.  

While the apparent velocities span a range comparable to that depicted in Figure 22, 

the amplitudes cover a much larger range, and there appears to be no distinguishable 

trend to the observed relationship that evokes that of Figure 22. 
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Figure 22: Theoretical relationship between apparent amplitude and velocity for 
diffractors of constant compositional contrast but with different radii. 

 

 
 
Figure 23: Amplitude versus velocity for the 11 diffractions selected from Grid 0.  
Spherical divergence correction normalized for reference at 25 nanoseconds. 
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Conclusions 

Using GPR profiles to deduce details of buried targets that are small relative to 

the wavelengths of illumination is a particular challenge.  Improved extraction of 

constraints on diffractor geometries and materials from GPR backscatter from such 

small objects is particularly relevant to archaeology.  Here we have examined 

diffraction amplitudes and velocities from particularly well-defined datasets to 

evaluate whether careful analysis can provide such constraints.  The results indicated 

the amplitudes are too variable to be explained by geometry alone.  A complete test of 

this methodology at this site awaits excavations planned for the future, but the results 

of this study will help guide those excavations.   
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CHAPTER 3 

EFFECT OF REFLECTION PICKING CRITERIA ON IN SITU VELOCITY 

ESTIMATES FROM GROUND-PENETRATING RADAR  

COMMON MIDPOINT DATA  

 

Abstract 

Common midpoint (CMP) data obtained using ground-penetrating radar 

provide in situ velocity estimates that can be used to discriminate lithology as well as 

convert images from time into depth domain.  Initial analyses of CMP data from the 

archaeological site of Los Naranjos, Honduras produced inconsistent velocity 

estimates when calculated using different curve fitting procedures (visual best-fit line 

versus formal regression analyses).  More quantitative analyses were carried out to 

evaluate the effect of reflection picking criteria as applied to the direct air and ground 

waves and reflections.  Factors considered include waveform pick-points, offset range, 

image display mode (i.e. raster versus wiggle trace), amplitude, and curve fitting 

procedure.  Variation in average velocity estimates derived from different picking 

criteria were as large as 50 %, though most clustered within 10 – 20 %.  These 

variations correspond to uncertainties in depth estimates in this case of as much as 35 

centimeters.  These variations are more pronounced when converted to interval 

velocities, which were found to range from -64 to +87 % of their mean value.  These 

results indicate that a consistent picking criteria should be applied before velocities are 

used to identify either lithology or depth variations within a given survey grid.  Best 

practice should focus on picking first-break points along individual traces in wiggle 

trace image display using linear regression analyses of picks from multiple traces, as 

these analyses produced the most consistent velocity estimates.   
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Introduction 

Conventional ground-penetrating radar (GPR) profiles and common midpoint 

(CMP) recordings were acquired at the site of Los Naranjos, Honduras as part of an 

archaeological and geophysical field program aimed at understanding how Formative 

Period communities developed in relation to large earthen platform mound 

constructions.  Los Naranjos, located on the northwestern shore of Lake Yojoa in 

central Honduras (Figure 24), is one of the earliest archaeological sites in 

Mesoamerica, with occupation beginning around 1100 B.C. (Baudez and Becquelin, 

1973; Joyce, 2004b; Joyce, 2004c; Joyce and Henderson, 2002).  A portion of the site 

is preserved by the Instituto Hondureño de Antropología e Historia (IHAH) as the 

Parque Arqueológico – Ecológico Los Naranjos.  The Principal Group, partially 

located within this property, includes several of the largest earthen platform mounds as 

well as several low flat mounds, terraces, and open plaza areas.  Almost all research 

undertaken at Los Naranjos has occurred within the Principal Group.   

Six CMP profiles were included as part of the geophysical data collection at 

Los Naranjos to provide estimates of in situ GPR velocities.  The CMP technique is a 

commonly used method for estimating subsurface velocities from both seismic and 

GPR data (Bristow and Jol, 2003; Sheriff and Geldart, 1995), and the estimates 

extracted are generally considered to be robust (Jol and Bristow, 2003).  Any variation 

caused by display mode or limitations in screen resolution was thought to vary by 1 to 

2 % at most (Annan and Davis, 1976).  While conducting initial analyses of the CMP 

profiles from Los Naranjos, we noticed that velocities varied much more than 1 to 2 % 

depending on the particulars of the technique used to estimate velocity.  For example, 

for CMP PRO 27 we obtained a ground wave velocity of 0.060 m/ns when visually 

fitting a line between 2 points, but we obtained an estimate of 0.055 m/ns with linear 

regression analyses using points picked from all the traces, a difference of 8.3 %.  This 
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led us to perform a systematic study of several common picking strategies, display 

modes, and analytic techniques to evaluate the impact of these various “picking” 

criteria on the resulting velocity estimates.   

 

 
 
Figure 24: Location of the archaeological site of Los Naranjos on the northwestern 
shore of Lake Yojoa, within the present-day Department of Cortés, Honduras.    
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We found that such routine variations in velocity estimates translate into 

significant uncertainties in both interval velocity and depth estimates.  Jol and Bristow 

(2003) suggested that depths estimated from CMP velocity analyses are generally 

accurate to within 10-20 centimeters, whereas Annan and Davis (1976) thought it 

more likely that errors of about 1.5 meters resulted from CMP velocity analyses.  

Although these estimates may be adequate, and even tolerable, for sedimentological 

surveys that tend to extend 5 to 20 meters in total depth, they are much too coarse for 

archaeological studies where excavations may only extend to a meter or less.  Careful 

and systematic analyses are needed to constrain these errors as best as possible. 

 

Velocity 

The two most common types of GPR data collection geometries are the 

common offset method and the common midpoint (CMP) method (Figure 25).  In both 

of these survey modes, a radio signal is sent from the transmitting antenna (Tx) into 

the ground, where it reflects off buried discontinuities and is recorded back at the 

ground surface in the receiving antenna (Rx) (Daniels, 2004; Neal, 2004; Reynolds, 

1997).  For a given source-receiver offset, the direct airwave arrives at the receiving 

antenna first (Figure 26), as it travels through air at the speed approaching that of light 

in a vacuum, i.e. 3 x 108 m/s (Kearey et al., 2002).  The direct ground wave usually 

arrives next.  This wave travels just below the ground surface from the transmitting to 

the receiving antenna and is significantly slower than the direct airwave.  Reflections 

generated by subsurface discontinuities normally arrive after both the direct air and 

ground waves.  All waves travel in the shortest path according to Fermat’s principle of 

least time (Schuster, 1909; Sheriff and Geldart, 1995, p. 157). 
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Figure 25: GPR data collection strategies.  Top: Common offset method, showing the 
travel paths of the direct air and ground waves and the reflected wave generated by the 
surface of Layer 1 and Layer 2.  V1 > V2.  Bottom: Common midpoint (CMP) 
method, described in this study. 
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Figure 26: Common mid-point schematic.  Left: Time-distance (T-X) plot, used to 
calculate velocities for the direct air and ground waves.  Right: T2-X2 plot, which is 
used to calculate reflection velocities. 

 

In the CMP method, the transmitting and receiving antennae are moved apart 

from a fixed point (midpoint) at a set interval (Figure 25).  For constant velocity 

media, the travel time for both the air and direct ground arrivals is a linear function of 

source-receiver offset, whereas reflected arrivals are hyperbolic functions of offset 

(Annan and Davis, 1976; Reynolds, 1997).  Velocities for the direct arrivals are 

usually estimated from the travel time versus offset plots (Figure 26) by measuring the 

reciprocal of the resulting slope.  Average velocity from the surface to a reflecting 

interface can be obtained either by fitting hyperbolic functions using trial velocities or 

plotting the square of the travel time versus the square of the offset (Figure 26), in 

which case the velocity is represented by the square root of the reciprocal of the slope 

(Reynolds, 1997).  

 

55 



 

Time to Depth Conversions 

CMP profiles are useful for several reasons, but most importantly for providing 

in situ velocity estimates (Baker et al., 2007) needed to convert observed travel times 

to depth (Reynolds, 1997).  Reflection depths can be derived from velocity (v) and 

two-way travel time (t) via the relationship:  
 

2
tvd r ×=  (2)  

The most appropriate velocity to use for such conversion is the reflection velocity, 

though the direct ground wave velocity is often an adequate proxy (Annan and Davis, 

1976; Jol and Bristow, 2003) because the velocity of the first reflection represents the 

average velocity between the ground surface and the top of the first reflecting surface.  

Since the direct ground wave is generated within this same region, the direct ground 

wave velocity is usually very similar to the velocity of the first reflection.    

 

Lithologic Discrimination 

Common midpoint profiles also provide information regarding the dielectric 

properties of subsurface materials (Clough, 1976) because velocity is related to the 

dielectric constant (relative dielectric permittivity) of a material by the following 

equation: 
 

rr
r

cv
εμ

=  (3)  

where μ is the relative magnetic permittivity of the material (essentially 1 for all non-

magnetic rocks), ε is relative dielectric constant of the material, and c is the speed of 

light in a vacuum (Daniels, 2004; Kearey et al., 2002; Neal, 2004).  Because of this 

relationship, CMP profiles can help constrain the types of subsurface materials 

through which radar waves are passing.  Relative dielectric constants (εr) range 

between 1 in a vacuum or dry air and 81 in water (Annan, 2005; Reynolds, 1997) and 
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is frequency dependent above 100 MHz (Franks, 1972 p. 260).  The dielectric constant 

for water represents the extreme value because water can be polarized more easily 

than any other material (Annan, 2005; Greaves et al., 1996).  Velocities in geological 

materials can range from 0.010 to 0.195 m/ns (Annan, 2005).  Direct ground wave 

velocities identify the shallowest materials, whereas velocities of individual reflections 

identify the material between specific subsurface reflectors.  Interval velocities, 

calculated from the Dix equation (Dix, 1952),  
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provide velocity estimates for the material between two defining reflectors.  The root-

mean-square (RMS) velocity (Al-Chalabi, 1974; Sheriff, 1976) is usually taken to be 

equivalent to the stacking velocity, which in turn is assumed to be equivalent to the 

velocity that best fits an hyperbola to the observed reflection travel times.  These 

assumed equivalences are most valid in the limit as the source-receiver offset goes to 

zero (Al-Chalabi, 1974).  Of course, appropriate corrections must be applied for dip 

(Sheriff, 1976), and the relationships break down for media with velocities that have 

rapid lateral variability (Al-Chalabi, 1974) (e.g. depth migration issues).  While there 

is substantial overlap in the dielectric constant for various materials, such estimates 

clearly limit the permissible interpretation of subsurface GPR results. 

 

Discrimination of Clutter from Reflections 

Velocities obtained from CMP analyses are also useful to discriminate clutter 

from true subsurface reflections (Jol and Bristow, 2003).  Clutter, or “airwave events” 

(Annan, 2005 p. 427), is systematic noise introduced into a radar section by reflections 

from objects that are located on the sides of or above the antennae, most often above 
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ground.  These events can masquerade as reflections generated from subsurface 

features or layers (Daniels, 2004; Jol and Bristow, 2003).  Clutter from above-ground 

sources can be identified in CMP profiles by its characteristic velocity, which will be 

that of the direct airwave velocity.  This velocity is most often significantly faster than 

any velocity associated with a true subsurface reflection.   

The most common source of clutter in GPR data from Los Naranjos is 

associated with the low tree canopy that covers much of the site.  For example, in 

CMP PRO27, clutter is visible as nearly horizontal banding between the direct air and 

ground waves, at larger offsets (Figure 27).  Clutter is often more obvious in CMP 

data, where it is usually manifest as hyperbolae that are asymptotic to the airwave.  

Without CMP control, clutter can easily go unrecognized in reflection sections and 

thus be misinterpreted as subsurface reflectivity.   

 

 
 
Figure 27: CMP PRO 24 illustrating clutter and static shifts.  Clutter is evident as 
pronounced sub-horizontal banding that is asymptotic to the direct airwave.  Small 
time shifts between traces, “statics,” also contribute to errors in velocity estimates. 
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In addition to clutter, CMP profiles also display small variations of travel time 

away from a straight line or hyperbola.  Such time variations are usually referred to as 

“static” shifts in seismic processing (Sheriff and Geldart, 1995; Yilmaz, 2001).  Such 

static shifts are evident in Figure 27.  To lessen the adverse effects of such static shifts, 

great care was taken to avoid picking endpoints for best-fit lines on specific traces that 

seemed especially noisy.  With linear regression analyses, whereby points along all 

traces were selected, the effect of static shifts is more pronounced on velocity 

estimates (see Figure 27 for examples of static shifts; see Figure 29 for their effect on 

velocity estimates). 

 

Quantifying Attenuation 

Common midpoint profiles can also be useful to recognize signal attenuation in 

the subsurface.  For example, in the CMP profile LINE16, no reflections are visible 

(Figure 28), which could be interpreted to simply indicate uniform material in the 

subsurface.  However, the relatively rapid truncation of the direct ground wave (at 

about 75 centimeters offset; 50 centimeters offset for profile PRO12) instead indicates 

high attenuation of the GPR signal at a very shallow depth.  Thus the data cannot be 

used either to confirm or deny the presence of layering at depth.  Signal attenuation 

has important implications for survey design (Jol and Bristow, 2003) in that it can help 

in selecting an adequate antennae separation and source frequency to mitigate 

attenuation.  Furthermore, large time windows are not necessary in areas of high signal 

attenuation. 
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Figure 28: Wiggle trace images of the six CMP profiles collected at Los Naranjos.  A synthetic CMP is shown in the bottom left, 
with direct air and ground waves, and one reflection.  Vertical exaggeration = 2x.   

 



 

Velocity Estimation from CMP Surveys  

In this study, six common midpoint profiles (Annan and Davis, 1976; Greaves 

et al., 1996) were acquired using a Sensors and Software PulseEKKO 100 system 

(Figure 28).  Three CMP profiles were collected using the 100 MHz antennae, and 

three were collected using the 200 MHz antennae.  All six show distinct direct 

airwaves.  Clear reflection hyperbolae are visible on all profiles except CMP LINE16 

(see above).  At least four reflection hyperbolae are evident on the majority of CMP 

profiles, indicating at least four subsurface layers are present.  

We use visual “best fit” lines and linear regression analyses (Figure 29) to 

compute velocities for the direct air and ground waves using both wiggle trace and 

raster image display format.  Reflection velocities are calculated by performing T2-X2 

analyses using the following equation (Yilmaz, 2001): 

 
 

2

2
22

0 v
xtt +=  (5)  

where v is the RMS velocity of the material located between the ground surface and 

the top of each reflector (Fisher et al., 1992b).  For horizontal layers with small 

changes in velocity, RMS velocities approximate stacking velocities.  Note that the 

direct air and ground waves are non-hyperbolic in shape, thus do not generally add 

constructively during stacking (Fisher et al., 1992a; Kearey et al., 2002).   
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Figure 29: Example velocity variations due to picking technique.  Top: Example of 
visually selected “best fit” line between two traces, indicated by arrows.  Bottom: 
Linear regression analyses using visual picks of arrival times for all traces.  Points 
were made by selecting first break positions at each trace along the direct airwave.  
Slight static shifts in individual traces account for some of the variation in velocity. 

 

Effect of Picking Position  

The first analysis of this study involved testing whether the specific picking 

position along each trace had an effect on the velocities calculated for the direct air 

and ground wave velocities.  In a relevant study, Yelf (2004) surveyed numerous GPR 

practitioners to determine at which point along a trace they selected time zero.  

Although there was some general disagreement among these individuals, most 

selected one of five points along a trace (Figure 30): (1) first break point, (2) first 
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positive peak (maximum peak), (3) zero amplitude point, (4) mid-amplitude point, or 

(5) first negative peak (maximum trough).  Picking position is important, not only for 

time zero, but also for accurate velocity estimates.  To perform a similar analysis in 

this study, a best-fit line was manually created between two points along the first-

break point of each trace (position 1), the maximum peak (position 2), and the 

maximum trough (position 5); velocities were calculated at each of these positions.   

 

 
 
Figure 30: Example of an individual trace, indicating possible time zero picks.  
Example, based on a Yelf (2004) survey of numerous GPR practitioners.  (b): 
Individual trace with picks used for velocity analyses in this study: position 1 = first 
break; position 2 = maximum peak; and position 5 = maximum trough.  

Picking position had a significant effect on direct airwave velocities in wiggle 

trace images.  Velocities calculated using visual line fits at the first break point were 

considerably faster than velocities calculated at either the maximum peak or the 

maximum trough (Figure 31), with all six CMP profiles producing the fastest first 

break velocities (position 1).  Furthermore, the slowest velocities were calculated at 

the maximum trough position (position 5) in all six CMP profiles.  These results 
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indicate (Figure 31 bottom) that average direct airwave velocities vary between 7 and 

16% depending on picking position alone.   

An additional airwave analysis on CMP PRO24 quantified the effect of simple 

“picking error” on velocity estimates.  In this analysis, two traces were selected to 

define the endpoints of the direct airwave, and picks were made at position 1 using 

wiggle trace display mode with the same amplitude, scale, and zoom level for all 

iterations.  Velocities were then calculated using linear regression.  Even with this 

simple approach, the percent difference in velocity from basic “picking error” is 

almost 10 % (Table 1).  Although picking error can be a contributing factor, it does 

not account for all of the variation noted above from picking position alone, 

suggesting that picking position does have a significant effect on direct airwave 

velocity estimates.   
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Figure 31: Effect of picking position on direct airwave velocities in wiggle trace 
images.  Top: Plot of direct airwave velocities calculated at each position for each 
CMP profile.  Bottom: Percent difference in airwave velocities depending on picking 
position, velocity using position 1 assumed as standard. 

 

65 



 

Table 1: Percent difference in velocities from simple picking error.  
 

Trial Number Velocity (m/ns) Error (%) 

1 0.2837 0.25 

2 0.2749 -2.83 

3 0.2891 2.18 

4 0.2643 -6.57 

5 0.2804 -0.92 

6 0.2847 0.61 

7 0.2891 2.18 

8 0.2937 3.81 

9 0.2891 2.18 

10 0.2804 -0.91 

Average 0.2829    

 

Velocities for the direct ground waves were likewise affected by picking 

position.  Position 1 produced the fastest velocities in all six CMP profiles, and 

position 5 (maximum trough) produced the slowest velocities in all profiles (Figure 

32).  The variations in ground wave velocities are not nearly as dramatic as they are 

for the direct airwaves, generally being an order of magnitude smaller than the 

airwave velocity variations.  The average difference in velocity between positions 1 

and 5 is only 0.0038 m/ns, or between 3% and 9% (Figure 32).   

These results clearly indicate that picking position is an important 

consideration for obtaining accurate velocities from direct air and ground waves.  In 

an ideal situation, direct airwave velocities should be 0.30 m/ns.  Four of the CMP 

profiles in this study had direct airwave velocities that were close to 0.30 m/ns using 

picking point1 but all six of the CMP profiles had position 5 velocities that were 
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significantly slower than the speed of light.  Thus position 5 seems to produce the 

most suspect results, and we suggest it should be avoided in favor of position 1.    

 

 
 

 
 
Figure 32: Effect of picking position on direct ground wave velocities in wiggle trace 
images.  Top: Direct ground wave velocities calculated at each picking position for all 
six CMP profiles.  Bottom: Percent difference in ground wave velocities depending on 
picking position. 
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The systematic differences noted from these analyses are consistent with 

frequency dependent signal absorption as the radar signal traverses greater distances 

between source and receiver in the ground.  This differential attenuation results in 

variation of the waveform with offset, with the latter part of the signal (e.g. position 5) 

progressively delayed with respect to the initial portion of the signal (position 1) as a 

function of offset.  If there were no signal attenuation, one would expect no change in 

the shape of the wavelet with depth and thus more uniform estimates regardless of 

picking point.  However, inspection of the display in Figure 28 indicates that simple 

attenuation is not a complete explanation, in that there are distinct changes in apparent 

slope of even the initial part of the wavelet as a function of offset, a variation that may 

be due to the transition from near field to far field radiation (see below).  

 

Effect of Display Amplitude 

One CMP profile (PRO 27) was selected to determine if variations in display 

amplitude had any effect on estimation of the average velocities of either the direct air 

or ground waves using visual picking.  Wiggle traces were scaled to increase the size 

of individual waveform deflections.  Scale factors of 20, 50, and 100 (Figure 33) were 

applied.  Individual picks were made for position 1.  Position 1 was selected to avoid 

confusion due to clipping of traces at either the maximum peak or trough.  Results 

indicate that amplitude variations have only negligible effects on velocities calculated 

for both the direct air and ground waves (Figure 34).  Airwave velocities varied by 

0.007 m/ns, and ground wave velocities varied by 0.003 m/ns, or 2% and 4%, 

respectively.  Even though these results indicate that plot amplitudes are not a 

significant factor for determining position 1 velocities, a plotscale of 20 was used for 

all wiggle trace images in order to keep these analyses as standardized as possible.  
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Figure 33: Four images of CMP PRO27 plotted using different gain functions.   
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Figure 34: Effect of amplitude on direct airwaves and ground waves.  Top: The effect 
of display amplitude on estimation of direct airwaves in wiggle trace mode, including 
the difference between the fastest and slowest velocities.  Bottom: The effect of 
amplitude on the estimation of direct ground wave in wiggle trace mode, including the 
difference between the fastest and slowest velocities. 
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Influence of Image Display 

In this analysis, velocities for the direct air and ground waves were calculated 

from picks made from wiggle trace versus raster displays (Figure 35) to determine if 

variations existed because of the display mode used.  For wiggle trace images, the first 

break point, or position 1, of each wavelet was selected.  For raster images, points 

along the top of the black waveform were selected for the direct airwaves and the top 

of the white waveform for the direct ground waves.  These positions on the raster 

images were selected because they were the easiest to pick consistently. 

 

 
 
Figure 35: Raster and wiggle trace image formats.  Picking is influenced by which 
display mode is used.  Example picks are shown for the direct airwave and a 
reflection.   

 

Image display appears to have a significant effect on the velocities calculated 

for the direct airwave.  Velocities calculated in wiggle trace images are dramatically 

higher than velocities calculated in raster images in 5 of the six CMP profiles (Figure 

36), with an average difference of more than 8%.  Direct ground wave velocities 
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calculated in wiggle trace images are also higher than velocities calculated in raster 

images (Figure 37), but they only differ by about 2.6%.  

 

 
 

 
 
Figure 36: Effect of image display on direct airwaves.  Top: The effect of image 
display on direct airwave velocities. Bottom: Percent difference in direct airwave 
velocities depending on image display. 

72 



 

 

 
 

 
 
Figure 37: Effect of image display on direct ground waves.  Top: The effect of image 
display on direct ground wave velocities. Bottom: Percent difference in direct ground 
wave velocities depending on image display. 
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Implicit in both the picking position (wiggle trace) and wiggle trace versus 

raster mode comparison is the issue of whether the variations are simply an expression 

of the effective displacement due to T0 times implied.  For example, it is clear that the 

first break positions on wiggle trace images are usually earlier than the “equivalent” 

tops of these reflectors as evident in raster images (Figure 35).  This is similar to the 

NMO stretch effect (Yilmaz, 2001), which is related to the change in diffraction 

curvature and apparent T0 time, even though the velocity has remained unchanged 

(Figure 38).  In Figure 38, this effect is modeled using 3 separate hyperbolae that have 

the form  
 

v
hxt

22 4+
=  (6)  

(where x is offset in meters, h is depth in meters, and v is velocity) with a constant 

velocity of 0.060 m/ns.  In Figure 39, the topmost reflection in Figure 38 is redrawn, 

but with a constant time shift of 5 ns applied in the middle reflection, and a constant 

time shift of 10 ns was applied in the lower reflection.  Even though each hyperbola is 

meant to represent a reflector for a velocity of 0.060 m/ns, analysis of the shifted 

hyperbolae yield estimates that differ by 5 % and 8.3 %, respectively. 

 

74 



 

 
 
Figure 38: Effect of NMO stretch on three separate hyperbolae that were generated 
using a constant velocity of 0.060 m/ns.   

 

 
 
Figure 39: Variations in velocity from simulated multiple picking positions on a single 
reflection.  Variations in velocity are due to a time shift of 5 ns and 10 ns, 
respectively. 
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Effect of Offset (Range) 

Another analysis involved assessing the effect of offset on direct airwave and 

direct ground wave velocities in both wiggle trace and raster images.  Prior to CMP 

analyses, some basic processing steps were performed on the data from Los Naranjos.  

The first step involved applying a time filter know as “dewow,” which is a high pass 

filter that removes signal saturation or low frequency “wow” from the GPR data 

(Gerlitz et al., 1993; Sensors & Software Inc., 2003).  Wow can be introduced because 

of the electrical properties of the ground (Jol and Bristow, 2003) or when the 

transmitting and receiving antennae are too close to one another (Sensors & Software 

Inc., 2003), which is why it most often occurs at near offsets in the CMP data.  All 

profiles shown in this paper have been dewowed.  This is a necessary step in all 

processing, but it is especially important here in order to view a representative 

wavelet.  In seismology, it is well-known that offset plays an important role in 

obtaining adequate velocities.  To resolve velocities sufficiently, both near and far 

offsets are needed to define a wavelet properly (Yilmaz, 2001).  We decided, 

therefore, to demonstrate the effect of offset on the direct air and ground waves in this 

paper.   

In this analysis, a best-fit line was created between two points along the first-

break point (Figure 30) for each trace in wiggle trace images.  For all CMP profiles, 

the offset boundary was set at one meter because the saturation is most obvious at 

offsets of one meter or less (near-offset), and less influential beyond 1 m (far offset).  

Far offset values were always picked between 1 and 4 meters, with 4 meters being the 

maximum offset, although some analyses did not extend as far as 4 meters.  The 

maximum offset was set at 4 meters (for all analyses in this study) for two reasons.  

First, three of the six CMP profiles extend to about 4 meters, and we wanted to keep 

our analyses as consistent as possible between profiles.  Second, a distinct change in 
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slope was noted at about 4 meters offset in the direct air and ground waves of several 

CMP profiles (note especially the direct airwave in CMP PRO 24).  This change in 

slope is due most likely to attenuation of the signal at large offsets and fitting a line 

through these traces would bias the results, rendering comparisons inappropriate.  Care 

was taken to choose endpoints that allowed for the most linear section between them; 

points with significant static shifts were not chosen, so that there was little bias 

introduced from the selection of endpoints. 

In wiggle trace display, offset was a significant factor for direct airwave 

velocities (Figure 40).  In all six CMP profiles, direct airwave velocities defined by 

near offset traces were significantly slower than the far offset and all offset velocities.  

On average, near offset velocities were as much as 0.040 m/ns, or almost 17%, slower 

than far offsets and almost 21% slower than all offsets.  Far offset velocities and all 

offset velocities varied by less than 4%, with far offsets being slower than all offsets in 

all profiles (Figure 40).  Using the “known” airwave velocity of 0.030 m/ns as a 

standard, the all offset picks were the most accurate in all profiles.  This relationship is 

consistent with waveform changes that we expect, indicating that large spreads define 

the shape of the wavelet best.     

Offset also had a significant effect on the velocity of the direct ground wave in 

wiggle trace images and was more pronounced than the direct airwave velocity 

variations.  For all six CMP profiles, the near offset velocities were faster (not slower, 

as was the case with the direct airwaves) than both the far offset velocities and all 

offset velocities (Figure 41).  Again, the far offset and all offset velocities were 

similar, with all of the far offset velocities being slightly slower than the all offset 

velocities.  The effect of offset was especially pronounced in PRO27; the near offset 

velocity was more than 2.5 times faster than both the far offset and all offset 

velocities.   Inspection of PRO27 indicates that the direct ground wave is hidden 
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behind the first reflection, making it difficult to pick consistently, thus most likely 

accounting for the large difference in velocity.  On average, near offset velocities were 

almost 30% faster than far and all offset velocities.   

 

 
 

 
 
Figure 40: Effect of offset on direct airwave velocities.  Top: Effect of offset on direct 
airwave velocities in wiggle trace images.  Bottom: Percent difference in direct 
airwave velocities depending on offset in wiggle trace images.   
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Figure 41: Effect of offset on direct ground wave velocities.  Top: Effect of offset on 
direct ground wave velocities in wiggle trace images. Bottom: Percent difference in 
direct ground wave velocities depending on offset in wiggle trace images. 
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Such large variations in velocity based on offset have important implications 

for velocity analyses but also for survey design.  For these particular CMP profiles, 

offsets of one meter and less were significantly impacted by near offset effects.  If 

CMP surveys are not long enough, it will be impossible to detect these variations, and 

will cause confusion as to why the direct airwave velocities do not match the speed of 

light.  Other factors contribute to the significant effect of offset, namely wow effects 

and attenuation of the wavelet with offset.  These effects are illustrated in Figure 42.  

Wow affects the wavelet by elongating it and amplifying it, so that if a position 2 pick 

were made along near offset traces (as indicated), the resulting velocity (1/V1) would 

be slower than corresponding picks from larger offsets (indicated in Figure 42 as 

1/V2).  These changes in velocity represent the effects of wow only and should not be 

confused with changes in velocity due to lithology or layering.   

 

 
 
Figure 42: Effect of "wow" and attenuation with offset. 
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Offset had a similarly dramatic effect on the direct air and ground wave 

velocities in raster images as it did in wiggle trace images.  For all six CMP profiles, 

direct airwave velocities for near offsets are significantly faster than both far offset 

and all offset velocities (Figure 43); direct airwave velocities were slower in wiggle 

trace images.  Near offsets have an average velocity that is almost 0.10 m/ns faster 

than both far offset and all offset velocities; this difference is also double that found in 

wiggle trace images.  Furthermore, near offset velocities are 50% faster than far offset 

velocities.  In raster images, far offset and all offset velocities varied by as much as 

14%.  This is the largest percent difference found in the offset analyses.  Direct ground 

wave velocities in raster images are again significantly slower than both far and all 

offsets (Figure 44), with comparable differences in velocity (about 0.030 m/ns).  

Velocities for far and all offsets are similar to one another, with only negligible 

differences between them; a similar result was seen in wiggle trace images.   

Velocity variations due to offset are not only significant for all datasets 

collected at Los Naranjos, but they are also highly variable.  The variability of these 

results is most likely related to the fact that these CMP profiles were collected at 

several different locations at the site.  Since wow is also a result of the electrical 

properties of the ground, the variability might just represent differing physical 

properties at the site.   
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Figure 43: Effect of offset on direct airwave velocities in raster images.  Top: Effect of 
offset on direct airwave velocities in raster images.  Bottom: Percent difference in 
direct airwave velocities depending on offset in raster images. 
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Figure 44: Effect of offset on direct ground wave velocities in raster images.  Top: 
Effect of offset on direct ground wave velocities in raster images.  Bottom: Percent 
difference in direct ground wave velocities depending on offset in raster images. 
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Effect of Picking Technique (Visual “Best Fit” Lines versus Formal 

Linear Regression) 

Wiggle trace images were used to determine if specific picking techniques 

(visual line fits using display tools versus linear regression of individual arrival time 

picks) would produce significant variations in velocity.  Best fit lines were created at 

the first break positions on traces of the direct air and direct ground waves.  Picks were 

again guided by endpoints that allowed for the most linear section between them that 

fit through as many traces as possible, and traces that exhibited large static shifts were 

avoided.  Green (1938, p. 297) noted that a single bad pick can have an adverse effect 

on velocity estimates, so he encouraged the use of multiple picks to minimize the 

effects of one bad one.  Linear regression was accomplished by making multiple (first 

break position) picks along the direct air and ground waves.  A computer-generated 

best fit line was then calculated for these points, and velocities were calculated by 

taking the reciprocal of the resulting slope of the best fit line.    

These analyses show that visual line fits result in faster airwave velocities than 

linear regression in all six CMP profiles (Figure 45).  Mostly, these differences are not 

dramatic, but significant differences were noted for PRO12 and PRO16.  Similar 

results were noted for direct ground wave velocities (Figure 46), but the variations in 

velocity were more significant.  The most likely explanation for the difference in 

velocity is that best fit lines are tied only to the endpoints, whereas linear regression 

analyses weigh individual traces so that slight variations, or static shifts in the data can 

affect the results.   
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Figure 45: Effect of picking technique on direct airwave velocities in wiggle trace 
images. 

 

 
 
Figure 46: Effect of picking technique on direct ground wave velocities in wiggle trace 
images. 
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Velocity Spectra / Semblance Analysis 

Numerous studies have documented the similarities between seismic and GPR 

data and the applicability of seismic processing algorithms to GPR data (Fisher et al., 

1992a; Fisher et al., 1992b; Grasmueck, 1994).  One method that is standard in 

seismic processing is the generation of velocity spectra or semblance analyses (Cook 

and Taner, 1969; Cunningham and Heffring, 1980; Dinstel, 1971; Taner and Koehler, 

1969) that provide an independent means to calculate velocities for an entire CMP 

profile.  In this approach, reflections are summed after removal of trial NMO 

corrections based on trial stacking velocities.  When the correct velocity is used, the 

signals are aligned and the resulting sum is a maximum (Annan, 2005; Yilmaz, 2001).  

In Figure 47, six reflections are visible, which match fairly well with the reflections 

noted on the CMP profile.  Although there is good correlation between the velocity 

spectra and the CMP profile, there are slight variations in the times of specific 

reflections.  These variations are most likely caused by the imperfect shape of the 

reflections in the actual field data (one reflection may generate two maxima).   

 

 
 
Figure 47: Velocity spectra for CMP PRO24, with 6 clear maxima representing 
corresponding reflections and the trial stacking velocities that result in their alignment. 
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Synthetic CMP Profiles 

One final set of analyses involved generating synthetic CMP profiles as an 

independent check of the velocities calculated directly from the CMP profiles from 

Los Naranjos.  Parameters specific to individual CMP profiles collected at Los 

Naranjos were used to make the comparisons as accurate as possible.  In one instance, 

a 100 MHz synthetic was created in commercial seismic software with direct air and 

ground waves and one reflection (Figure 48).  The synthetic reflection correlates with 

the strong reflection (Reflection 5) in CMP PRO 24, which is located at 70.2 

nanoseconds.  Reflection 5 was generated using an average velocity of 0.055 m/ns, 

which corresponds with the average velocity calculated for this reflection in CMP 

PRO24.  Figure 48 shows the expected similarity between the synthetic and CMP 

PRO24.   

 

 
 
Figure 48: Comparison of a synthetic CMP with CMP PRO24.   

 

The synthetic CMP discussed here represents an ideal data set, free of 

attenuation, noise, wow, and changes in the shape of the wavelet that are all present in 

the CMP data collected at Los Naranjos.  Although this is a simplistic version of real-
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world data, the synthetic was constructed this way specifically so that it could provide 

an ideal model in which picking error could be constrained.  Ideally, linear regression 

analyses should produce an exact match to the specific velocities that were input into 

the synthetic; variations from these velocities indicate picking error.  Table 2 contains 

the details of the velocities input into the synthetic and the corresponding velocities 

that were calculated using position 1, 2, and 5 picks.  Under ideal conditions, picking 

position should not matter for either the direct air or ground wave, as all calculated 

velocities matched the input velocities.  These results vary from those calculated from 

the Los Naranjos dataset.  Velocities calculated for the reflection, however, match the 

Los Naranjos dataset more closely, with position 1 producing the fastest velocity and 

position 5 producing the slowest.  The resulting position 1 reflection velocity is the 

only one that matches the velocity input into the synthetic.  Variations in reflection 

velocity correspond to increases in the corresponding T0 times and result in velocity 

estimates that differ by about 2 % and 5.5 %, respectively. 

 
Table 2: Velocity estimates from the 100 MHz synthetic CMP profile. 
 

 
Synthetic Velocity 

(m/ns) 

Position 1 

(m/ns) 

Position 2 

(m/ns) 

Position 5 

(m/ns) 

Direct Airwave 0.30 0.30 0.30 0.30 

Direct Ground Wave 0.060 0.060 0.060 0.060 

Reflection 0.055 0.055 0.054 0.052 

 

Effect on Depth and Interval Velocity Estimates 

As mentioned previously, an important reason for collecting CMP data is to 

use the calculated velocity estimates to convert GPR data from time into depth.  

Accurate velocity estimates are essential, especially if GPR data are to be correlated 
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with excavated materials.  By undertaking analyses on successive reflections from a 

CMP profile, it is possible to determine the effect variations in average velocity has on 

depth estimates as well as corresponding interval velocities.   

For this series of analyses, CMP PRO 24 was selected as the best example, 

because it has 5 clear reflections that range from about 40 nanoseconds to about 70 

nanoseconds.  Analyses similar to those performed on the direct airwave and direct 

ground wave were performed on reflections, including differences in position 

(positions 1, 2, and 5), image display, offset, and linear regression analyses.  

Additional reflection analyses involved the first-break time (T0, R0, and inferred T0) of 

each reflection.  For interval velocities, it is necessary to know T0, but this value 

corresponds to the instant the transmitting antenna first emitted its signal; this value is 

very difficult to know or determine (Annan, 2005).  Fortunately, a proxy can be used, 

which is R0, or the time at which the receiving antenna first records a signal.  R0 is 

often substituted, as the difference between R0 and T0 is negligible.  R0 is related to T0 

by 

 
 

c
sTR += 00  (7)  

where, s is the antennae separation, and c is the speed of light.  In this paper, where the 

effects of negligible differences in average velocity are important, we tested to see if 

using R0 would make a difference.  R0 is about 1.3 nanoseconds larger than T0.  

Finally, a third value of T0 was used.  This value, which can be inferred from T2 –X2 

analyses, is the point at which the best-fit line crosses the y-axis and can be found in 

the equation  

 
 bmxy +=  (8)  
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where b is the T0 value.  This value of T0 is the largest and is larger than R0 by almost 

1.5 nanoseconds.    

As seen in Figure 49, these different analyses had significant effects on 

resulting interval velocities.  For the most part, the general trends are the same, with 

the exception of the near offset analysis, which produced much higher velocities than 

the other methods.  Variations in interval velocities within each layer range to more 

than 0.040 m/ns, which corresponds to a range of about -64 to +87 % of their mean. 

The effect on depth estimates from the eight analyses of CMP PRO24 is 

portrayed in Figure 50.  There is a great deal of variation among these methods, with 

the top of layer 1 ranging from about 0.90 meters to 1.1 meters.  The thickness of this 

layer is also quite variable.  The base of layer 4 varies by more than 20 centimeters.  

By selecting positions 2 or 5, the depth at which layer 1 occurs deepens, indicating 

these positions are not adequate in representing the appropriate depth at which it 

occurs. 
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Figure 49: Interval velocities for CMP PRO24 based on all of the different picking strategies used in this paper. 
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Figure 50: Depth sections for CMP PRO24, showing the effect of slight variations in velocity on corresponding depths.  Numbers 
within boxes indicate interval velocities. 



 

Near offsets affected interval velocities and depth estimates more than any 

other analysis.  Although the effect of offset is significant, it is more than just the 

variation in waveform.  It is also related to the non-hyperbolic behavior of reflections.  

Reflections are generally hyperbolic in shape, but they differ slightly from a true 

mathematical hyperbola (Yilmaz, 2001).  This deviation is relatively small, but it is 

more significant for larger antenna separations (Annan, 2005, p. 432). 

 

Conclusions 

In all of the analyses presented here, noticeable to significant differences in 

velocity estimates resulted simply because of the specific picking criteria that were 

used.  Yet, GPR articles that discuss the specific picking criteria used to calculate 

velocities are rare; those that discuss the robustness of their velocity calculations are 

even rarer.  If we are to advance the science of CMP analyses, it is imperative to 

develop a standardized method for velocity analysis to be used by all GPR 

practitioners.   

Slight errors in depth estimates can have a significant impact on the success of 

archaeo-geophysical studies, especially when GPR data are tied to excavations that 

extend only a meter or two in depth.  Under ideal circumstances, all reflections 

generated in CMP profiles would be correlated directly with specific layers exposed in 

open excavation units, thereby highlighting (and quantifying) any resulting errors in 

depth estimates.  If any errors were noted, several different velocity analyses could be 

performed on the CMP data to determine the technique that generated the most 

accurate depth estimates.  At protected sites like Los Naranjos, where excavations are 

limited and invasive testing is discouraged, this is not immediately possible.  

Fortunately, we can use several proxies that allow for a direct comparison with what 
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should be, namely the synthetic CMP profile and the direct airwave which has a 

known velocity.   

Based on the analyses performed in this paper, we have created several 

recommendations for best practice.  First, to perform velocity analyses as consistently 

as possible, we recommend using wiggle trace images instead of raster images so that 

the same point along each trace can be picked consistently.  Second, we recommend 

extending picks to offsets that are significant enough to correct for near-offset errors 

(in this paper, at least one meter).  Third, based on strong correlations between 

calculated velocities with the synthetic CMP profiles and the expected direct airwave 

velocities, we recommend using position 1 for all velocity analyses.  Position 2 

(maximum peak) picks should be avoided, as they are affected by amplitude scaling 

and are also slower than expected values.  Position 5 picks should also be avoided due 

to the discrepancy between these velocities and those expected from the direct airwave 

and the synthetic CMP velocities.  Implied changes in T0 will affect these analyses, 

resulting in what appears to be slower velocities that are due simply to different T0 

times.  Although, under ideal conditions, picking position should not matter for either 

the direct air or direct ground wave, it does appear to have an effect on actual field 

data.  Because we advocate being as consistent as possible, we recommend choosing 

position 1 for all picking.  We also recommend using formal linear regression analyses 

that take into account each trace so that endpoint bias is not a significant factor.  

Finally, and most importantly, we advocate the dissemination of specific picking 

information in all papers that deal with CMP data so that a reader can determine the 

accuracy of such results. 
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CHAPTER 4 

DISCRIMINATION OF BURIED ARTIFACTS AT LOS NARANJOS, HONDURAS 

USING THREE-DIMENSIONAL MIGRATION OF GROUND-PENETRATING 

RADAR (GPR) DATA AND MAGNETOMETRY DATA 

 

Abstract 

Three-dimensional migration, rarely applied to ground-penetrating radar 

(GPR) data at archaeological sites, has proven critical to the interpretation of GPR 

results from the early Mesoamerican archaeological site of Los Naranjos, Honduras.  

In one particular dataset, numerous diffraction hyperbolae dominate the GPR cross-

sections, ranging in depth from about 0.30 to 1.20 meters.  Although these diffractions 

vary in amplitude, discriminating among them on the unmigrated imagery is 

problematic at best.  Two-dimensional migration suggests differences in diffractor 

shape, but only 3D migration provides the necessary detail to identify anomalous 

features.  The most distinctive diffractor on the 3D migrated imagery corresponds with 

a prominent magnetic anomaly.  The dimensions of this diffractor, as deduced from 

the 3D imagery, and its magnetic properties suggest that this feature may correspond 

to buried sculpture with a basaltic composition, rather than detrital rocks (limestone) 

or building blocks (sandstone) shed from nearby structures.  We suggest that this 

feature marks a previously unrecognized sculpture similar to the distinctive Olmec-

style columns and statuary that have already been recovered at the surface of Los 

Naranjos.   

 

Introduction 

The archaeological site of Los Naranjos is located on the northwestern shore of 

Lake Yojoa, within the present-day Department of Cortés in central Honduras (Figure 
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51).  The site has attracted attention for more than seven decades (Stone, 1934; Strong 

et al., 1938; Yde, 1936; Yde, 1938b), and the detailed site maps and descriptions of 

stratified sedimentary deposits produced by these early endeavors have proven 

invaluable for modern researchers.  Recent excavations (Baudez and Becquelin, 1973; 

Henderson and Joyce, 2003; Henderson and Joyce, 2004; Joyce and Henderson, 2002) 

within a portion of the site known as the Principal Group documented a series of 

occupations that date continuously from the Early Formative to the Early Postclassic 

Periods (1100 B.C. – A.D. 1200), making Los Naranjos a very early Mesoamerican 

archaeological site.  The Principal Group of Los Naranjos is an area of about 2 

hectares that contains large earthen platform mounds, several low flat mounds, 

terraces, and plazas (Figure 52).  Of special interest to this study is the small number 

of Olmec-style sculptures recovered at the surface of this site (Joyce and Henderson, 

2002) because they possibly relate to a feature of interest that was generated in the 

geophysical data.    

Researchers from Cornell University and the University of California, 

Berkeley initiated a joint archaeological field program at Los Naranjos in 2002.  

Excavations during the summers of 2003 and 2004 were somewhat limited in extent, 

but they documented the presence of Early and Middle Formative communities that 

lived adjacent to Structure IV (Figure 53) (Henderson and Joyce, 2003; Henderson and 

Joyce, 2004; Joyce and Henderson, 2002), which is the second largest platform mound 

within the Principal Group.  As part of their research, they requested that non-invasive 

geophysical methods be used to map the presence and extent of these early 

communities.    
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Figure 51: Location of Los Naranjos, on the northwestern shore of Lake Yojoa.  The 
site is located within the present-day Department of Cortés in Central Honduras. 
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Figure 52: Principal Group of Los Naranjos.  All geophysical research was conducted 
to the north of Structure IV.  Small black dots indicate the approximate locations of 
sculpture previously located at the surface of the site.  The basemap is modified from 
Baudez and Becquelin (1973), Cruz C. and Valles Pérez (2002), and Dixon et al. 
(2001). 
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Figure 53: Location of all geophysical grids at Los Naranjos in relation to Structure 
IV.  Note stone-lined ramp on west side of Structure IV. 

 

Beyond the obvious pedagogical objectives, a goal of the geophysical data 

collection was to test the efficacy of these methods in delineating archaeological and 

geological subsurface features at this site, as they represented some of the first uses of 
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geophysical methods at archaeological sites in Honduras.  Initially, it was hoped that 

the results of the geophysical surveys could be used to plan all of the archaeological 

excavations, but the logistics of the field program prevented all data from being 

analyzed prior to the establishment of test units.  As a result, many of the features of 

interest imaged in the geophysical data were not excavated.  Nevertheless, the results 

of these surveys helped to identify archaeological features in the subsurface, define 3D 

geometric relationships between features partially excavated, and establish geological 

context without excavations.  The application of geophysical methods at Los Naranjos 

is particularly significant since a portion of the site is preserved as the Parque 

Arqueológico – Ecológico Los Naranjos (Navarro Tábora, 2004) and is protected from 

further destructive excavations (Cruz C. and Valles Pérez, 2002).  In chapters 5 and 6 

of this dissertation, the principal results from the GPR studies at Los Naranjos are 

reviewed.  Here we focus on a specific subset of the GPR data wherein three-

dimensional migration, combined with joint analyses of the magnetometry data, has 

proven particularly valuable in discriminating archeological features without 

excavation.  

Prior to this research, geophysical methods had only been applied to a handful 

of research projects at archaeological sites in Honduras (Blaisdell-Sloan, 2006; Luke 

et al., 1997; Luke and Brady, 1998; Pastor, 2003; Stierman, 2004; Stierman and 

Brady, 1999; Tchakirides, 2007; Tchakirides et al., 2005).  To date, there have only 

been geophysical surveys at about 20 archaeological sites throughout the rest of 

Mesoamerica (Aitken and Stewart, 2004; Breiner and Coe, 1972; Chávez et al., 2001; 

Chavez et al., 2009; Conyers, 1995; Fowler et al., 2007; Hesse et al., 1997; Karlberg 

and Sjöstedt, 2007; Lopez-Loera et al., 2000; Morrison et al., 1970a; Ovando-Shelley 

and Manzanilla, 1997; Sauck et al., 1998; Sheets, 1985; Valdes and Kaplan, 2000; 

Welch, 2001).  Thus, in this region the full potential of geophysical methods has not 
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been realized as it has at archaeological sites in other parts of the world (e.g. Conyers, 

2004; Kvamme, 2003).   

 

Platform Mounds and Sculpture 

Structure IV is the southernmost large earthen platform mound within the 

Principal Group and measures about 100 meters by 90 meters (Figure 53).  The main 

section of the platform mound is 7 meters tall, but 4 small structures on the top add 

another 3 meters in height.  Baudez and Becquelin (1973) suggested that Structure IV 

became an expansive structure during the Middle Formative (Table 3), as presumed 

Jaral phase artifacts were recovered from the deepest levels.  A re-analysis of their 

data and stratigraphic profiles suggests it was originally constructed during the Early 

Formative as a modest platform that might have been built as an extension of an 

existing household (John Henderson, personal communication), with major expansion 

and enlargement not occurring until the early part of the Middle Formative (Table 3).  

 
Table 3: Mesoamerican time periods and associated date ranges (modified from Joyce, 
2004a). 
 

Period: Date Range: 

Postclassic A.D. 1000 – 1521 

Late Classic A.D. 600 – 1000 

Early Classic A.D. 250 – 600 

Late Formative 400 B.C. – A.D. 250 

Middle Formative 900 – 400 B.C. 

Early Formative 1600 – 900 B.C. 

Archaic 8000 – 1600 B.C. 

 

 107



 

 More recent excavations in the area adjacent to Structure IV uncovered 

evidence for Early Formative occupations, but none of Middle Formative occupations 

(Henderson and Joyce, 2004).  The Middle Formative expansion of Structure IV 

reflects a significant change in the use of space and coincides with important social 

changes seen in many other parts of Mesoamerica at this time (Dixon et al., 1994; 

Joesink-Mandeville, 1987).  The west slope of Structure IV, lined with flat paving 

stones (Figure 53), provided the presumed point of access to the summit.  If this 

structure was no longer an extension of an elite household, but the focus of a new kind 

of public space (i.e. monumental architecture), residential structures may no longer 

have been appropriate in the area that served as its main access.  Middle Formative 

burials located within Structure IV revealed evidence of wealth and the creation of 

distinction in objects such as large jade ear spools (Baudez and Becquelin, 1973), 

indicating Structure IV had ceremonial significance during this time period.   

Excavations on an extension added to the north side of Structure IV (labeled 

IV-5 in Figure 53) uncovered several rooms of a house that dates to the Late 

Formative (Baudez and Becquelin, 1973).  Additional excavations on the northeastern 

face of Structure IV (Figure 53) aimed to locate house floors, burials, or other 

evidence of occupation (Baudez and Becquelin, 1973).  These excavations uncovered 

a series of limestone blocks that had formed lower courses of walls.  Some basalt 

blocks were found closest to Structure IV.  The rocks were discovered beginning at 

depths of about 1.2-1.3 meters.  It is not clear from these excavations if the walls 

represent a house foundation, but it seems unlikely that a house would have been built 

on the steep side of the platform mound (Baudez and Becquelin, 1973).  If these walls 

do represent a structure, it is possible that the house originally extended to the north of 

Structure IV, an area that corresponds to GPR Grid 0 in our study (Figure 53).   
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Olmec-style sculptures are believed to have been associated with Structure IV.  

The earliest record of them appeared in the literature in 1934 when Doris Stone visited 

the site after learning of the presence of carved stone from a resident in the Ulúa 

Valley (Stone, 1934).  She described four sculptures located within the Principal 

Group that had either traditional Olmec or Maya styles (Figure 54).  Monuments 1 and 

2 (Figure 54), a combination of a serpent/shark head and an anthropomorphic head, 

respectively, are similar in style to sculptures found at the Olmec site of La Venta 

(Joyce and Henderson, 2002).  Monuments 3 and 4 (Figure 54), which Stone (1934) 

attributed to Maya forms standing in submission, more likely represent Olmec-style 

forms of an anthropomorphic figure and transformation figure, respectively (Joyce and 

Henderson, 2002).  [Joyce and Henderson (2002) later designated monument 

numbers].  The original locations of these Olmec-style sculptures remain uncertain, 

but since early researchers found them within the Principal Group, including near 

Structure IV (Figure 52), their location in open spaces adjacent to platform mounds 

suggests they are likely public monuments or displays that delineated and segregated 

the space (Cyphers, 1999; Grove, 1999; Joyce and Grove, 1999; Love, 1999).  

Geophysical methods have successfully located sculpture at the Olmec site of La 

Venta (Breiner and Coe, 1972), and it was hoped that they would be similarly 

successful at Los Naranjos.    
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Figure 54: Olmec-style sculpture recovered previously at the surface of Los Naranjos.  
Monument 1: combination of a serpent / shark head ; Monument 2: anthropomorphic 
head ; Monument 3: anthropomorphic figure; Monument 4: transformation figure.  
Sculpture interpretations are from Joyce and Henderson (2002). 

 

Geophysical Data Collection at Los Naranjos 

Ground-penetrating radar is an active geophysical method that transmits 

electromagnetic energy into the ground and receives the resulting signals after they 

have reflected off subsurface features or interfaces (Conyers, 2004).  Variations in the 

electrical properties of subsurface materials cause the transmitted signal to travel at a 

different velocity.  A portion of the energy is reflected back to the surface at each 

change in velocity and is denoted the relative dielectric permittivity (RDP) or relative 

dielectric contrast (Annan, 2005).  Reflection profiles provide a cross-sectional view 

of the subsurface and are useful for viewing stratigraphy and structure of subsurface 

materials.  All cross-sectional images display data in two-way travel time measured in 

nanoseconds (1 x 10-9 seconds), as well as in corresponding depths computed using 

velocity information obtained in situ from common mid-point (CMP) data (Jol and 

Bristow, 2003; Tchakirides and Brown, in prep).   

Magnetometry is a passive geophysical method that measures deviations in the 

Earth’s magnetic field that can be caused by anthropogenic features that have a strong 
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magnetic susceptibility in contrast with the surrounding matrix.  Examples of such 

features with a thermoremanent magnetization are hearths, kilns, or burned house 

floors (Kvamme, 2003).  Features constructed from intrinsically magnetic materials, 

such as basalt, also generate strong magnetic anomalies due to the alignment of iron-

rich minerals (Burger et al., 2006). 

As part of a joint Cornell University – University of California, Berkeley field 

program during the summer of 2003 (Figure 53), GPR data collection involved 50, 

100, 200, and 250 megahertz (MHz) (1 x 106 Hz) antennae.  Closely-spaced 

orthogonal lines that resulted in 3D grids comprise the majority of data collected 

(Figure 53).  Several individual transects (Figure 53), also known as “wildcat surveys” 

because they are geared towards reconnaissance of features worthy of further study 

(Berg and Bruch, 1982), completed the 2003 data collection at Los Naranjos.  During 

field testing, the 200 MHz and 250 MHz antennae provided an adequate depth of 

penetration while still maintaining sufficient resolution of features (Conyers, 2004) 

and were thus chosen as the primary data collection parameters.  Magnetometry 

covered a much larger area than the GPR surveys (Figure 53).  Additional higher 

frequency (400 MHz) 3D GPR data and magnetometry data collected in 2007 

(Tchakirides, 2007) complete the geophysical suite (Figure 53). 

The focus of this paper is on data collected within Grid 0, a 20 x 10 meter grid 

located between the northeastern edge of Structure IV and the southern edge of 

Structure III (Figure 53).  Nineteen individual two-dimensional data profiles, collected 

in a bi-directional survey mode, comprise Grid 0.  Data points were collected every 5 

centimeters along each profile, and individual profiles were spaced 50 centimeters 

apart.  A time window of 70 nanoseconds proved to correspond to an adequate depth 

of penetration within this portion of the site.  Using an average velocity of 0.060 m/ns 

calculated from six common mid-point (CMP) profiles from Los Naranjos 
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(Tchakirides and Brown, in prep), this time window corresponds to a depth of about 2 

meters. 

Unmigrated GPR data from Grid 0 contain more than 400 diffraction 

hyperbolae, with apices ranging from 10 to 40 nanoseconds, or about 0.3 to 1.2 meters 

depth.  Some, or perhaps many, are likely due to naturally accumulated rocks or 

building detritus from the construction or subsequent alteration of Structure IV.  

Archaeological excavations (Operation 1) within this grid (Figure 55) encountered 

evidence of construction activity, including packed surfaces and building debris 

(numerous stones and fragments of wattle and daub) (Henderson and Joyce, 2003).  

Given the Olmec-style sculptures that have been previously found at Los Naranjos, 

however, it is certainly plausible that some of these hyperbolic reflections may mark 

such sculpture, or fragments thereof, still in the ground in a region not excavated or 

below the shallow Cornell – Berkeley excavations.   

Grid 0 is the focus of this paper not only because the numerous hyperbolic 

diffractions generated in the GPR profiles make an excellent test case for 3D 

migration, but also because these data differ from almost all other GPR data collected 

at the site.  Relatively few diffraction hyperbolae were generated in other cross-

sectional GPR profiles from Los Naranjos.  Instead, the data are dominated by 

complex stratigraphy, several geological deposition sequences, and possible faulting 

(Figure 56).  This difference in the types of features visible in reflection profiles 

suggests that very different activities may have been taking place within this particular 

region of the site.   
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Figure 55: Location of Operation 1 (Op 1) excavation units within GPR Grid 0.  Also 
noted are the locations and orientations of both the GPR and magnetometry data that 
were collected within this grid. 

 

 
 

 
 
Figure 56: Examples of GPR data collected at Los Naranjos.  Most other GPR data are 
dominated by complex stratigraphy, rather than numerous diffraction hyperbolae like 
that imaged in Grid 0  Vertical exaggeration = 2x. 
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 When viewing unmigrated data, it is often difficult to determine the precise 

location of a diffracting body, as multiple diffractions from one small subsurface 

feature may appear on several parallel cross-sectional views.  Pinpointing the true 

apex of the diffraction is important not just for locating specific features but also for 

calculating the velocity of the medium above the diffraction using hyperbolic curve-

fitting analyses (Conyers, 1996).  When calculating velocities using hyperbolic curve-

fitting analyses, it is assumed that each diffraction was generated directly below the 

antennae, and not to the sides, thereby representing the apex of the diffracting body.  

Diffractions from the edges of an object will have a characteristically wider curvature, 

and therefore slower velocity than at its apex (Schilt et al., 1981), so if a diffraction 

from the side of an object is misidentified at originating at its apex, the calculated 

velocity will be incorrect.  Early attempts at quantifying the spatial distribution of 

these diffractions in unmigrated data were unsatisfactory (Tchakirides et al., 2006a), 

mainly because it was not possible to discriminate sideswipe from inline diffraction 

energy.  Three-dimensional migration has subsequently produced a more accurate 

view of the subsurface by repositioning energy to their correct subsurface source 

positions.   

 

Migration 

As the GPR system moves along the ground surface, electromagnetic energy 

radiates into the ground in a three-dimensional cone that is defined by the limits of the 

Fresnel zone (Lindsey, 1989).  Thus, the GPR system images not just what is directly 

beneath the unit, but also in front, back, and to the sides (Meats, 1996).  This type of 

energy pattern generates reflections from any point within the cone of transmission, 

but records them in a GPR profile as if they originated directly below the antennae 

(Kearey et al., 2002; Neal, 2004; Yilmaz, 2001).   
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Fundamentally, the goals of migration are to correct GPR reflection data so 

that they accurately represent the subsurface (Neal, 2004) and to increase the 

resolution of features in reflection profiles (Hogan, 1988).  There are many techniques 

for implementing migration. Here we use a form of Kirchhoff summation,  in which 

energy is summed along an appropriate diffraction hyperbola, thus focusing reflected 

energy at its apex (Hogan, 1988; Schneider, 1978).  Diffractions collapse back to their 

respective point sources.  In general migration steepens and shortens reflections and 

moves them in the updip direction (Chun and Jacewitz, 1981) (Figure 57).  When the 

correct parameters for migration are used, subsurface reflections will be relocated to 

the position corresponding to the physical location in the subsurface of the features 

that generated them.  Thus migration is essential to correctly correlate specific features 

of interest in GPR data to geological or archaeological cross-sections.  

 

 
 
Figure 57: The process of migration.  A′-B′ is migrated to A-B, its correct location in 
the subsurface.  Figure is modified from Chun and Jacewitz (1981). 
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Migration has been a standard processing technique in the seismic industry 

since it was used to process the first seismic data collected in the early 1920s (Bednar, 

2005; Neal, 2004; Sheriff and Geldart, 1995), but its use has not been as widespread in 

GPR projects (Hogan, 1988).  Recently, GPR practitioners began migrating data for 

sedimentological, geological, and geotechnical applications (Burke et al., 2008; Fisher 

et al., 1989; Fisher et al., 1996; Lehmann and Green, 2000; Maijala, 1992; Neal, 

2004).  Although a few notable examples from the archaeological geophysics 

community have been published recently (Booth et al., 2008; Leckebusch, 2000; 

Leckebusch and Peikert, 2001; Leucci, 2002; Leucci and Negri, 2006; Zhou and Sato, 

2001), archaeological geophysicists have been slow to embrace this technique for a 

host of reasons, most likely related to the increased expense involved in collecting and 

processing three-dimensional data (Meats, 1996).  The recent advances in some GPR 

data-processing programs means that migration is readily available on some standard 

data processing programs, including EKKO_Mapper 3 (Sensors & Software Inc., 

2007), ReflexW (Sandmeier, 2006), and GPR-Slice (Goodman et al., 1995), but some 

of these programs only allow for 2D migration.   

In recent years, geophysicists, particularly those working at archaeological 

sites, have begun to collect true 3D GPR data (Booth et al., 2008; Grasmueck et al., 

2004).  These surveys differ from the standard pseudo-3D grids that are merely a 

collection of closely-spaced 2D profiles and usually employ a grid spacing of 0.1 to 

0.2 meters in all directions.  The results of their high-resolution research are 

promising, and many of the map and cross-sectional views show an improvement in 

the resolution of subsurface features.  Unfortunately, it is still unrealistic for many 

GPR practitioners to collect such high-resolution data sets, given the increased cost of 

such time-consuming field projects.   
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In general, for three-dimensional migration to produce the most accurate 

results, a “true 3D” dataset is needed.  A true 3D dataset is one in which data are 

sampled according to the Nyquist sampling theorem, which requires the distance 

between measurements not exceed one-quarter of a wavelength in all directions 

(Grasmueck et al., 2004; Grasmueck et al., 2005; Nyquist, 1928).  In this survey, 250 

MHz antennae were used, and an average velocity of about 0.060 m/ns was 

determined from in situ measurements (Tchakirides and Brown, in prep).  Using these 

parameters, the resulting wavelength would be about 0.24 meters.  Although the center 

frequency of this system is 250 MHz, the frequency of the transmitted signal for Grid 

0 was only about 140 MHz (Figure 58).  The actual wavelength, therefore, is about 

0.43 meters.  Given this wavelength, data would need to be collected approximately 

every 10 centimeters in both inline and cross-line directions to be considered unaliased 

(Nyquist, 1928).  Although the inline spacing for Grid 0 (0.050 m) satisfies this 

requirement, the cross-line spacing of 0.50 meters considerably exceeds this criteria.  

Fortunately, aliasing is only a concern for steeply dipping reflectors that exceed angles 

of approximately 60 degrees (Grasmueck et al., 2005).  For this dataset (and the 

particular hyperbola of interest), most of the energy migrated occurs at angles of 

approximately 12 degrees (Figure 59), because that is where the majority of the energy 

is located.  To calculate the wavelength accurately, the apparent velocity should be 

used, rather than the true velocity, as the apparent velocity is more important for 

reflections.  Using a 0.50 meter transect spacing, a true velocity of 0.060 m/ns, and the 

actual transmitted frequency of 140 MHz, aliasing may be occurring when dip angles 

exceed 12.37 degrees (Figure 59).  It is possible, therefore, that some aliasing of the 

GPR signal may occur, but we minimized this by selecting an appropriate aperture 

width (see below).  
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Figure 58: Comparison between the 250 MHz and 200 MHz data and corresponding frequency spectra.  LINEX6475, collected in 
Grid 5, is the closest profile to LINEX646, collected within Grid 10.  The three hyperbolae generated at about 35 nanoseconds are 
visible in both profiles, but the 250 MHz is able to resolve features better than its lower frequency counterpart.  Corresponding 
frequency spectra show the ideal center frequency is not transmitted into the ground, but is downloaded by 44 % and 45 %, 
respectively.

 



 

Three-dimensional Migration  

Prior to migration, the data were filtered with a high-pass “dewow” filter to 

remove signal saturation effects (low frequency “wow”) (Gerlitz et al., 1993; Sensors 

& Software Inc., 2003).  Wow can be introduced because of the electrical properties of 

the ground (Jol and Bristow, 2003) or when the transmitting and receiving antennae 

are too close to one another (Sensors & Software Inc., 2003).  All cross-sectional 

reflection profiles shown in this paper have been dewowed.   

The Kirchhoff method was selected for migration because it is a versatile and 

easily applicable migration algorithm (Bednar, 2005).  Kirchhoff migration, also 

known as diffraction migration (Chun and Jacewitz, 1981), is governed by the 

principle that the radius of curvature of a diffraction hyperbola is directly related to the 

velocity of the medium in which it was generated and the time at which it occurs 

(Yilmaz, 2001).  In a constant velocity medium, narrow diffraction hyperbolae have a 

slower velocity than diffractions that have a larger radius of curvature.  In unmigrated 

data, hyperbolic diffractions are represented by: 

 
 

( ) ( ) ( )( )[ ]2122
0 /2/2,, VXxtzxXtD −+=  (9)  

 

where t, x, and z correspond to vertical positions within the earth, X represents 

horizontal position along a diffraction hyperbola, and V is the velocity of the 

subsurface feature (Hogan, 1988, p. 345).  
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Figure 59: Dip angle affected by aliasing.  Aliasing may occur when dip angles exceed 
12.37 degrees.  Vertical exaggeration of cross-sectional view is 2x.  Scale of inset is 
1:1. 

 

A key parameter for Kirchhoff migration is aperture width (Yilmaz, 2001), 

which refers to the number of traces that are summed along each diffraction 

hyperbola.  Aperture widths that are too small will result in poor lateral resolution, 

whereas large aperture widths can increase the chance of corruption by noise and 

lateral variations in subsurface velocity (Rastogi and Phadke, 2002).  Selecting an 

aperture width that is appropriate for the data will result in focusing of energy along 

all diffractions without degrading the quality of the data in either the deep or shallow 

regions.  In seismology, velocities may vary greatly with depth, thereby necessitating 

variable aperture widths based on specific time ranges.  In this particular case, we 

found that GPR velocities do not vary significantly with depth (Tchakirides and 

Brown, in prep).  Thus, use of a constant aperture width for migration of the Los 

Naranjos data was deemed adequate. 

We determined an appropriate aperture width by trial and error, comparing 

results using 5, 15, 30, and 401 traces (the total number of traces in each profile) 
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(Figure 60).  In the end, we selected a constant aperture width of 30 traces for 2D 

migration, as this aperture width adequately collapsed the diffraction hyperbolae of 

interest without introducing any discernable noise into the data.  Given the in-line 

sampling of 0.050 m for all GPR data within Grid 0, the total summation width was 

1.5 meters, comparable to the depth of interest.  Three-dimensional migration needs to 

accommodate a much larger volume of data (Sandmeier, 2006), so it is not always 

possible to use a comparable aperture width.  In our case, software limitations 

prohibited us from using an aperture width larger than 12 traces for this grid of data, 

so we used a constant aperture width of 12 traces for 3D migration.     

A second key parameter for Kirchhoff migration is velocity (Yilmaz, 2001).  

For migration to work properly, velocity calculations should be accurate to within 10-

20 %, or vary by no more than 0.010 – 0.020 m/ns from their actual value (Lehmann 

and Green, 2000, p. 836).  Fortunately, we had available the results of detailed in situ 

velocity analyses at this site (Tchakirides and Brown, in prep), which indicated that a 

constant velocity of 0.60 m/ns was appropriate. 
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Figure 60: Comparison of aperture width for 2D Kirchhoff migration.  Unmigrated 
data, aperture widths of 5 traces, 15 traces, 30 traces, and 401 traces (the total number 
of traces in each GPR profile) are shown.  Vertical exaggeration = 2x. 

The effect of three-dimensional migration is clear in Figure 61.  In the 

unmigrated data from Grid 0 (Figure 61a), numerous subsurface features are suggested 
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by the many overlapping diffraction hyperbolae.  While the diffraction hyperbolae are 

clearly visible, the details of the causative bodies are obscured the overlapping nature 

of the hyperbola tails as well as subtle variations in hyperbola curvature.  Two-

dimensional migration offers an improved representation of the subsurface (Figure 

61b), with most major diffractions collapsed back to their apparent point sources.  

With the long diffraction tails gone, it is now easier to identify the specific locations of 

these features.  These point sources are represented as small, high-amplitude features 

that are less than 50 centimeters in width.   

 The limitations of the 2D migration are only apparent when compared to the 

3D results.  In the 3D migrated image in Figure 61c, most of the individual point 

sources are much smaller in extent than their 2D migrated counterparts, evidence of 

the much greater resolution achieved. Moreover, approximately one-quarter of the 

point sources apparent on a given 2D images are no longer visible in the 3D migrated 

image (Figure 61b, c), presumably because they are due to out-of-plane features that 

had been mis-positioned along the 2D line.   
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Figure 61: Comparison of unmigrated, 2D migrated, and 3D migrated views of GPR 
profile Y = 48.0 m N, located within GPR Grid 0.  The high-amplitude feature 
discussed here is located at about 67 meters (indicated by black arrows).  Black circles 
highlight several point sources that are no longer visible in 3D migrated data.  Vertical 
exaggeration = 2x. 

 

Discrimination of Diffractor Geometry 

Hyperbolic diffractions in GPR data are usually interpreted as due to features 

that have dimensions that are smaller than one wavelength of the transmitted signal 

(Grasmueck and Weger, 2003 p. 1181).  According to the estimated subsurface 

velocity and the actual frequency of the transmitted pulse, the effective wavelength is 
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about 43 centimeters.  When the “envelope” (Sensors & Software Inc., 2003) of the 

3D migrated cross-sectional views are plotted (Figure 62), it is possible to see that the 

dimensions of individual point sources are all approximately 40 centimeters or less.  

These point sources are roughly circular in shape and most are concentrated within the 

uppermost meter of the profile.   

 

 
 
Figure 62: Envelope applied to a 3D migrated cross-sectional view from Grid 0.  
Individual point diffractors are visible as small red circular features, approximately 40 
cm or less in diameter (white arrows highlight two of them).  Note the feature at ~67 
meters.  Vertical exaggeration = 2x.   

 

Most of the numerous point sources appear much like what we would expect 

from individual rocks in cross-sectional view.  The limited shallow excavations within 

Grid 0 uncovered rocks that were similar in diameter to those imaged in the GPR data, 

suggesting we are mapping many more of these features than were excavated within 

Operation 1.  Because of the sheer number of these point source features within this 

grid (and their lack within almost all other GPR grids), we suspect many may simply 

relate to rocks that once comprised the terrace walls that have since eroded down the 

slopes of Structure IV.   

Among these numerous point sources, one feature stands out. The prominent 

diffraction hyperbola at 67 meters differs from the others in terms of its amplitude, 
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radius of curvature, depth (Figure 61), and 3D shape (Figure 63).  This feature has the 

highest amplitude of any feature within Grid 0, the largest radius of curvature, and is 

located deeper than almost every other diffraction hyperbola.  In unmigrated map view 

(Figure 63), this feature does not have a well-defined shape but has a maximum width 

of about 1 meter.  In the 2D migrated image (Figure 63), the linearity of the feature is 

more pronounced.  Comparison with the 3D migrated image suggests this feature is 

longer and narrower than that imaged with 2D migration, with a major axis that is 

about 1.5 meters long and about 0.5 meters wide (Figure 63). 
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Figure 63: Comparison of unmigrated, 2D migrated, and 3D migrated plan view GPR 
images of the high-amplitude feature at x = 67 m from a depth of 1.25 – 1.5 meters. 
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Correlation with Magnetometry 

Magnetometry data were collected in gradiometer mode, using two sensors that 

were oriented horizontally and spaced 1 meter apart.  Because of this configuration, it 

is possible to view the data from the individual sensors as well as the horizontal 

gradients.  Results of this survey are shown in Figure 64.  The data from the left and 

right sensors are dominated by a large high-amplitude feature in the northeast corner 

of data (Figure 64), which correlates with the location of Structure III (Figure 53).  

Magnetometry data from the left sensor (Figure 64) and magnetic gradiometry data 

(Figure 64) from Grid 0 show a dipolar anomaly that overlies the GPR reflection 

feature of interest at x = 67 m, discussed above.  Since magnetic objects are often 

located mid-way between the high- and low-amplitude portions of their resulting 

anomalies (Bevan, 2006), the source of this anomaly should lie at about 48 meters 

along profile X = 67.  This corresponds well with the location of the high-amplitude 

diffraction in the GPR data.  This same feature is not visible in the right sensor image 

(Figure 64), which implies that it is too localized to be imaged by that sensor given the 

configuration of the sensors during data collection.  The higher amplitude of the 

magnetic anomaly of this particular feature compared with the signals from most of 

the other diffractor locations implies that its source consists of material with a higher 

magnetic susceptibility, for example basalt rather than non-magnetic limestone or 

sandstone.   
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Figure 64: Comparison of magnetometry data collected within Grid 0. 
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To determine the likely lithology of this feature, we created a simple spherical 

model (e.g. Burger et al., 2006, p. 468) 
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where ZA is the vertical induced magnetic field of the sphere; FE is the Earth’s 

magnetic field at the site (nT); k is the magnetic susceptibility of the feature (emu); i is 

the magnetic inclination of the site (degrees); R is the radius of the sphere (m); x is the 

horizontal position (m); and z is the depth to the center of the sphere (m).  

The inclination of the Earth’s magnetic field at Los Naranjos is 43.88°,  and 

the total magnetic field was 39,087 nT on the day of data acquisition (NOAA, 2009).  

The sphere was assumed to lie with its center at the depth indicated by the GPR (i.e. 

1.49 m), and its radius (0.25 m) was estimated from the wavelength of the GPR data.  

Magnetic susceptibility of 0.055 emu and 0.00003 emu were chosen to represent 

possible basalt and sandstone lithologies, respectively, (e.g. Telford, 1976, p. 121).   

The anomalies computed from the spherical model assuming the feature is 

basalt are clearly a better fit to the observed anomaly than the sandstone alternative, 

even assuming the largest magnetic susceptibility value possible for a sandstone 

lithology (Telford, 1976).  Limestone produced a similar result.  The correlation 

between the basalt model and the data is not perfect (Figure 65), which may be 

attributed to a source geometry more complex than the simple sphere used to generate 

this model. 

We propose here that this particular feature, based on its dimensions, material, 

and location, corresponds to a piece of buried sculpture, similar to the four Olmec-

style basalt sculptures already documented on the surface of the site (Joyce and 
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Henderson, 2002).  During our own field mapping within the Principal Group during 

the summer of 2006, we recognized previously unreported columns within the private 

property to the north of the site, to the west of Structure II (Figure 52).  The presence 

of these columns suggests that additional columns or sculpture might still be located at 

the site, and possibly buried.  If so, they would be expected to present a geophysical 

signature like that associated with the anomaly in Grid 0.  We cannot rule out the 

possibility that this feature simply represents basalt detritus similar to the few stone 

blocks excavated at the base of Structure IV (Baudez and Becquelin, 1973).  However, 

given the dimensions of this feature and the absence of other features of a similar size 

and amplitude in the immediate area, we suspect it represents a piece of buried 

sculpture instead. 

 

 
 
Figure 65: Comparison of basalt and sedimentary rock models with the actual 
magnetometry data collected over the high-amplitude feature generated in Grid 0.  
Values input into the model are noted in the top right.  The basalt model matches well 
with the actual data, whereas the sedimentary rock model is not a good fit. 
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Conclusions 

Diffraction hyperbolae are one of the most useful signatures for identifying 

small dimensional or cylindrical bodies on GPR data.  Two-dimensional migration 

often obscures or diminishes the visibility of corresponding sources, which is one 

reason why migration is not as common in GPR studies as in seismic surveys.  Here 

we provide a case study in which migration, especially 3D migration, provides 

essential geometrical constraints on the identity of a key buried archaeological artifact 

prior to excavation. When coupled with magnetometry to constrain composition, the 

3D migrated GPR data provide a compelling case for an archeologically significant 

feature of interest that in other circumstances would be a modest footnote with 

excavation.  Through these comparative analyses, we were able to determine that this 

feature is composed of a magnetic material most likely basalt.  The shape, dimensions, 

and material are similar to examples of sculpture that have already been discovered at 

the surface of the site.  If this feature is an additional sculpture, its placement in 

relation to Structure IV is intriguing, as such sculpture was often placed in relation to 

the platform mounds to denote their significance and the sacred nature of the space 

surrounding them (Grove, 1999).   

Given the logistics of the archaeological field program at the site, it was not 

possible to excavate this feature at the time to determine its genesis.  Restrictions 

imposed on excavations at Los Naranjos may prevent this feature from ever being 

excavated or even probed in the future, thereby necessitating the use of the 

complementary high-resolution geophysical methods like those used in this study to 

determine as much as possible about features buried within the shallow subsurface.  

Three-dimensional migration of GPR data and correlation with magnetometry data 

allowed us to determine the significance of a specific feature of interest that would 

have eluded us if these techniques were not employed. 
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Recent advances in 3D GPR survey design and implementation have 

documented the benefits of acquiring true 3D data, and studies such as this one 

demonstrate the benefits of processing data using 3D algorithms.   Improvements in 

interpretation of subsurface features warrant the additional time and expenses 

associated with obtaining such a high level of detail.  We argue for the continued and 

expanded use of 3D migration in archaeogeophysical studies to generate an accurate 

representation of the subsurface, whereby all features are located at the correct 

location and depth. 
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CHAPTER 5 

THREE-DIMENSIONAL GEOPHYSICAL IMAGING OF SUBSURFACE 

GEOLOGICAL AND ANTHROPOGENIC FEATURES AT LOS NARANJOS, 

HONDURAS WITH GROUND-PENETRATING RADAR AND  

MAGNETOMETRY∗ 

 

Abstract 

Three-dimensional ground-penetrating radar (GPR) data and magnetic 

gradiometry data were acquired at the archaeological site of Los Naranjos, Honduras 

during the summer of 2003 and the spring of 2007 in order to map geological strata 

and the areal extent of features excavated during limited archaeological excavations.  

GPR proved especially effective at delineating Quaternary stratigraphy and identifying 

localized buried features such as pop-up structures and basins.  Depth of imaging was 

generally in excess of 5 meters.  Complex layering, strata onlaps, unconformities, and 

faults provide evidence of geological and tectonic activity at the site.  Correlation 

between magnetic anomalies and GPR-imaged features provides a means of 

distinguishing a range of lithologies and artifact compositions.  Anomalous, high-

amplitude GPR diffraction hyperbolae suggest that sculpture may still be buried at the 

site.  The GPR results have been useful for distinguishing between natural and 

anthropogenic features and are consistent with a clay interior of the large earthen 

platform mounds.  Although GPR surveys at other sites in Honduras have had limited 

success, the Los Naranjos results show considerable potential for this technology in 

defining geological setting and mapping buried anthropogenic structures.  Most 

importantly, geophysical methods have proven especially effective for probing this 

protected site in a non-invasive and non-destructive manner.  

                                                 
∗ Submitted to Yaxkin. 
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Introduction 

Los Naranjos is a multi-component (multi-occupation) site located on the 

northwestern shore of Lake Yojoa within the present-day Department of Cortés in 

central Honduras (Figure 66).  Initial settlement of Los Naranjos predates the Classic 

Period constructions of Copán by more than 1,000 years.  It has been said that “fuera 

de Copán, Los Naranjos es el sitio arqueológico más importante de Honduras” (Cruz 

C. and Valles Pérez, 2002, p. 46).  Its early-age, large earthen monumental 

architecture, and statues in Olmec style have attracted attention for more than seven 

decades (Baudez and Becquelin, 1973; Henderson and Joyce, 2004; Stone, 1934; 

Strong et al., 1938; Yde, 1938a). 

The wealth of information obtained during these earlier studies encouraged the 

Instituto Hondureño de Antropología e Historia (IHAH) to designate a portion of the 

site within the Principal Group as the Parque Eco-Arqueológico Los Naranjos to be 

preserved and protected (Cruz C. and Valles Pérez, 2002; Dixon et al., 2001; Navarro 

Tábora, 2004).  With this designation, IHAH requested that no further extensive 

excavations occur at the site.  This situation makes the application of non-invasive 

shallow geophysical methods particularly attractive, because they make it possible to 

study features from the site in three dimensions without excavation, thus protecting it 

for future study.   

Geophysical methods have only been applied to a handful of archaeological 

studies in Honduras (Lisman et al., 2005; Luke and Brady, 1998; Pastor, 2003; 

Stierman, 2004; Stierman and Brady, 1999; Tchakirides et al., 2005).  For that matter,  

the number of such surveys throughout Mesoamerica is relatively limited (Aitken and 

Stewart, 2004; Breiner and Coe, 1972; Chávez et al., 2001; Conyers, 1995; Hesse et 

al., 1997; Lopez-Loera et al., 2000; Morrison et al., 1970a; Ovando-Shelley and 

Manzanilla, 1997; Sauck et al., 1998; Sheets, 1985; Valdes and Kaplan, 2000).  Thus, 
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in this region the full potential of geophysical methods has not been realized as it has 

at archaeological sites in other parts of the world (e.g. Conyers, 2004; Kvamme, 

2003).   

 

 
 
Figure 66: Site map of a portion of the Principal Group at Los Naranjos, showing all 
geophysical data collected in relation to Structure IV.  Grids 0 and 12 are discussed in 
the text.  Basemap is modified from Baudez and Becquelin (1973) and Cruz C. and 
Valles Pérez (2002). 
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By employing geophysical methods, it is possible to obtain a relatively 

expansive subsurface view of a site, which can rarely, if ever, be achieved from 

limited archaeological excavations alone (Conyers, 2004).  At sites with stratigraphy 

as complex as Los Naranjos, it would take years to excavate through successive 

occupation layers in order to obtain as complete a picture of site usage.  Although 

GPR can provide a broadscale view of a site, it cannot provide information regarding 

specific ages or lengths of occupations.  Geophysical methods such as those used in 

this study can probe large areas without disturbance, thus providing a context for 

maximizing the benefits from future excavations while minimizing their disruption of 

the site.   

 

Los Naranjos 

Los Naranjos is situated within the tectonic region known as the Yojoa Valley, 

which is a Quaternary-aged graben at the north end of Lake Yojoa (Manton, 1987).  

The site is located at an elevation of about 630 meters and is flanked by low limestone 

hills to the west and east.  Bedrock of Cretaceous limestone (Yojoa Group) is overlain 

by Quaternary basaltic lava flows (Williams and McBirney, 1969), that provided raw 

materials for building and carving stone in antiquity. 

The main area of archaeological interest at Los Naranjos is the Principal 

Group, which is defined by a cluster of almost 20 large earthen platform mounds 

arranged in a regular plan with several open plazas.  The earliest known features from 

within the Principal Group date to the latter half of the Early Formative, making Los 

Naranjos one of the earliest archaeological sites in Mesoamerica.  Previous 

excavations uncovered wattle and daub structures within the plaza (Henderson and 

Joyce, 2004), evidence of social ranking provided by a burial interred within Structure 

IV (Baudez and Becquelin, 1973), as well as “one of the most wonderful collections of 
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polychrome pottery ever produced by a single site within the Maya area” (Yde, 1938a, 

p. 29). 

A small portion of the Principal Group, approximately one hectare in size 

immediately to the north of Structure IV, is the focus of this paper (Figure 66).  This 

region of the Principal Group was selected for study in an effort to understand the 

Early and Middle Formative communities that lived adjacent to the platform mounds, 

especially Structure IV (Henderson and Joyce, 2003; Henderson and Joyce, 2004; 

Joyce and Henderson, 2002).  The construction of the basal platform of Structure IV 

most likely began as an extension of a house in the Early Formative Period that was 

later enlarged and expanded during the Middle Formative to accommodate an elite 

residence (Joyce, 2004b).   

 

Ground-penetrating Radar and Magnetometry 

Two shallow geophysical techniques were employed at Los Naranjos.  

Ground-penetrating radar is an active geophysical method that transmits 

electromagnetic energy into the ground and receives the resulting signals after they 

have reflected off subsurface features or interfaces (Conyers, 2004).  Variations in the 

electrical properties of subsurface materials cause the transmitted signal to travel at a 

different velocity.  A portion of the energy is reflected back to the surface at each 

change in velocity (relative dielectric permittivity).  Reflection profiles provide a 

cross-sectional view of the subsurface and are useful for viewing stratigraphy and 

structure of subsurface materials.  All cross-sectional images display data in two-way 

travel time measured in nanoseconds (1 x 10-9 seconds), as well as in corresponding 

depths computed using velocity information obtained in situ from common mid-point 

data (Jol and Bristow, 2003; Tchakirides and Brown, in prep).   
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Magnetometry is a passive geophysical method that measures deviations in the 

Earth’s magnetic field that can be caused by anthropogenic features, such as hearths, 

kilns, or burned house floors that have a strong magnetic susceptibility in contrast with 

the surrounding matrix (Kvamme, 2003).  Walls constructed from magnetic rocks such 

as basalt also generate magnetic anomalies as the magnetic minerals in these rocks 

orient themselves with the Earth’s magnetic field (Clark, 1990).  Plan view images of 

GPR and magnetic gradiometry show variations in relative amplitude of reflected 

waves and variations in magnetic field strength, respectively.   

 

Methods 

As part of a joint Cornell University – University of California, Berkeley field 

program during the summer of 2003 (Figure 66), GPR data collection involved the 

Sensors and Software, Inc. pulseEKKO 100 with 50, 100, and 200 megahertz (MHz) 

(1 x 106 Hz) antennae and the Noggin-250 with 250 MHz antennae.  Closely-spaced 

(0.40 meters or 0.50 meters) orthogonal lines that resulted in 3D grids of data 

comprise the majority of data collected, but several individual transects augment these 

grids.  During field testing, the 200 MHz and 250 MHz antennae provided an adequate 

depth of penetration while still maintaining sufficient resolution of features (Clark, 

1990, p. 119) and served as the primary data collection tools.  Magnetic gradiometry 

data, acquired with the Geometrics, Inc. G-858 system, covered a much larger area 

than the GPR surveys (Figure 66).  Kira Blaisdell-Sloan, then a graduate student at 

Berkeley, directed the magnetic gradiometry data collection and provided the data for 

this project.  Additional higher frequency (400 MHz) 3D GPR data and magnetic 

gradiometry data  (Figure 66) collected in 2007 (Tchakirides, 2007) complete the 

geophysical suite collected. 
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Results 

Faults 

Shallow faulting is indicated on a number of the GPR cross-sections, 

especially within Grid 12, and stratal offsets are common within the uppermost 4 

meters of this grid (Figure 67).  The dominant type of fault seems to be reverse (Figure 

67), indicating east-west compression.  A linear “pop-up structure,” a feature 

compressed and pushed upwards, appears to core the portion of the plaza within the 

central portion of Grid 12 (Figure 67).  This fault-bounded structure is evident as a 

distinct southwest to northeast trending feature in map view, with sharp contrasts in 

amplitude visible on either side but especially along its eastern boundary (Figure 67).  

We suggest that this faulting may represent direct evidence of earthquake activity in 

the region. 

Earthquakes within Honduras are not unexpected, given the plate tectonic 

setting, and seismic events  have been documented from both recent and prehistoric 

data (Ambraseys, 1995; Ambraseys and Adams, 1996; Carr and Stoiber, 1977; 

Güendel and Bungum, 1995; Kovach, 2004; Osiecki, 1981; White and Harlow, 1993).  

To our knowledge, however, these results are the first paleoseismic indications visible 

within specific strata from the Lake Yojoa area.  One goal of future research would be 

to date these faults to determine if there is a correlation between earthquake activity 

and specific occupations within the site.   
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Figure 67: “Pop-up” structure imaged within the plaza at Los Naranjos.  Top: Cross-
sectional view of GPR data from Grid 12, with an example of reverse faulting located 
between 11.5 and 15.5 meters (indicated in red).  Stratal offsets extend to almost 4 
meters depth in some of the cross-sectional views.  Bottom: Map view of GPR data 
from Grid 12 showing the fault-bounded pop-up structure that trends southwest to 
northeast. 

 

Minor Basins 

Intriguing aspects of the stratigraphy imaged by GPR are the depocenters 

(areas where sediment is deposited) that underlie the plaza.  The deepest depocenter is 

defined by a series of concave strata at a basal depth of about 2.5 meters (Figure 68), 

which seems to be disrupted along its eastern edge by the “pop-up structure” described 

above.  This deeper unit is in turn overlain by a much thinner (about 1 meter thick) 

depositional sequence that onlaps it from the west (Figure 68).   
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Figure 68: Small depocenters imaged by GPR.  Top: Cross-sectional view of GPR 
data from Grid 12 showing two of the depocenters noted in Grid 12.  Onlap is 
indicated in yellow, and a basin is indicated in red.  Bottom: Map view of GPR data 
from Grid 12 showing contours of pronounced layering from the basin.  One contour 
is noted in black.  

 

The shallower unit might correspond to relatively recent overflow deposits 

from the drainage canal dug from the northern shore of Lake Yojoa (Cruz C. and 

Valles Pérez, 2002) that is located about 200 meters to the west.  The deeper, thicker 

unit, on the other hand, could have archaeological significance, as its base lies at a 

depth similar to Early Formative occupations encountered about 50 meters to the south 

during the Cornell – Berkeley excavations (Henderson and Joyce, 2004).  Its depth, 

dimensions, and location within the plaza would suggest it might have ceremonial 
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significance as a constructed basin, as similar ponds have been noted in plazas at other 

Mesoamerican sites.  For example, at the Olmec site of San Lorenzo Tenochtitlán, 

Cyphers (1999, p. 159-165), noted specific monuments located in relation to “lagunas” 

visible at the surface, but suggested the latter might be much more recent than 

proposed originally by Krotser (1973).  Understanding the complete geometry, age, 

and composition of these shallow layers should be a priority for future coring or 

excavations at Los Naranjos. 

 

Buried Sculpture? 

Each geophysical method measures a specific physical property of the ground.  

Therefore, complementary results are often produced when multiple methods are 

employed at the same site (Clay, 2001; Kvamme, 2003).  In this study, we found that 

ground-penetrating radar and magnetic gradiometry used together provided an 

effective means of determining the depth, dimensions, and lithology of specific 

features of interest.  This is apparent especially in Grid 0, which is located between 

Structures III and IV (Figure 66). 

Grid 0 contained scores of diffraction hyperbolae, with apices ranging from 10 

to 40 nanoseconds (about 0.3 to 1.2 meters depth).  Each apex corresponds to the top 

of a buried object.  Many of these may have been generated by reflections from rocks, 

perhaps detritus fallen from the slope of Structure IV, which is only about 5 meters to 

the south of Grid 0.  However, one feature stands out from the rest.  The prominent 

diffraction hyperbola at 67 meters along the transect differs from the others in terms of 

its amplitude and shape (Figure 69a), as it has a much higher amplitude and a larger 

radius than the other hyperbolae generated within this grid.  Both peak amplitude and 

diffraction curvature are expected to be dependent upon the object’s morphology, 

specifically its size (Tchakirides et al., 2006a). 
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Figure 69: Possible buried sculpture at Los Naranjos.  (a.) Unmigrated cross-sectional 
GPR transect showing the high-amplitude diffraction hyperbola at 67 m; (b.) 3D 
migrated view of the same data; (c.) Map view of 3D migrated GPR data; (d.) 
Magnetic gradiometry data.  The high-amplitude feature at about 67 meters could 
represent a buried column or piece of sculpture, like those already discovered at Los 
Naranjos (e. and f.).   
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In 3D migrated images, diffraction hyperbolae generated by small rocks should 

collapse to simple point sources.  The feature at 67 meters, however, does not collapse 

to a point like the other diffractions within the grid (Figure 69b), suggesting it is much 

larger.  When plotted in map view, this high-amplitude feature appears elongate with a 

major axis that is about 2 meters long and less than 0.50 meters wide (Figure 69c).  

Furthermore, magnetic gradiometry data indicate that this feature is composed 

of more magnetic material than the other diffractors, perhaps reflecting rock 

mineralogy, for example basalt rather than non-magnetic limestone.  Magnetic 

gradiometry data from Grid 0 show a dipolar anomaly that overlies the GPR reflection 

feature (Figure 69d).  Note that magnetic objects are often located mid-way between 

the high- and low-amplitude signals (Bevan, 2006), which would place the magnetic 

object at about 67 meters.  This corresponds well with the location of the high-

amplitude diffraction in the GPR data.   

One possible interpretation for this particular feature, based on its dimensions, 

material, and location is that it could be a piece of buried sculpture, similar to the four 

Olmec-style basalt sculptures already documented on the surface at the site (Figure 

69e, f) (Joyce and Henderson, 2002).  The original location of these sculptures in open 

spaces adjacent to platform mounds suggests they are likely public monuments or 

displays, which served to delineate and segregate the space (Grove, 1999).  During our 

own field mapping within the Principal Group during the summer of 2006, we 

recognized previously unreported columns within the private property to the north of 

the site.  The presence of these columns suggests that additional columns or sculpture 

might still be located at the site, and possibly buried.  If so, they would be expected to 

present a geophysical signature like that associated with the anomaly in Grid 0.  
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Inside Structure IV 

Ground-penetrating radar probed inside a portion of Structure IV (Figure 66) in 

one transect collected with the 100 MHz antennae.  The lower frequency antennae 

imaged to greater depths than the 200MHz antennae used for most of the surveys 

discussed thus far.  This transect began on the flat ground north of Structure IV, 

continued across the base of the mound and its northwestern extension (Structure IV-

5), and ended at the summit at an elevation of almost 7 meters (Figure 70).  The deep 

(6 m) penetration characteristic of the plaza floor north of Structure IV ends abruptly 

at the edge of the mound.  Previous excavations within the mound (Baudez and 

Becquelin, 1973) found its core to be comprised of clay, which is often a very 

absorptive medium for GPR due to its conductive properties (Conyers, 2004).  The 

lack of radar penetration is consistent with a clay core and certainly indicates that the 

platform mound material is different from the plaza matrix that is well-imaged by the 

GPR surveys north of the mound.  

Excavations from Baudez and Becquelin’s 1967-69 fieldwork (Baudez and 

Becquelin, 1973) provide information regarding specific reflections within this 

transect.  Diffraction hyperbolae along the slope between the base of the mound and 

the extension of Structure IV (labeled Structure IV-5) (from 20 to 24 meters in Figure 

70) may correspond to a stone terrace wall uncovered during their work.  Also imaged 

within this transect is evidence of their excavations in Structure IV-5, visible from 

about 30 to 37 meters (Figure 70).  In this portion, excavations revealed several rooms 

of a residence, dating to the Late Formative Period (Baudez and Becquelin, 1973, p. 

42-43).  
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Figure 70: Topographically corrected GPR cross-sectional view across Structure IV.  Top: Topography along GPR transect.  
Bottom: GPR transect over Structure IV.  Note the limited signal penetration within the platform mound.  No data were collected 
between about 40 to 47 meters.  Vertical exaggeration = 2x. 

 

 



 

Conclusions 

GPR surveys at Los Naranjos have revealed that the stratigraphy of the area 

NW of Structure IV is dominated by approximately 6 meters of sub-horizontal strata 

that is disrupted in places by what appears to be a fault-bounded structure.  These 

strata are overlain locally by thin, onlapping units that suggest small depocenters.  In 

places, the strata contain numerous diffraction hyperbolae that suggest small-scale 

objects that may correspond to natural rock detritus, material lost from the platform 

mound facings, or possibly sculpture in at least one case.  The combined use of GPR 

and magnetic gradiometry proved effective in identifying the lithology of certain 

buried features.  

Due to site-specific conditions, shallow geophysical techniques are not always 

effective in addressing archaeological issues (Conyers, 2004).  Our own GPR and 

magnetic gradiometry surveys at other Honduran sites have proven challenging given 

the sedimentary matrix (Tchakirides, 2007; Tchakirides et al., 2005).  However, the 

Los Naranjos results clearly demonstrate that geophysical data can provide high-

resolution images of subsurface stratigraphy, structure, and features of archaeological 

interest.  We again emphasize that such geophysical observations provide a means of 

assessing key site relationships in 3D over large areas in relatively rapid fashion and in 

a non-intrusive, non-destructive manner. 
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CHAPTER 6 

IDENTIFYING ARCHAEOLOGICAL AND GEOLOGICAL FEATURES IN 

THREE-DIMENSIONAL GROUND-PENETRATING RADAR AND 

MAGNETOMETRY DATA FROM LOS NARANJOS, HONDURAS 

  

Abstract  

Three-dimensional ground-penetrating radar (GPR) data and magnetometry 

data augmented limited archaeological excavations of a Cornell University – 

University of California, Berkeley field program at the site of Los Naranjos in 2003 by 

mapping geological strata and the areal extent of partially excavated features.  

Additional higher frequency GPR data and magnetometry data were collected during 

the spring of 2007 in an effort to provide higher resolution images of a specific portion 

of Los Naranjos west of the large earthen platform mound designated Structure IV.  

Ground-penetrating radar delineated Quaternary stratigraphy to depths ranging from 2 

to 6 meters at the site.  Key features revealed by the GPR data include a previously 

unrecognized buried structure, small depocenters (basins), buried sculpture (possibly 

Olmec in nature?), a stone-lined path, faults, and a possible volcanic marker horizon.  

Correlation of the GPR data with magnetometry data helped identify a basaltic 

lithology for the buried sculpture and a highly magnetic material for the buried 

structure.  The GPR results have also been useful at probing the interior of Structure 

IV as well as determining a geological origin for an exposed rock “wall” within the 

plaza and an anthropogenic origin for a large basalt boulder known informally as the 

“Volkswagen.”  The results obtained at Los Naranjos show considerable potential for 

this technology in defining geological setting and mapping buried anthropogenic 

structures.  Most importantly, these geophysical methods have proven especially 

effective for probing this protected site in a non-invasive and non-destructive manner. 
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Introduction 

In the past four decades, archaeologists have gone from dreaming about “an 

instrument that would allow them to ‘see’ beneath the surface of the ground even 

before excavation” (Breiner and Coe, 1972, p. 566) to regularly employing such 

sophisticated methods in research endeavors throughout the world (Conyers, 2004; 

Doolittle and Miller, 1991; Weymouth, 1986b).  Archaeologists have realized the 

potential contribution of geophysical methods because of the numerous examples 

where surveys have been undertaken successfully.  Geophysical surveys can benefit 

archaeological projects by targeting specific areas to excavate (Bevan and Kenyon, 

1975; Kenyon, 1977; Stierman and Brady, 1999), non-invasively studying a protected 

site where excavations are prohibited (Wood et al., 1984), or documenting a site prior 

to its impending development or destruction (Valdes and Kaplan, 2000).   

Although the use of geophysical methods to answer archaeologically 

significant questions has increased in recent years, these techniques are still used 

primarily as a “pre-excavation strategy” (Roskams, 2001, p. 51-54), whereby 

interesting features are identified and are then targeted for future excavation.  In this 

scenario, only preliminary interpretations of the data are necessary, as these 

hypotheses can then be “ground truthed” by actual excavations to determine the 

genesis of specific features.  When regulations at an archaeological site prohibit large-

scale or even minimal excavations, the luxury of simply pinpointing interesting 

features to excavate no longer exists.  Instead, interpretations of each dataset must be 

robust, and it becomes necessary to glean as much useful information from them as 

possible.  Through careful and thorough processing of the data, an expansive 

subsurface view of a site can emerge; such a view is rarely, if ever, achieved from 

limited archaeological excavations alone (Conyers, 2004).   
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The geophysical data presented here were collected during an archaeological 

field program at the site of Los Naranjos, Honduras that was co-sponsored by Cornell 

University and the University of California, Berkeley.  Los Naranjos is a multi-

component (multi-occupation) archaeological site located on the northwestern shore of 

Lake Yojoa, within the present-day Department of Cortés in central Honduras (Figure 

71).  At sites with stratigraphy as complex as Los Naranjos, it would take years to 

excavate through successive occupation layers in order to obtain a complete picture of 

site usage.  Although geophysical techniques can provide a broad-scale view of a site, 

they cannot provide information regarding specific ages or lengths of occupations.  

They can, however, probe large areas without disturbance, thus providing a context for 

maximizing the benefits from any future excavations while minimizing their 

disruption of the site.   

The portion of Los Naranjos where these data were acquired is known as the 

Principal Group, which is an area of about 2 hectares that is characterized by 

numerous large earthen platform mounds, several low flat mounds, terraces, and open 

plazas (Figure 72).  The site itself is extensive, measuring more than 6,400 x 800 

meters; other mounds known to exist (Yde, 1936), but not yet mapped, along the 

western shore of Lake Yojoa may relate to the site as well.  A portion of the site is 

preserved by the Instituto Hondureño de Antropología e Historia (IHAH) as the 

Parque Arqueológico – Ecológico Los Naranjos.  With this designation, IHAH 

requested that no further extensive excavations occur at the site (Cruz C. and Valles 

Pérez, 2002).  This situation makes the application of non-invasive shallow 

geophysical methods particularly attractive, because they make it possible to study 

features from the site in three dimensions without excavation, thus protecting it for 

future study.  The Principal Group, partially located within this property, contains the 

largest earthen platform mounds, the tallest of which measures more than 10 meters in 
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total height.  All of the geophysical research undertaken at Los Naranjos has occurred 

within the Principal Group.   

 

 
 
Figure 71: Location of Los Naranjos, on the northwestern shore of Lake Yojoa.  The 
site is located within the present-day Department of Cortés in Central Honduras. 

174 



 

 
 
Figure 72: Principal Group of Los Naranjos.  All geophysical research was conducted 
to the north of Structure IV.  Small black dots indicate the approximate locations of 
sculpture previously located at the surface of the site.  The basemap is modified from 
Baudez and Becquelin (1973), Cruz C. and Valles Pérez (2002), and Dixon et al. 
(2001). 
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Tectonic and Geologic Environment of Los Naranjos 

Honduras is located on the Chortis Block of the Caribbean Plate in Central 

America (Figure 73).  The Chortis Block is comprised of continental crust that is pre-

Mesozoic in age (Elming et al., 2001, p. 294).  To the west of Honduras, the Cocos 

Plate subducts beneath the Caribbean Plate in a northeasterly direction along the 

portion known as the Middle America Trench (Figure 73).  Central America is a 

tectonically-active region (Isacks et al., 1968; Molnar and Sykes, 1969), and the 

locations of earthquakes have helped to define the plate boundaries in this region.  The 

numerous earthquakes along the Middle America Trench produce the diagnostic 

signature of a subduction zone, whereby the down-going slab is identified by 

progressively deeper earthquakes (Figure 74).  Numerous earthquakes occur each year 

(Figure 75), and in late May, 2009, a Mw 7.3 earthquake struck the northern coast of 

Honduras (Figure 75), causing widespread destruction.   

Los Naranjos is situated within the tectonic region known as the Yojoa Valley, 

which is a Quaternary-aged graben at the north end of Lake Yojoa (Manton, 1987).  

The site is located at an elevation of about 630 meters and is flanked by low limestone 

hills to the west and east.  Bedrock of Cretaceous limestone (Yojoa Group) is overlain 

by Quaternary basaltic lava flows (Williams and McBirney, 1969) (Figure 76), both of 

which appear to have provided raw materials for building structures and statuary.   
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Figure 73: Tectonic map of Central America.  Honduras is located on the Chortis Block of the Caribbean Pate.  The Cocos Plate is 
being subducted beneath the Caribbean Plate.  
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Figure 74: Locations of all of the NEIC earthquakes from the years 1973 - 2009.  The earthquake locations indicate the subduction 
of the Cocos Plate beneath the Caribbean Plate.  Earthquakes to the north of Honduras lie along the Motagua Fault. 
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Figure 75: Locations of all of the 2009 earthquakes from the NEIC catalog.  The numerous earthquakes indicate Central America is 
a tectonically active region.  The black arrow indicates the Mw 7.3 earthquake (10 km depth) that occurred in late May, 2009, 
causing extensive damage in Honduras.



 

 
 
 
Figure 76: Geologic map of Los Naranjos, Honduras and surrounding area.  Map is 
modified from Instituto Geográfico Nacional (1973). 

 

Previous Geophysical Research in Mesoamerica 

Aside from the present study at Los Naranjos, geophysical methods have only 

been applied to a handful of archaeological studies in Honduras (e.g. Blaisdell-Sloan, 
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2006; Luke et al., 1997; Luke and Brady, 1998; Pastor, 2003; Stierman, 2004; 

Stierman and Brady, 1999; Tchakirides, 2007; Tchakirides et al., 2005) (Figure 77).  

Their use at archaeological sites throughout Mesoamerica is growing, although these 

applications are still relatively limited.  Of the hundreds, or even thousands, of 

archaeological sites in Mesoamerica, geophysical studies have only been conducted at 

twenty-four of them (Aitken and Stewart, 2004; Breiner and Coe, 1972; Chávez et al., 

2001; Chavez et al., 2009; Conyers, 1995; Fowler et al., 2007; Hesse et al., 1997; 

Karlberg and Sjöstedt, 2007; Lopez-Loera et al., 2000; Morrison et al., 1970a; 

Ovando-Shelley and Manzanilla, 1997; Sauck et al., 1998; Sheets, 1985; Valdes and 

Kaplan, 2000; Welch, 2001) (Figure 77).  Thus, in this region the full potential of 

geophysical methods has not been realized as it has at archaeological sites in other 

parts of the world (Conyers, 2004; Kvamme, 2003), such as the United States (e.g. 

Dalan, 1991; Kvamme and Ahler, 2007; Weymouth, 1986a; Weymouth, 1986b), Japan 

(e.g. Goodman and Nishimura, 1993; Goodman et al., 1994), or Brazil (e.g. Bevan and 

Roosevelt, 2003; Roosevelt, 2007).  We hope that the results of this study will 

showcase the possibility of obtaining useful results from other archaeological sites in 

the tropical environments of Mesoamerica. 

 

 

 

 

 

 

 

 

 



 

Figure 77: Locations of the 24 geophysical surveys conducted at Mesoamerican 
archaeological sites, discussed in text. 1: La Campana (Lopez-Loera et al., 2000); 2: 
Loma Alta (Hesse et al., 1997); 3: Chiconahuapan Lake (Chavez et al., 2009); 4: 
Mexico City (Ovando-Shelley and Manzanilla, 1997); 5: Teotihuacan (Chávez et al., 
2001); 6: El Tecolote (Welch, 2001); 7: Cinco Cerros (Welch, 2001); 8: San Lorenzo 
(Breiner and Coe, 1972); 9: La Venta (Morrison et al., 1970a; Morrison et al., 1970b); 
10: Dzibilchaltun (Sauck et al., 1998); 11: Izamal (Sauck et al., 1998); 12: Chichen 
Itza (Sauck et al., 1998); 13: Balankanche (Sauck et al., 1998); 14: Ma’ax Na (Aitken 
and Stewart, 2004); 15: Kaminaljuyu (Valdes and Kaplan, 2000); 16: Ceren (Conyers, 
1995; Sheets, 1985); 17: Ciudad Vieja (Fowler et al., 2007); 18: Copan (Pastor, 
2003); 19: Ticamaya (Blaisdell-Sloan, 2006); 20: Puerto Escondido (Tchakirides et 
al., 2005); 21: Los Naranjos (Tchakirides et al., 2006b); 22: Talgua (Luke et al., 1997; 
Luke and Brady, 1998; Stierman, 2004; Stierman and Brady, 1999); 23: Leon Viejo 
(Karlberg and Sjöstedt, 2007); 24: Isla de Ometepe (Karlberg and Sjöstedt, 2007). 
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Previous Research at Los Naranjos 

Los Naranjos first appeared in the literature in 1934 when Doris Stone visited 

the site after learning of the presence of carved stone from a resident in the Ulúa 

Valley (Stone, 1934).  She described four sculptures located within the Principal 

Group that had either traditional Olmec or Maya styles.  Monuments 1 and 2 (Figure 

78), a combination of a serpent/shark head and an anthropomorphic head, respectively, 

are similar in style to sculptures found at the Olmec site of La Venta (Joyce and 

Henderson, 2002).  Monuments 3 and 4 (Figure 78), which Stone (1934) attributed to 

Maya forms standing in submission, more likely represent Olmec-style forms of an 

anthropomorphic figure and transformation figure, respectively (Joyce and Henderson, 

2002).  [Joyce and Henderson (2002) later designated monument numbers].  During 

our own field mapping within the Principal Group during the summer of 2006, we 

recognized previously unreported columns within the private property to the north of 

the site, in the area south of Structure I and west of Structure II (Figure 72).  These 

columns demonstrate that such statuary was an integral part of the site. 

 

 
 
Figure 78: Olmec-style sculpture recovered previously at the surface of Los Naranjos.  
Monument 1: combination of a serpent / shark head ; Monument 2: anthropomorphic 
head; Monument 3: anthropomorphic figure; Monument 4: transformation figure.  
Sculpture interpretations are from Joyce and Henderson (2002). 
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The first excavations at Los Naranjos occurred in 1935 when Tulane 

University and the Danish National Museum sent an expedition to Honduras, partly to 

investigate Stone’s report of Los Naranjos.  Goals of this expedition were twofold: to 

delineate archaeological sites suitable for future excavations and to collect 

“archaeological specimens” for curation in Copenhagen (Yde, 1936; Yde, 1938b).  

This research at Los Naranjos, which focused mainly on the area near Structure I 

(Figure 72), was limited in nature, yet it “yielded one of the most wonderful 

collections of polychrome pottery ever produced by a single site within the Maya 

area” (Yde, 1936, p. 29).   

More expansive, but still limited, excavations by William Duncan Strong, 

Alfred Kidder, and A.J. Drexel Paul in 1936 delineated the remains of several house 

platforms as well as clearly-defined stratigraphic horizons about 100 meters north of 

Structure I (Strong et al., 1938).  One horizon of note was sterile yellow clay that was 

deposited on top of early occupations.  A unit similar to this in color and lack of 

artifact count was excavated to the west of Structure IV by the Cornell-Berkeley group 

in 2004.  These units are potentially correlative; if so, this yellow clay might represent 

a period of no occupation (due to flooding or some other natural disaster) or may have 

been brought in intentionally to cover Early Formative (Table 4) occupations as part of 

later construction phases.   

More than 30 years passed before the next stage of excavations.  During the 

years 1967-69, a French team, led by Claude Baudez and Pierre Becquelin, excavated 

several locations within the site, but most notably within Structure IV.  Baudez and 

Becquelin (1973) suggested that Structure IV began initially as an expansive structure 

during the Middle Formative (Table 4), as presumed Jaral phase artifacts were 

recovered from the deepest levels.  Stratigraphic profiles from Baudez and Becquelin 

seem to suggest several construction phases, though they only identify one.  A more 
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plausible explanation is that it was originally constructed during the Early Formative 

as a modest platform that might have been built as an extension of an existing 

household, with major expansion and enlargement not occurring until the early part of 

the Middle Formative.  Support for this hypothesis comes from the Cornell – Berkeley 

excavations to the west of Structure IV during the summer of 2004; they uncovered 

only Early Formative artifacts and none of the Middle Formative (Henderson and 

Joyce, 2004).   

 
Table 4: Mesoamerican time periods and associated date ranges (modified from Joyce, 
2004a). 

 

Period: Date Range: 

Postclassic A.D. 1000 – 1521 

Late Classic A.D. 600 – 1000 

Early Classic A.D. 250 – 600 

Late Formative 400 B.C. – A.D. 250 

Middle Formative 900 – 400 B.C. 

Early Formative 1600 – 900 B.C. 

Archaic 8000 – 1600 B.C. 

 

The Middle Formative expansion of Structure IV reflects a significant change 

in the use of space and coincides with important social changes seen in many other 

parts of Mesoamerica at this time (Dixon et al., 1994; Joesink-Mandeville, 1987).  The 

west slope of Structure IV, lined with flat paving stones (Figure 79), provided the 

presumed point of access to the summit.  Middle Formative burials located within 

Structure IV revealed evidence of wealth and the creation of distinction in objects such 

as large jade ear spools (Baudez and Becquelin, 1973).  This suggests the coincident 
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emergence of ranking or stratification, for which there is no evidence during the 

preceding periods (Marcus and Adams, 2005; Powis, 2005).   

 

 
 
Figure 79: Location of all geophysical grids at Los Naranjos in relation to Structure 
IV.  Numbers within grids refer to GPR grids.  Note stone-lined ramp on west side of 
Structure IV.   
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Occupations appear to have shifted more than once during the Formative 

Period.  Excavations on an extension added to the north side of Structure IV (labeled 

IV-5 in Figure 79) uncovered several rooms of a house that dates to the Late 

Formative (Table 4) (Baudez and Becquelin, 1973).  If Middle Formative occupations 

were not located within the vicinity of Structure IV, the presence of housing 

complexes from the Late Formative suggest that what had been a different kind of 

public space had changed again, and could once more accommodate elite residence.  

Determining whether Middle Formative occupations were actually located adjacent to 

Structure IV, but just not in the area previously excavated, would help to determine 

whether these occupations really shifted, and if so, will help to clarify their 

significance in relation to the platform mounds.  

The wealth of information obtained during these earlier studies caught the 

attention of the Instituto Hondureño de Antropología e Historia (IHAH).  Proyecto 

Arqueológico Cuenca del Lago de Yojoa (PACLY) began in 1995 as an effort to 

preserve a portion of the site as an ecological and archaeological park.  This effort 

culminated in 2001 with the designation of the Parque Eco-Arqueológico Los 

Naranjos (Dixon et al., 2001; Navarro Tábora, 2004).   

Since the designation of park status, only minimal excavations have been 

permitted.  In 2001, Oscar Neil Cruz and Erick Valles Pérez (2002) reconstructed the 

access ramp on Structure IV and exposed a portion of the terrace on the northeastern 

slope of Structure IV in hopes of making the site more easily interpretable to visitors.  

The last excavations to occur were undertaken by a joint Cornell University – 

University of California, Berkeley project (Figure 79), led by Professors John 

Henderson and Rosemary Joyce in 2003 and 2004 (Henderson and Joyce, 2003; 

Henderson and Joyce, 2004; Joyce, 2004b).  The primary objectives of their study 

were to locate and document Early Formative Period occupations in the vicinity of 
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Structure IV.  As part of their research, they requested that non-invasive geophysical 

methods be used to map the presence and extent of these early communities.    

Beyond the obvious pedagogical objectives, a goal of the geophysical data 

collection was to test the efficacy of these methods in delineating archaeological and 

geological subsurface features at this site, as they represented some of the first uses of 

geophysical methods at archaeological sites in Honduras.  Initially, it was hoped that 

the results of the geophysical surveys could be used to plan all of the archaeological 

excavations, but the logistics of the field program prevented all data from being 

analyzed prior to the establishment of test units.  As a result, many of the features of 

interest imaged in the geophysical data were not excavated.  Nevertheless, the results 

of these surveys helped to identify archaeological features in the subsurface, define 3D 

geometric relationships between features partially excavated, and establish geological 

context without excavations.  Ground-penetrating radar data were acquired by 

Professor Larry Brown and students from Cornell.  Kira Blaisdell-Sloan, then a 

graduate student at Berkeley, collected the magnetometry data.  Additional GPR and 

magnetometry data were collected adjacent to Structure IV during the spring of 2007 

(Tchakirides, 2007). 

 

Ground-penetrating Radar 

Basic Principles 

Ground-penetrating radar is an active geophysical method that transmits 

electromagnetic energy into the ground and receives the resulting signals after they 

have reflected off subsurface features or interfaces (Conyers, 2004; Daniels, 2004; 

Neal, 2004; Reynolds, 1997).  Variations in the electrical properties of subsurface 

materials cause the transmitted signal to travel at a different velocity.  A portion of the 

energy is reflected back to the surface at each change in velocity and is denoted the 
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relative dielectric permittivity (RDP) or relative dielectric contrast (Annan, 2005).  

Reflection profiles (Figure 80) provide a cross-sectional view of the subsurface and 

are useful for viewing stratigraphy and structure of subsurface materials.  All cross-

sectional images display data in two-way travel time measured in nanoseconds (1x10-9 

seconds), as well as in corresponding depths computed using velocity information 

obtained in situ from common mid-point (CMP) data (Jol and Bristow, 2003; 

Tchakirides and Brown, in prep).   

 

 
 
Figure 80: GPR data collection strategies.  Top: Common offset method, showing the 
travel paths of the direct air and ground waves and the reflected wave generated by the 
surface of Layer 1 and Layer 2.  V1 > V2.  Bottom: Common midpoint (CMP) 
method. 
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In the CMP method, the transmitting and receiving antennae are moved apart 

from a fixed point (mid-point) at a set interval (Figure 80).  For constant velocity 

media, the travel time for both the air and direct ground arrivals is a linear function of 

source-receiver offset, whereas reflected arrivals are hyperbolic functions of offset 

(Annan and Davis, 1976; Reynolds, 1997).  Velocities for the direct arrivals are 

usually estimated from the travel time versus offset plots by measuring the reciprocal 

of the resulting slope.  Average velocity from the surface to a reflecting interface can 

be obtained either by fitting hyperbolic functions using trial velocities or plotting the 

square of the travel time versus the square of the offset, in which case the velocity is 

represented by the square root of the reciprocal of the slope (Reynolds, 1997). 

  

GPR Data Acquisition at Los Naranjos 

In the 2003 field work, a Sensors and Software, Inc. Noggin 250 cart-mounted 

system, with 250 MHz antennae (Figure 81), was used to acquire some of the data at 

Los Naranjos.  In addition, a Sensors and Software, Inc. pulseEKKO 100 bistatic 

system (Figure 81), equipped with 50, 100, and 200 MHz antennae, was employed to 

provide deeper penetration profiles, additional 3D coverage, and common mid-point 

(CMP) data.  The Noggin 250 system, selected initially to collect the majority of the 

GPR data at the site, failed due to heat problems during the surveying of Grid 6; 

therefore, all subsequent surveys were undertaken using the pulseEKKO 100, with 

most data acquired with the 200 MHz antennae.  For grids collected with the 

pulseEKKO system (Grids 9, 10, 11, and 12) (Figure 79), a step size of 20 centimeters 

was used, and individual transects within each grid were spaced 40 centimeters apart 

(Table 5).  A transect spacing of 0.25 or 0.5 meters was used in the Noggin grids 

(Grids 0, 2, 3, 5, and 6) (Figure 79and Table 5).  A bi-directional survey mode was 

used for all of the grids (Figure 82), and the starting point was always located in the 
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bottom left corner (SW) (Figure 82).  The only exception to this was Grid 0, which 

had its original data collection starting point in the upper left corner (NW), with 

LINEX0 being the northernmost profile.  The profiles were later flipped so that 

LINEX0 became the southernmost profile.  All geophysical grids are co-registered to 

the Cornell – Berkeley archaeological site grid that was established at the beginning of 

the 2003 field season.  Coordinates of all grids and individual profiles, therefore, 

reflect the locations within this larger site grid. 

 

 
 
Figure 81: Geophysical equipment used during the 2003 and 2007 field seasons.  (a.) 
pulseEKKO GPR, with 200 MHz antennae.  (b.) Noggin 250 MHz GPR. (c.) SIR-
3000 GPR, with 400 MHz antennae. (d.) Geometrics G-858 magnetometer. 
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Table 5: 2003 GPR data collection parameters. 

 

Grid 

# 

System Center 

Frequency 

(MHz) 

Profile 

Direction 

Grid Size 

 (m) 

Profile 

Separation 

(m) 

In-line 

Spacing 

(m) 

0 Noggin 250 X (W – E) 20 x 10 0.5 0.05 

2 Noggin 250 Y (S – N) 8 x 8 0.25 0.05 

3 Noggin 250 X (W – E) 8 x 8 0.25 0.05 

5 Noggin 250 X (W – E) 14 x 8.5 0.25 0.05 

6 Noggin 250 Y (S – N) 6 x 20 0.25 0.05 

9N pulseEKKO 200 X (W – E) 17 x 9.25 0.4 0.2 

9S pulseEKKO 200 X (W – E) 19.5 x 8 0.4 0.2 

10N pulseEKKO 200 X (W – E) 15 x 8 0.4 0.2 

10S pulseEKKO 200 X (W – E) 14 x 3.6 0.4 0.2 

11 pulseEKKO 200 X (W – E) 13.5 x 20 0.4 0.2 

12 pulseEKKO 200 X (W – E) 12.5 x 10 0.4 0.2 

 

Higher frequency GPR data were acquired at Los Naranjos in the spring of 

2007 (Table 6) (Tchakirides, 2007), immediately to the west of Structure IV (Figure 

79).  This time, a GSSI SIR-3000 system with 400 MHz antennae (Figure 81) was 

used to collect the GPR data.  The higher frequency GPR unit was selected in the 

hopes of producing a higher resolution image of the subsurface, as the 2003 GPR data 

from this area are characterized by limited penetration and poor resolution of features. 
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Figure 82: Bi-directional GPR and magnetometry data collection scheme in Grid 0.  
Also shown are the five Cornell – Berkeley excavation units from Operation 1 (Op 1). 

 
Table 6: 2007 GPR data collection parameters. 

 

Grid # System Center 

Frequency 

(MHz) 

Profile 

Direction 

Grid 

Size 

 (m) 

Profile 

Separation 

(m) 

In-line 

Spacing 

(m) 

006007 SIR-3000 400 Y (S – N) 21 x 34 0.5 0.02 

008 SIR-3000 400 Y (S – N) 13 x 50 0.5 0.02 

 

Data Processing   

 A substantial effort was invested in “cleaning up” and processing the GPR data 

to extract as much useful information from them as possible.  The first step in data 

cleanup involved renaming all of the GPR files so that they were labeled according to 

the site grid, such as LINEX470 (47.0 m N) or LINEY300 (3.0 m E).  Next, alternate 

profiles within each grid were reversed so that they were all oriented in the same 

direction, either west to east or south to north.  The data collection starting point for all 
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grids was the southwest corner, so all of the odd-numbered profiles were reversed (the 

first line collected was labeled LINEX0 or LINEY0).  For all of the GPR data 

collected with the Noggin 250 MHz system, it was necessary to reset the starting 

coordinate of alternating profiles so that each profile aligned properly.  This step was 

necessary because of slight variations in line length due to slippage of the survey 

wheel.  Similarly, the data files were chopped so that each profile had the same 

number of traces.  This created grids of uniform size, which was necessary for 

migration to work correctly (Sandmeier, 2006).   

 Obviously bad traces were zeroed then replaced by a new trace derived from 

interpolating traces on either side of the suspect trace.  All profiles were examined for 

trace polarity reversals that might have resulted from inadvertent flipping of the 

orientation of the transmitting and receiving antennae during data collection.  Polarity 

was then corrected for consistency among all of the profiles.  This was an issue for the 

pulseEKKO data only, since the Noggin and GSSI antennae are fixed.  Next, all GPR 

data were filtered with a high-pass “dewow” filter to remove signal saturation effects 

(Gerlitz et al., 1993; Sensors & Software Inc., 2003).  Wow can be introduced because 

of the electrical properties of the ground (Jol and Bristow, 2003) or when the 

transmitting and receiving antennae are too close to one another (Sensors & Software 

Inc., 2003).  All cross-sectional reflection profiles shown in this paper have been 

dewowed.  Time zero corrections were then performed using the “Datum Timezero” 

option built into Ekko_View Deluxe (Sensors & Software Inc., 2003) so that the time 

zero was reset to the first break point (See Chapter 3) of each trace.   

For the 2007 GPR data, some additional steps were necessary, as these data 

were collected slightly differently than the 2003 data.  For instance, the 2007 data 

were collected using an amplitude gain in the field to enhance initial viewing of the 

data.  Because I wanted to work with the raw data for processing, this original header 
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gain was removed, then the data were dewowed.  The 2007 data were also collected 

using a small time shift, so the time zero of each data file was manually reset using the 

first break point of the first trace in each file. 

A Hilbert transform was used to calculate the “envelope” of each trace (Figure 

83) prior to generating GPR time slices, which involved a fast Fourier transform to 

shift negative frequencies by 90 degrees then an inverse Fourier transform (Goodman 

et al., 1995; Sensors & Software Inc., 2003; White, 1991).  Time-slice images derived 

from the envelope are often more easily interpreted. 

 

 
 
Figure 83: Schematic of a wavelet before, during, and after the "envelope" is applied.  
Modified from Sensors & Software, Inc. (2003, p. 92; Figure 8-15). 
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Frequency Dependence 

In GPR surveys, a trade-off exists between the depth of penetration of the GPR 

signal and the resulting resolution of features, with lower frequencies penetrating to 

greater depths, but higher frequencies resolving features better.  In this study, the 400 

MHz antennae penetrated to depths of only about 50 centimeters, whereas the 100 

MHz penetrated to depths of almost six meters.  The 250 MHz antennae are thought to 

provide the best trade-off between depth of penetration and resolution of features in 

archaeological contexts (Clark, 1990). 

A less well-known aspect of GPR frequencies is that the characteristic 

frequency of GPR antennae is the center frequency of the signal emitted in air.  

However, the frequency of the signal that is coupled into the ground can range 

anywhere from one-half to two times this “ideal” frequency.  There is no easy way to 

predict the amount at which the transmitted frequency will vary, but it usually is 

reduced about 10 to 50 %, depending on the ground conditions (Greg Johnston, 

personal communication).  This is referred to generally as “frequency pull-down” 

(Figure 84), but there is no standard definition (Greg Johnston, personal 

communication).  In this example, the 250 MHz shifted to 140 MHz, which is a loss of 

44%.  The 200 MHz shifted down to 110 MHz, which is a loss of 45%. 
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Figure 84: Comparison between the 250 MHz and 200 MHz antennae.  LINEX6475, collected in Grid 5, is the closest profile to 
LINEX646, collected within Grid 10.  The three hyperbolae generated at about 35 nanoseconds are visible in both profiles, but the 
250 MHz is able to resolve features better than its lower frequency counterpart.  Corresponding frequency spectra show the ideal 
center frequency is not transmitted into the ground, but is downloaded by 44 % and 45 %, respectively. 

 



 

Velocity Estimation 

Six CMP profiles (Figure 85) were included as part of the geophysical data 

collection at Los Naranjos to provide estimates of in situ GPR velocities.  The CMP 

technique (see above) is a commonly used method for estimating subsurface velocities 

from both seismic and GPR data (Bristow and Jol, 2003; Sheriff and Geldart, 1995), 

and the estimates extracted are generally considered to be robust (Jol and Bristow, 

2003).  Any variation caused by display mode or limitations in screen resolution was 

thought to vary by 1 to 2 % at most (Annan and Davis, 1976).  While conducting 

initial analyses of the CMP profiles from Los Naranjos, we noticed that velocities 

varied much more than 1 to 2 % depending on the particulars of the technique used to 

estimate velocity.  For example, for CMP PRO 27 we obtained a ground wave velocity 

of 0.060 m/ns when visually fitting a line between 2 points, but we obtained an 

estimate of 0.055 m/ns with linear regression analyses using points picked from all the 

traces, a difference of 8.3 %.  This led us to perform a systematic study of several 

common picking strategies, display modes, and analytic techniques to evaluate the 

impact of these various “picking” criteria on the resulting velocity estimates 

(Tchakirides and Brown, in prep).  The results of these analyses proved invaluable for 

comparisons with the archaeological excavation data, as accurate velocities are needed 

to convert GPR data from travel time into depth. 
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Figure 85: Wiggle trace images of the six CMP profiles collected at Los Naranjos.  A synthetic CMP is shown in the bottom left, 
with direct air and ground waves, and one reflection.  Vertical exaggeration = 2x.

 



 

Three-dimensional Migration 

As the GPR system moves along the ground surface, electromagnetic energy 

radiates into the ground in a three-dimensional cone that is defined by the limits of the 

Fresnel zone (Lindsey, 1989).  Thus, the GPR system images not just what is directly 

beneath the unit, but also in front, back, and to the sides (Meats, 1996).  This type of 

energy pattern generates reflections from any point within the cone of transmission, 

but records them in a GPR profile as if they originated directly below the antennae 

(Kearey et al., 2002; Neal, 2004; Yilmaz, 2001).   

Fundamentally, the goals of migration are to correct GPR reflection data so 

that they accurately represent the subsurface (Neal, 2004) and to increase the 

resolution of features in reflection profiles (Hogan, 1988).  There are many techniques 

for implementing migration.  Here we use a form of Kirchhoff summation, in which 

energy is summed along an appropriate diffraction hyperbola, thus focusing reflected 

energy at its apex (Hogan, 1988; Schneider, 1978).  Kirchhoff migration, also known 

as diffraction migration (Chun and Jacewitz, 1981), is governed by the principle that 

the radius of curvature of a diffraction hyperbola is directly related to the velocity of 

the medium in which it was generated and the time at which it occurs (Yilmaz, 2001).  

In a constant velocity medium, narrow diffraction hyperbolae have a slower velocity 

than diffractions that have a larger radius of curvature.  When the correct parameters 

for migration are used, subsurface reflections will be relocated to the position 

corresponding to the physical location in the subsurface of the features that generated 

them.  In general migration steepens and shortens reflections and moves them in the 

updip direction (Chun and Jacewitz, 1981) (Figure 86).  Thus migration is essential to 

correctly correlate specific features of interest in GPR data to geological or 

archaeological cross-sections.  
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Figure 86: The process of migration.  A′-B′ is migrated to A-B, its correct location in 
the subsurface.  Figure is modified from Chun and Jacewitz (1981). 

 

Magnetometry 

Magnetometry is a passive geophysical method that measures deviations in the 

Earth’s magnetic field that can be caused by anthropogenic features that have a strong 

magnetic susceptibility in contrast with the surrounding matrix.  Examples of such 

features with a thermoremanent magnetization are hearths, kilns, or burned house 

floors (Kvamme, 2003).  Features constructed from intrinsically magnetic materials, 

such as basalt, also generate strong magnetic anomalies due to the alignment of iron-

rich minerals (Burger et al., 2006).  Plan view images of magnetometry data show 

variations in magnetic field strength.   

 

Acquisition of Magnetic Data 

A Geometrics G-858 cesium vapor magnetometer was used to acquire data at 

Los Naranjos in 2003, with all surveys occurring within the Principal Group.  Data 
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were acquired in 58 grids, which overlapped much of the same areas as GPR and 

significantly expanded subsurface geophysical coverage (Figure 79).  Similar to the 

GPR surveys, magnetometry data (Figure 87) were collected in a bi-directional mode, 

with all transects oriented south to north.  Individual transects were spaced 1 meter 

apart (Figure 88).  Two additional grids of magnetometry data were collected in 2007 

(Figure 79), but for these data, both the sensor spacing and transect spacing were 

decreased in order to produce higher resolution datasets (Figure 88).  The 

magnetometry data collected at Los Naranjos are used here to corroborate the GPR 

findings when appropriate. 

 

 
 
Figure 87: Map view of the 2003 horizontal gradient magnetometry data from Los 
Naranjos. 



 

 

 

 
 
Figure 88: Comparison of the 2003 and 2007 magnetometry data collection.  In the 
2003 data collection, the unit was carried along the ground, and the sensors were 
spaced 1 meter apart in-line but overlapped in the cross-line profiles.  In the 2007 data 
collection scheme, the sensors were attached to the pole with wheels, and there was a 
consistent 50-centimeter spacing between sensors (in-line and cross-line).  Red lines 
indicate location of tape measures on the ground.  Teal cylinders represent sensors (L: 
left and R: right), and the gray objects represent the unit (without wheels in 2003 and 
with wheels in 2007).  Arrows indicate direction of movement.   
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Geophysical Results 

Buried Sculpture? 

Each geophysical method measures a specific physical property of the ground.  

Therefore, complementary results are often produced when multiple methods are 

employed at the same site (Clay, 2001; Kvamme, 2003).  In this study, we found that 

ground-penetrating radar and magnetometry used together provided an effective 

means of determining the depth, dimensions, and lithology of several specific 

subsurface features.  One example from Grid 0, located between Structures III and IV 

(Figure 79), highlights this. 

Grid 0 contained scores of diffraction hyperbolae, with apices ranging from 10 

to 40 nanoseconds, or about 0.3 to 1.2 meters depth, with each apex corresponding to 

the top of a buried object.  Many of these may have been generated by reflections from 

rocks, perhaps detritus fallen from the slope of Structure IV, which is only about 5 

meters to the south of Grid 0 (Figure 79).  One feature, however, stands out from the 

rest in terms of its amplitude and shape (Figure 89a).  The prominent diffraction 

hyperbola at 67 meters has a much higher amplitude and a larger radius than the other 

hyperbolae within this grid.  Both peak amplitude and diffraction curvature are 

expected to be dependent upon the object’s morphology, specifically its size 

(Tchakirides et al., 2006a). 

In 3D migrated images, diffraction hyperbolae generated by small rocks should 

collapse to simple point sources.  The feature within Grid 0 at 67 meters, however, 

does not collapse to a point like the other diffractions within the grid (Figure 89b), 

suggesting it is much larger in size.  When plotted in map view, this high-amplitude 

feature appears elongate with a major axis that is about 1.5 meters long and 

approximately 0.5 meters wide (Figure 89c).  
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Figure 89: Possible buried sculpture at Los Naranjos.  (a.) Unmigrated cross-sectional 
GPR transect showing the high-amplitude diffraction hyperbola at 67 m; (b.) 3D 
migrated view of the same data; (c.) Map view of 3D migrated GPR data; (d.) 
Magnetic gradiometry data.  The high-amplitude feature at about 67 meters could 
represent a buried column or piece of sculpture, like those already discovered at Los 
Naranjos (e. and f.). 
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Furthermore, horizontal gradient magnetometry data indicate that this feature 

is composed of more magnetic material than the other diffractors, perhaps reflecting 

rock mineralogy, for example basalt rather than non-magnetic limestone.  

Magnetometry data from Grid 0 show a dipolar anomaly that overlies the GPR 

reflection feature (Figure 89d).  Note that magnetic objects are often located mid-way 

between the high- and low-amplitude signals (Bevan, 2006), which would place the 

magnetic object at about 67 meters.  This corresponds well with the location of the 

high-amplitude diffraction in the GPR data.   

One possible interpretation for this particular feature, based on its dimensions, 

material, and location is that it could be a piece of buried sculpture, similar to the four 

Olmec-style basalt sculptures already documented on the surface at the site (Joyce and 

Henderson, 2002) (Figure 78 and Figure 89 e, f).  The original locations of these 

Olmec-style sculptures remain uncertain, but since early researchers found them 

within the Principal Group, including near Structure IV (Figure 72), their location in 

open spaces adjacent to platform mounds suggests they are likely public monuments 

or displays that delineated and segregated the space (Cyphers, 1999; Grove, 1999; 

Joyce and Grove, 1999; Love, 1999).  During our own field mapping within the 

Principal Group during the summer of 2006, we recognized previously unreported 

columns within the private property to the north of the site.  The presence of these 

columns suggests that additional columns or sculpture might still be located at the site, 

and possibly buried.  If so, they would be expected to present a geophysical signature 

like that associated with the anomaly in Grid 0.  

 

Faulting and Paleoseismology 

Shallow faulting is indicated on a number of the GPR cross-sections, 

especially within Grid 12 (Figure 90).  Stratal offsets are common within the 
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uppermost 4 meters of this grid.  The dominant type of fault seems to be reverse 

(Figure 90), indicating east-west compression.  The subsurface geometry of it suggests 

a linear “pop-up” structure, a feature compressed and pushed upwards, at the core of 

the plaza within the central portion of Grid 12 (Figure 90).  This fault-bounded 

structure is evident as a distinct southwest to northeast trending feature in map view, 

with sharp contrasts in amplitude visible on either side but especially along its eastern 

boundary (Figure 90).  We suggest that this faulting may be direct evidence of 

earthquake activity in the region. 

 

 
 
Figure 90: “Pop-up” structure imaged within the plaza at Los Naranjos.  Top: Cross-
sectional view of GPR data from Grid 12, with an example of reverse faulting located 
between 11.5 and 15.5 meters (indicated in red).  Stratal offsets extend to almost 4 
meters depth in some of the cross-sectional views.  Bottom: Map view of GPR data 
from Grid 12 showing the fault-bounded pop-up structure that trends southwest to 
northeast. 
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Earthquakes within Honduras are consistent with the plate tectonic setting (see 

above), and seismic events  have been documented from both recent and prehistoric 

data (Ambraseys, 1995; Ambraseys and Adams, 1996; Carr and Stoiber, 1977; 

Güendel and Bungum, 1995; Kovach, 2004; Osiecki, 1981; White and Harlow, 1993).  

To our knowledge, however, these results are the first paleoseismic indications visible 

within specific strata from the Lake Yojoa area.  One goal of future research would be 

to date these faults to determine if there is a correlation between earthquake activity 

and specific occupations within the site.   

 

Small Depocenters 

Perhaps the most intriguing aspect of the stratigraphy evident in the GPR data 

are apparent localized depocenters within the plaza.  The deepest depocenter is defined 

by a series of concave strata at a basal depth of about 2.5 meters (Figure 91), which 

seems to be disrupted along its eastern edge by the pop-up structure described above.  

This deeper unit is in turn overlain by a much thinner (about 1 meter thick) 

depositional sequence that onlaps it from the west (Figure 91).   

The shallower unit might correspond to relatively recent overflow deposits 

from the drainage canal dug from Lake Yojoa (Cruz C. and Valles Pérez, 2002) that is 

located about 200 meters to the west.  The deeper, thicker unit, on the other hand, 

could have archaeological significance, as its base lies at a depth similar to Early 

Formative occupations encountered about 50 meters to the south during the Cornell – 

Berkeley excavations (Henderson and Joyce, 2004).  Its depth, dimensions, and 

location within the plaza would suggest it might have ceremonial significance as a 

constructed basin, as similar ponds have been noted in plazas at other Mesoamerican 

sites.  For example, at the Olmec site of San Lorenzo Tenochtitlán, Cyphers (1999, p. 

159-165), noted specific monuments located in relation to lagunas visible at the 
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surface, but suggested the latter might be much more recent than proposed originally 

by Krotser (1973).   

 

 
 
Figure 91: Small depocenters imaged by GPR.  Top: Cross-sectional view of GPR 
data from Grid 12 showing two of the depocenters noted in Grid 12.  Onlap is 
indicated in yellow, and a basin is indicated in red.  Bottom: Map view of GPR data 
from Grid 12 showing contours of pronounced layering from the basin.  One contour 
is noted in black. 

 

In cross-sectional view, the GPR signal is attenuated below the deeper 

stratigraphic unit, and only subtle reflections are visible below it (Figure 91).  One 

possible reason for the lack of deeper penetration is that the basin is lined with clay, 
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which would attenuate the GPR signal.  If the lining is clay, determining whether it 

was intentionally lined to form an impermeable layer at the base would help to 

establish whether the genesis of this feature is anthropogenic or geological.  

Understanding the complete geometry, age, and composition of these shallow layers 

should be a priority for future coring or excavations at Los Naranjos. 

 

Inside Structure IV 

Ground-penetrating radar probed Structure IV (Figure 79) in a series of 

transects collected with the 100 MHz antennae that began on the flat ground north of 

Structure IV, continued across the base of the mound and its northwestern extension 

(Structure IV-5), and ended at the summit at an elevation of almost 7 meters (Figure 

92).  The individual profiles were pieced together to create this composite image that 

was then corrected for topography using elevations measured during the summer of 

2006 fieldwork.  The lower frequency antennae were selected specifically to image to 

greater depths than the 200MHz or 250 MHz antennae used for most of the surveys 

discussed thus far.  This transect The deep (6 m) penetration characteristic of the plaza 

floor north of Structure IV ends abruptly at the edge of the mound (at about 18 meters 

on Figure 92).  Previous excavations within the mound (Baudez and Becquelin, 1973) 

found its core to be comprised of clay, which is often a very absorptive medium for 

GPR due to its conductive properties (Conyers, 2004).  The lack of radar penetration is 

consistent with a clay core and clearly indicates that the platform mound material is 

different from the plaza matrix that is well-imaged by the GPR surveys north of the 

mound.  It is not possible to determine if this different matrix represents material 

brought in to construct Structure IV or if it represents the pre-existing topography of 

the site, but it is clear that the material is different than the surrounding matrix.
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Figure 92: Topographically corrected GPR cross-sectional view across Structure IV.  Top: Topography along GPR transect.  
Bottom: GPR transect over Structure IV.  Note the limited signal penetration within the platform mound.  No data were collected 
between about 40 to 47 meters.  Vertical exaggeration = 2x. 

 



 

Excavations from Baudez and Becquelin’s 1967-69 fieldwork (Baudez and 

Becquelin, 1973) provide information regarding specific reflections within this 

transect.  Diffraction hyperbolae along the slope between the base of the mound and 

the extension of Structure IV (labeled Structure IV-5) (from 20 to 24 meters in Figure 

92) may correspond to a stone terrace wall uncovered during their work.  Also imaged 

within this transect is evidence of their excavations in Structure IV-5, visible from 

about 30 to 37 meters (Figure 92).  In this portion, excavations  revealed several rooms 

of a residence, dating to the Late Formative Period (Baudez and Becquelin, 1973, p. 

42-43).  Additional features are visible in Figure 92, but they correspond to clutter 

(sideswipe) from the tree canopy and a visible bottom of the data, which is an artifact 

of the topographic correction. 

 

Zone of Limited GPR Penetration 

Although GPR penetration was excellent throughout most of Los Naranjos (2-

6 meters), data collected in the southern portion of the plaza to the west of Structure 

IV are characterized by a depth of penetration less than about 60 to 70 centimeters.  

This low penetration zone is visible in GPR data collected in Grids 2 and 3 and the 

southern portion of Grid 9 (Figure 79).  Grids 2 and 3 cover the same area, but profiles 

in Grid 2 were oriented South to North, whereas profiles in Grid 3 were oriented West 

to East (Table 5).  Few reflections are visible in any of the cross-sectional views from 

these grids, and only a handful of diffraction hyperbolae were generated in these data.   

We interpret the limited penetration in these datasets to result from a 

yellowish-brown clay layer that was encountered in Operation 4 during the 2004 

Cornell – Berkeley excavations.  Examination of one of the GPR cross-sectional views 

collected within Grid 3 (Figure 79) demonstrates this limited penetration and its 

possible relationship to excavated features (Figure 93).  In profile LINEX3600 [3.60 
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m N], there are virtually no reflections deeper than about 70 centimeters (Figure 93).  

Operation 4G, excavated between 36 and 38 meters North and 2 to 3 meters within 

this profile, provides some clues about the possible reasons for such poor penetration 

within this region.  A stratigraphic wall profile from the southernmost wall [36.0 m N] 

shows the numerous clay layers that were encountered.  One layer in particular seems 

especially problematic: the yellowish-brown clay.  This sterile layer (no artifacts) was 

described as “sticky” and “nasty” during excavations and was especially difficult to 

excavate.  The basal depths of this yellow clay occurred from about 55 to about 70 

centimeters in Operation 4, which coincides with the basal reflection in the GPR data.  

A similar yellowish-brown clay layer was also noted during the 1936 excavations to 

the north of Structure I (Strong et al., 1938), and this layer was also sterile.  Early 

Formative occupations were located immediately below the yellow clay layer in both 

cases.   

 

 

Figure 93: Limited GPR penetration in Grid 3 and comparison with an excavation wall 
profile.  Excavation wall profile is from the CU-UCB excavation field program from 
Operation 4G, located at 36.0 m N.  Corresponding GPR profile, LINEX3600 [36.0 m 
N], shows the lack of penetration at about 70 centimeters.  This corresponds to the 
base of the yellowish-brown clay.  GPR cross-sectional view = 1:1. 
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Signals from below this layer were not recorded, indicating the yellow clay 

layer is attenuating the GPR signal and masking reflections from all deeper layers.  

The yellow clay layer is especially interesting because it was only found in the vicinity 

of the Early Formative occupations (Operations 2 and 4).  If this yellow clay layer 

results in limited GPR penetration, it may be possible to use this lack of penetration to 

identify additional early occupations.  The only area of Los Naranjos to date to have 

such poor penetration is that found to the immediate west of Structure IV.  Although 

this may only be a coincidence, the GPR data seem to suggest that this yellow clay 

layer is the culprit for limited penetration.   

We decided, therefore, to return to Los Naranjos in the late spring of 2007 to 

collect additional GPR data using 400 MHz antennae in the hopes of achieving a 

higher resolution dataset.  In portions of GPR Grid 008 (Figure 79), the 400 MHz 

antennae penetrated to depths of only about 40 centimeters, which was even less than 

the 250 MHz dataset.  For the most part, however, the maximum depth of penetration 

was equivalent to the 250 MHz datasets, but the 400 MHz antennae provided a higher-

resolution dataset that included visible reflections and diffraction hyperbolae 

throughout many of the profiles (Figure 94).  In all three geophysical datasets, the 

maximum depth of penetration was about 70 centimeters. 

 

 
 
Figure 94: A portion of unmigrated 400 MHz LINEY60 [6.0 m E] from GPR Grid 
008.  Note the limited penetration deeper than about 70 centimeters.  Vertical 
exaggeration = 2x. 
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A Previously Unrecognized Buried Structure? 

Ground-penetrating radar Grid 6 is located atop the low topographic ridge that 

trends south to north through a portion of the main plaza at Los Naranjos (Figure 79).  

Unmigrated GPR data from Grid 6 contain prominent diffraction hyperbolae that are 

concentrated within the center of each of the profiles.  These diffractions form a 

cluster between 86 and 95 meters North and range in depth from about 70 centimeters 

to 1.4 meters (Figure 95).  Multiple continuous reflectors drape over the top of these 

diffractions, indicating burial by natural depositional processes (Figure 95).  Strata in 

the southern portion of the grid dip steeply and are truncated just below the present 

ground surface (Figure 95), whereas strata north of the diffraction cluster have a 

shallower dip and are overlain by an additional set of diffraction hyperbolae between 

about 95 and 98 meters (Figure 95).  The continuous reflections visible in Figure 95 

are not intact throughout all of Grid 6, but are absent north of about 88 meters in the 

central (from W – E) portion of the grid where diffraction hyperbolae are present as 

shallow as 40 centimeters (Figure 96).  In the eastern profiles of Grid 6, the reflections 

appear continuous again from south to north, but they no longer dip as steeply in the 

south as they did in the western portion of the grid (Figure 97).  These patterns suggest 

the structure is shallowest in the central portion of the grid (x = ~4 m) and dips down 

on both sides (Figure 98). 

Three-dimensional migrated profiles transform the cluster of diffraction 

hyperbolae into a sequence of sub-horizontal “steps” (from 86 to 92 meters), ranging 

in depth from about 50 centimeters to almost 1 meter (Figure 99).  Unmigrated GPR 

map views of the Grid 6 data indicate that this buried structure is quasi-rectangular in 

shape and oriented southwest to northeast (Figure 100).  This rectangular shape is 

visible from about 85 to 91 meters, at a depth of about 45 to 50 centimeters.  Higher-

amplitude anomalies within this rectangle cluster to form a possible smaller central 
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feature, and a high-amplitude circular feature is visible at the northeastern edge of the 

large rectangle (Figure 100).  Furthermore, a linear high-amplitude anomaly was 

generated at about 82 meters (Figure 100).   

 

 
 
Figure 95: Draping sediments and clusters of diffraction hyperbolae in an unmigrated 
GPR cross-sectional view from Grid 6 (LINEY150).  Diffraction hyperbolae are 
clustered between 86 and 95 meters and range in depth from about 70 centimeters to 
1.4 meters.  Note the continuous reflections that drape over these diffractions; their 
tops are truncated partially, especially in the south.  Vertical exaggeration = 2x. 

 

 
 
Figure 96: Truncated sediments in GPR Grid 6.  Unmigrated GPR data (LINEY425).  
The draping sediments seem to be truncated at 88 meters (and north), possibly 
indicating disturbance of these sediments.  Vertical exaggeration = 2x. 

 

 217



 

 
 
Figure 97: Shallow dipping sediments in GPR Grid 6.  Unmigrated GPR data 
(LINEY575).  The sediments that drape over the hyperbolae in the center of the profile 
appear to separate the center hyperbolae from those at the north end of the profile.  
Note that the dip of the draping reflections is not as steep as it was in profiles in the 
western portion of the grid.  Vertical exaggeration = 2x. 

 

 
 
Figure 98: Cross-sectional view constructed perpendicular to GPR data collected 
within Grid 6, located at 84.55 m N.  Note the draping reflections, with an apex at 
about 60 cm (located at x = ~3 m).  Vertical exaggeration = 2x. 
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Figure 99: Sub-horizontal layers in GPR Grid 6.  Three-dimensional migrated view of 
LINEY175 (3Dm_Y175).  Note the sub-horizontal reflection between 86 and 90 
meters, at a depth of about 80 centimeters.  Vertical exaggeration = 2x. 

 

 
 
Figure 100: Possible buried structure in GPR Grid 6.  Unmigrated map view of Grid 6 
data, from 0.45 to 0.5 meters depth (left).  Interpretation of the Grid 6 features (right). 
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Magnetic data acquired over GPR Grid 6 are highly magnetic, especially as 

compared to data acquired immediately to the north and east of this grid (Figure 101).  

The horizontal gradient magnetometry data acquired within GPR Grid 6 indicate a 

very high-amplitude linear anomaly that trends south to north the length of the grid 

(Figure 101).  The highest magnetic field intensities were recorded in the eastern half 

of the grid, with the values increasing steadily from west to east (Figure 102).  The 

highest amplitudes were generated in the northern half of the grid, which coincides 

with the high-amplitude domal reflection (Figure 103) and missing sedimentary cover 

within the central portion of the grid, as seen in Figure 96.     

 

 
 
Figure 101: Horizontal gradient magnetometry data highlighting the buried structure 
imaged in Grid 6.  The possible structure imaged in GPR Grid 6 is also a strong 
magnetic anomaly, indicating this feature (if archaeological) may have been burnt 
prior to burial or it may be comprised of magnetic materials, such as basalt rocks. 
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Figure 102: Horizontal gradient magnetometry profiles (transverse to direction of data 
collection) over the strong magnetic anomaly within Grid 6.  The two profiles are 
located at y = 93 m N and y = 95 m N.  Both profiles indicate an increase in magnetic 
field intensity from west (x = 0 m) to east (x = 6 m). 

 

 
 
Figure 103: Domal reflection visible in GPR Grid 6.  Three-dimensional migrated 
view of LINEY575 (3Dm_Y575).  Note the high-amplitude domal reflection between 
90 and 92 meters.  Strata in the south appear intact (and geological), whereas the strata 
in the north appear disturbed.  The reflections in the north correspond to the high-
amplitude magnetic anomaly.  Vertical exaggeration = 2x. 

 

The geometries within Grid 6 are complex, which may indicate several 

episodes of archaeological construction or perhaps collapse of some structure.  We 

suggest the feature within the center of the grid represents a structure that may have 
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collapsed or was demolished intentionally.  The sub-horizontal layering visible in the 

3D migrated data at a depth of about 80 centimeters might indicate the floor of this 

original structure (Figure 99).  The zone of higher-amplitude anomalies within this 

larger feature and the small high-amplitude circular feature might represent additions 

to this main structure, or the main structure might have served as a platform for these 

later smaller structures.  If this feature does represent the remains of a former 

structure, it may have been demolished to form the platform of a later structure prior 

to the large deposition of sediment, indicated by the continuous reflections that drape 

over this feature.  The high-amplitude magnetic anomaly might indicate the structure 

was built from magnetic material or was altered (burned?) prior to destruction and 

later burial.  A similar succession of events was noted during the excavations of an 

Early Formative residence in Operation 2, located to the south in GPR Grid 9 (Figure 

79) (Henderson and Joyce, 2003). 

  

Natural Features versus Anthropogenic? 

The GPR activities during the summer of 2003 included several isolated 

transects within the open plaza adjacent to Structure IV at Los Naranjos (Figure 79).  

The purpose of these surveys was to determine whether certain prominent features 

visible at the surface of the site were natural or anthropogenic.  The two features 

discussed here include a low stone wall and a large boulder.    

A low stone “wall” is visible in the western portion of the plaza, just to the 

west of the topographic ridge that runs north to south through this region.  Existing 

maps of the Principal Group indicate the wall as a small rectilinear low mound that 

trends roughly southwest to northeast (Dixon et al., 2001) (Figure 79).  This mound is 

less than about 0.5 meter in height, and it is comprised of numerous large stones.  

Initial interpretations of this feature suggested it was either part of an exposed stone 
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wall that was mostly buried or that it was possibly a relict terrace wall of a low 

platform mound.  Both interpretations indicated an anthropogenic origin.  Ground-

penetrating radar transect LINE1 was collected at an oblique angle across the plaza 

(Figure 79) to access the geometry of this feature by mapping the stratigraphy to either 

side.  LINE1 began about 20 meters east of the wall, continued over the center of it, 

and ended about 8 meters to its west.  The wall was located between positions -20 to -

26 meters within LINE1.   

In the GPR cross-sectional view of LINE1, the wall is associated with high-

amplitude, sub-horizontal reflections extending from the surface to a depth of about 3 

meters (Figure 104).  The high amplitudes generated from the wall decrease sharply 

immediately to its west.  Although the amplitudes in this western section are weaker 

than the rest of the profile, it is still possible to trace strata that appear to extend from 

within the wall westward (Figure 104).  Reflections dip eastward from near the surface 

at the wall to depths of 3 meters at the east end of the profile.   

 

 
 
Figure 104: Unmigrated GPR transect LINE1 across the “wall.”  The wall is located  
between -25 and -20 meters.  Negative numbers indicate grid positions west of the site 
datum (0,0).  Vertical exaggeration = 2x. 

 

If this feature were an anthropogenic stone wall, we would expect strata to 

extend continuously beneath its surface expression, but reflections would not be 
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expected to be continuous through it.  If this feature were a terrace wall of a low 

mound, strata would most likely shallow as they approached it, as if they were draping 

up to it.  This is similar to what is imaged immediately to the east of the wall in LINE1 

(Figure 104).  The strong reflections on the eastern portion of the cross-section are 

dipping at the same angle as those adjacent to the wall, most likely indicating 

deposition on the flank of a pre-existing feature.  We suggest this is a natural 

outcropping of igneous rock that could possibly indicate igneous rock that is onlapped 

by later sedimentary units.  Bedrock at Los Naranjos is comprised of Cretaceous 

limestone (Yojoa Group) that is overlain by Quaternary basaltic lava flows (Williams 

and McBirney, 1969), adding support for our hypothesis.    

Three additional transects were collected about 15 meters to the south of the 

wall (Figure 79) to determine the setting of several large basalt boulders, known 

informally as the Volkswagen (VW).  The VW measures about 1.5 meters in height 

and about 3 meters in total length (Figure 105).  Its large size and haphazard 

placement within the plaza initially suggested this feature was part of a natural 

bedrock outcrop.  Ground-penetrating radar transect LINE2 was established 

immediately to the east of the VW (Figure 79), and transects LINE 3 and LINE5 were 

collected to the south and west, respectively (Figure 79).   

In LINE2, high-amplitude reflections are visible in the western half of the GPR 

cross-sectional view (Figure 106), from a depth of about 1.5 meters to more than 4 

meters.  Several reflections are visible above these, but they are much weaker in 

amplitude.  High-amplitude sub-parallel reflections were generated in LINE3 from a 

depth of about 2.0 to 3.5 meters (Figure 107) and in LINE5 from about 1.5 to 4.0 

meters.  In none of these profiles are there dipping (onlapping) reflections that suggest 

the VW is part of the local bedrock.  Instead, the strata below it are continuous and 

undisturbed (Figure 107), suggesting the VW is allochthonous.   
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Figure 105: Large basalt boulder, known informally as the Volkswagen.  View is 
towards the east. 

 

 
 
Figure 106: Unmigrated GPR transect LINE2, east of the VW.  This transect 
approaches the VW, but does not intersect it.  Strata appear continuous and 
undisturbed by the VW.  Vertical scale is 1:1.   
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Figure 107: Unmigrated GPR transect LINE3, south of the VW.  Strata appear 
continuous and undisturbed by the VW.  Vertical scale is 1:1. 

 

Small hand samples collected from the VW during the summer of 2006 were 

identified as andesitic basalt (Christopher Andronicos, personal communication), 

which is consistent with the lithology of the Lake Yojoa Volcanic Field (Instituto 

Geográfico Nacional, 1973) located about 6 km to the northeast of the site.  While it is 

conceivable that such a large block was transported as part of a landfall, its isolated 

nature suggests that it may have been purposefully transported by the occupants of Los 

Naranjos to have ready access to raw materials for stone facings of platform mounds 

or to carve sculpture.  It is not clear why they would have been deposited in the 

southern portion of the plaza, as this space was usually left open for public activities 

and events. 

 

Volcanic Marker Horizon? 

Ground-penetrating radar data from Grid 0 contain a high-amplitude feature in 

the southeastern corner of the grid.  In cross-sectional views, this feature is represented 

by high-amplitude sub-parallel reflections between 77 and 79 meters, ranging in depth 
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from about 1.3 to 2.2 meters (Figure 108).  Several of the unmigrated cross-sectional 

views from within this grid suggest some of the layers are continuous throughout a 

portion of Grid 0 possibly extending as far west as about 71 meters.  In some profiles, 

this layering appears to be masked by diffractors that are immediately above it, but the 

3D migrated versions indicate a continuity of reflections. 

 

 
 
Figure 108: Unmigrated LINEX480 showing the high-amplitude, sub-horizontal 
reflections generated between 77 to 79 meters, ranging in depth from about 1.3 to 2.2 
meters.  Vertical exaggeration = 2x. 

 

Map views indicate that this “bright spot” is roughly circular in shape and 

measures about 4 meters in length (NS) and 3.5 meters in width (EW) (Figure 109).   

Although its appearance is slightly mottled, it is a very prominent feature within this 

grid, and it exists over a substantial depth range.  Corresponding magnetometry data 

within Grid 0 do not exhibit any anomaly, indicating that magnetic materials are not 

involved. 

This feature is interesting not only because of its high amplitude, but because 

of its proximity to the 1960s excavations of Baudez and Becquelin (1973).  Their 

excavations on the northeastern slope of Structure IV uncovered stones that formed 

the lower courses of parallel walls (Figure 109) thought to represent a house about 4 x 

3 meters in size buried at a depth of about 50 centimeters (Baudez and Becquelin, 
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1973, p. 24-26).  These walls do not extend into Grid 0, but earlier occupations were 

noted below the northern end of the easternmost wall (near area marked T14 on Figure 

109), suggesting this GPR-imaged feature might be a remnant of an earlier occupation 

zone.  Most interesting, perhaps, is that sterile soil, which was comprised mainly of 

volcanic ash, was encountered at a depth of about 1.3 meters (Baudez and Becquelin, 

1973, p. 24) (Figure 110).  This is the same depth at which these high-amplitude 

reflections begin.  Perhaps the high-amplitude reflectivity corresponds to alteration of 

pre-existing layers due to drainage induced by Baudez and Becquelin’s excavations.  

The difference in compaction of their backfilled materials as compared with the 

undisturbed sediment might have allowed for water to seep in and pool on these intact 

layers, thereby causing the high amplitudes.  

 

 
 
Figure 109: High-amplitude reflections in the southeastern corner of GPR Grid 0 in 
relation to the excavations of Baudez and Becquelin.  This 3D migrated plan view 
image is from a depth of 1.25 to 1.325 meters.  Basemap is modified from Baudez and 
Becquelin (1973, Figure 11).
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Figure 110: Stratigraphic wall profiles from Baudez and Becquelin's excavations on the northeastern slope of Structure IV.  Note 
sterile yellow clay / ash layer.  Modified from Baudez and Becquelin (1973, Figure 12). 

 



 

In addition, we note that a sediment core from the northeastern side of Lake 

Yojoa recovered silicic volcanic ash known as the Tierra Blanca Joven (TBJ) from the 

eruption of El Salvador’s Ilopango Volcano.  The TBJ occurred at a depth of about 1.6 

meters in the lake core and had a calibrated age of A.D. 130-385 (Mehringer et al., 

2005), which corresponds to the Late Formative Period.  The sterile ash unit 

uncovered during Baudez and Becquelin’s excavations might be correlative to the 

Lake Yojoa TBJ, as they thought this portion of excavations dated to the Eden Phase, 

which corresponds to the Late Formative Period (Baudez and Becquelin, 1973, p. 29) 

as well.  We speculate, therefore, that these high-amplitude reflections in the 

southeastern portion of Grid 0 correspond to the ash deposit encountered at depth 

during the excavations by Baudez and Becquelin (1973).  The TBJ layer from the 

Ilopango Volcano was also excavated at the archaeological site of Cerén, El Salvador, 

where corresponding GPR surveys noted a similarly strong reflectivity (Conyers, 

1995).   

 

Stone-lined Path? 

Our initial analyses of the Grid 0 GPR data sought to determine the 

significance of the spatial distribution of diffraction hyperbolae generated within this 

grid (Tchakirides et al., 2006a).  In that analysis, the coordinates of all diffraction 

apices on the unmigrated profiles were plotted.  No obvious patterning was discerned.  

The 3D migrated results, however, suggest that systematic arrangements are present.  

For example, in the profile located at 46.5 meters N, numerous diffraction hyperbolae 

are visible between about 50 centimeters and 1 meter.  Twelve of them occur at a 

relatively regular spacing at a depth of about 73 centimeters (Figure 111).  In the 

western half of the profile, the diffractions are spaced about 1 meter apart but appear 

with a spacing of 2 meters in the eastern portion of the profile (Figure 111).   
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Figure 111: Possible stone-lined path imaged in GPR Grid 0.  Top: Unmigrated 
LINEX465 cross-sectional view.  There is a regular spacing of diffractions that seems 
to indicate a “path” at a depth of about 75 centimeters within GPR Grid 0.  Bottom:  
3D migrated LINEX465 cross-sectional view.  The diffractions have collapsed to 
point sources with a regular spacing.  Vertical exaggeration = 2x. 

 

Three-dimensional migration collapses these diffractions to point sources with 

similar spacing (Figure 111).  Their regular distribution is more easily discernable in 

the western portion of the grid in map view, as it was in cross-sectional view, because 

they appear unobstructed by other features (Figure 112).  This pattern is more difficult 

to identify east of 75.5 meters (Figure 112).  We suggest that this spacing is too 

regular for natural deposition, and may instead represent purposeful placement.  

Unfortunately, Operation 1 excavations, located within Grid 0 (Figure 82), did not 

extend this deep, so confirmation by direct observation is still lacking.  We suggest 

these diffractions represent individual stones that may have been placed specifically to 

form a path, thereby defining an ancient living surface.  Their significance might be 

related to early constructions located immediately to the north of Structure IV, as 
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Baudez and Becquelin (1973, p.24) recognized two occupation levels between 60 

centimeters and 1 meter depth.   

 

 
 
Figure 112: Map view of 3D migrated GPR Grid 0 data, from a depth of 70 to 80 
centimeters.  Note the regularly spaced line of high-amplitude features along 46.5 
meters (indicated by black arrows) that most likely represents a stone-lined path.   

 

Conclusions 

GPR surveys at Los Naranjos have revealed both geological and 

archaeological features within the uppermost 6 meters of the site within the plaza of 

the Principal Group.  Small basins that may have ceremonial significance, a previously 

unrecognized buried structure, and a possible buried sculpture to the north of Structure 

IV provide new insight into the use of space and occupation history of the site.  A 

stone-lined path may be related to features excavated on the northeastern slope of 

Structure IV, and a possible volcanic marker horizon might serve to date some or all 

of these specific features.  Geological stratigraphy was also imaged by GPR in the area 

NW of Structure IV.  Sub-horizontal strata that are disrupted in places by what appears 

to be a fault-bounded structure highlight the potential for paleoseismology at this and 

other archaeological sites in the region.   
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The combined use of GPR and magnetometry proved effective in identifying a 

basaltic lithology of the buried sculpture imaged within Grid 0.  Sophisticated GPR 

data processing steps such as three-dimensional migration have helped to produce a 

more accurate representation of the shallow subsurface at Los Naranjos, whereas 

extensive velocity analyses on CMP data have made it possible to correlate specific 

reflections generated in the GPR data with features excavated during the 

archaeological field school. 

 Due to site-specific conditions, shallow geophysical techniques are not always 

effective in addressing archaeological issues (Conyers, 2004).  Our own GPR and 

magnetometry surveys at other Honduran sites have proven challenging given the 

sedimentary matrix (Tchakirides, 2007; Tchakirides et al., 2005).  However, the Los 

Naranjos results clearly demonstrate that geophysical data can provide high-resolution 

images of subsurface stratigraphy, structure, and features of archaeological interest.  

We again emphasize that such geophysical observations provide a means of assessing 

key site relationships in 3D over large areas in relatively rapid fashion and in a non-

intrusive, non-destructive manner. 
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