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Abstract

Accurately quantifying and robustly hedging options embedded in the guarantees
of variable annuities is a crucial task for insurance companies in preventing excessive
liabilities. Due to sensitivities of the benefits to tails of the account value distribution,
a simple Black-Scholes model is inadequate. A model which realistically describes the
real world price dynamics over a long time horizon is essential for the risk management
of the variable annuities. In this paper, both jump risk and volatility risk are considered
for risk management of lookback options embedded in guarantees with a ratchet feature.

We evaluate relative performances of delta hedging and dynamic discrete risk mini-
mization hedging strategies. Using the underlying as the hedging instrument, we show
that, under a Black-Scholes model, local risk minimization hedging is significantly bet-
ter than delta hedging. In addition, we compare risk minimization hedging using the
underlying with that of using standard options. We demonstrate that, under a Mer-
ton’s jump diffusion model, hedging using standard options is superior to hedging using
the underlying in terms of the risk reduction. Finally we consider a market model for
volatility risks in which the at-the-money implied volatility is a state variable. We
compute risk minimization hedging by modeling at-the-money Black-Scholes implied
volatility explicitly; the hedging effectiveness is evaluated, however, under a joint un-
derlying and implied volatility model which also includes instantaneous volatility risk.
Our computational results suggest that, when implied volatility risk is suitably mod-
eled, risk minimization hedging using standard options, compared to hedging using the
underlying, can potentially be more effective in risk reduction under both jump and
volatility risks.

*The authors would like to thank their colleagues Peter Mansfield and Shirish Chinchalkar for many
fruitful discussions.
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1 Introduction

Until the early 1990’s, most variable annuity contracts provided a modest minimum death
benefit guarantee of return of premiums. This is the greater of the account balance at death
and the sum of the premium deposits, less partial withdrawals, since inception of the contract.
The cost of this benefit was considered insignificant and insurance companies did not assess
an explicit charge and did not hold an additional reserve for this benefit.

Since the middle of 1990’s, variable annuity contracts have offered more substantial min-
imum death benefit guarantees. These new guarantees of minimum death benefit (GMDB)
typically include one or more of the following features:

e Reset: the benefit is the periodically automatically adjusted account balance plus the
sum of premium deposits less withdrawals since the last reset date.

e Roll-up: the death benefit is the larger of the account balance on the date of the death
and the accumulation of premium deposits less partial withdrawals accumulated at a
specified interest rate. There may be an upper bound on the benefits.

e Ratchet: the benefit is the same as a reset benefit except that it is now re-determined
at the end of a pre-set number of years (typically annually) to be the larger of the
current account balance and the account balance on the prior ratchet date. In other
words, the benefit is not allowed to decrease.

In addition to these new benefits, more aggressive equity-indexed annuities (EIA) have
been the fastest growing annuity products since 1995. The EIA is an annuity in which
the policyholder’s rate of return is determined as a defined share in the appreciation of an
outside index, e.g., S&P 500 in U.S., with a guaranteed minimum return. While these new
insurance contracts provide policyholders with downside risk protection, insurers are faced
with the challenging task of hedging against the unfavorable movement of the equity values.
Recent research has applied no arbitrage pricing theory from finance to calculate the values
of the embedded options in insurance contracts, see for example Brennan and Schwartz
(1976,[7]), Boyle Schwartz (1977, [6]), Aase and Persson (1994, [1]), Boyle and Hardy (1997,
[5]), Bacinello and Persson (2002, [3]), and Pelsser (2002, [25]).

Although much of the emphasis of the literature has been on pricing, hedging the em-
bedded options in these new insurance policies is of crucial importance for risk management.
Hedging options embedded in the variable annuities is particularly difficult since maturities
of insurance contracts are long (typically longer than 10 years), transaction costs limit the
rebalancing frequency of hedging portfolios, and liquidity restricts the choice of possible hedg-
ing instruments. In addition, due to the sensitivity of the benefits to the tail distributions, a
simple Black-Scholes model for the underlying equity price is not adequate for the observed
fat tails of the equity return distributions; a model incorporating jump risk and/or volatility
risk is necessary. The long maturity of insurance contracts also makes interest risk modeling
necessary; we discuss hedging strategy computation under the interest risk in a separate



paper [10]. Finally there are additional risks such as basis risk, mortality risk, and surrender
risk; these risks are not addressed here.

In this paper, we focus on computing and evaluating the effectiveness of hedging strategies
using either the underlying (futures) or standard options as hedging instruments, in order to
control the market risk embedded in the insurance contracts under different models, including
models that are suitable for fat tails of return distributions. We note that this is different
from the emphasis of the current literature which focuses on the fair value computation of the
insurance contracts. However, the hedging strategy computation does automatically provide
an estimate of the hedging cost. To focus on modeling and the hedging strategy computation,
we assume in this paper that the underlying account is linked directly to a market index,
e.g., S&P 500; the issue of basis risk is not addressed here.

For a derivative contract, the most frequently used hedging strategy in the financial
industry is delta hedging. In a delta hedging strategy, the trading position of the underlying
is computed from the sensitivity (first order derivative) of a (risk adjusted) option value to
the underlying. Hence the delta hedging strategy is determined from the underlying price
dynamics under a risk adjusted measure (which is unique under a Black-Scholes model but
not under a jump diffusion model).

Unfortunately delta hedging is only instantaneous and continuous rebalancing is clearly
impossible in practice. Under the assumption that a hedging portfolio can only be rebalanced
at discrete times, the market is incomplete and the intrinsic risk of an option cannot be com-
pletely eliminated. For hedging effectiveness and risk management analysis, one is interested
in the real world performance: a hedging strategy computed under a risk adjusted measure
may not be optimal under the real world price dynamics when the market is incomplete due
to discrete hedging, insufficient hedging instruments, jump risk, and volatility risk.

Given that it is impossible to completely eliminate the risk in an option, can we determine
a hedging strategy to minimize a chosen measure of risk under a real world price dynamics?
A risk minimization hedging method computes an optimal hedging strategy to minimize a
specific measure of risk under a real world price model, e.g., [16, 26, 29, 30, 22, 18, 19].
Given a statistical model and assuming trading is done at a discrete set of times, a local risk
minimization hedging strategy is computed at each trading time to minimize the variance of
the difference between the liquidating portfolio value and the value of the portfolio for the
next hedging period.

In order for a discrete hedging strategy using the underlying to be effective, hedging
portfolios need to be rebalanced frequently. This can be problematic for hedging the em-
bedded option in an insurance contract due to the transaction costs and long maturity of
insurance contracts. In addition, for variable annuities with guarantees, the long maturity
and sensitivity of the benefits to the tails of the account value distribution makes the choice
of a suitable model difficult but crucial. For example, in order to accurately model the tails
of the underlying distribution, jump risk and volatility risk may need to be considered. The
presence of such additional risks deteriorates the effectiveness of hedging using the underly-
ing. Since option markets have become increasingly more liquid, standard options are often
used as hedging instruments for a complex option. In this paper, we also compare discrete
risk minimization hedging using the underlying with that of using liquid standard options.

Using standard options as hedging instruments adds additional complexity in equity return
modeling; in this situation it is imperative that stochastic implied volatilities be adequately



modeled. When quantifying and minimizing risk, a statistical model for changes of the un-
derlying and changes of hedging instrument prices between each rebalancing time is needed.
In particular, if standard options are used as hedging instruments, it is important to ade-
quately model the stochastic implied volatilities. Unfortunately, estimating a model which is
capable of prescribing evolution of implied volatilities for a long time horizon is a challenging
task. There are two possible approaches for model estimation. One approach is based on
historical prices and the other is based on market calibration. Historical model estimation
is faced with a complex decision of the choice of data and statistical methods which lead to
stable estimation. Market calibration starts with calibrating a model for the underlying risk
from the current liquid option prices. Theoretical values of the option to be hedged (as well
as standard options if used as hedging instruments) are computed based on the calibrated
model and then either a delta hedging strategy or option hedging strategy is determined
based on this risk adjusted valuation. A difficulty of this calibration approach is that the
current liquid options have short maturities and the model calibrated from current prices is
unlikely to be able to prescribe the option price dynamics for the long time horizon of the
insurance contracts; thus, the hedging strategy determined based on market calibration is
exposed to significant model risks, particularly when the hedging portfolio needs to be rebal-
anced frequently. In addition, when the underlying price model is calibrated to the current
market option prices, the calibrated model describes price dynamics under a risk adjusted
measure, not the objective probability measure. In an incomplete market, it is necessary
to quantify and evaluate hedging effectives under the real world price dynamics. A hedging
strategy which is determined based on a risk adjusted valuation is typically not optimal when
evaluated under the real world price dynamics; the more difficult the option is to hedge, the
less optimal will be the hedging strategy determined under a risk adjusted measure.

When standard options are used as hedging instruments, it is crucial that stochastic im-
plied volatilities (which yield the hedging instrument prices) are suitably modeled. This is
difficult to accomplish by calibrating a model for the underlying and determining the op-
tion prices based on the calibrated model. The increasing autonomy of the option market
also leads to a question of whether it is possible to accurately model market standard op-
tion evolution in this fashion. We propose to compute the risk minimization hedging using
standard options by jointly modeling the underlying price dynamics and the Black-Scholes
at-the-money implied volatility explicitly. This modeling approach has many advantages.
Firstly, implied volatilities are readily observable and hedging positions can be adjusted ac-
cording to these observable variables. Secondly, the standard option hedging instruments
can be easily and accurately priced. Thirdly, calibration to the current option market is au-
tomatically done by setting the implied volatilities to the market implied volatilities. Finally,
the statistical information of the past implied volatility evolution can be incorporated in the
model.

The main contribution of this paper is hedging effectiveness evaluation for embedded op-
tions in variable annuity guarantees, under models for jump and volatility risks. We compare
delta hedging, risk minimization hedging using the underlying, and risk minimization hedg-
ing using standard options. We illustrate that the risk minimization discrete hedging using
the underlying can be significantly more effective than popular delta hedging, particularly
when rebalancing is infrequent. We show that, under a jump risk, risk minimization hedging
using standard options is more effective in risk reduction than discrete hedging using the



underlying. We propose to model the implied volatilities directly when computing a hedging
strategy using standard options as hedging instruments. We evaluate hedging effectiveness
under a joint dynamics of the underlying and at-the-money implied volatility and illustrate
that risk minimization hedging using standard options can be more effective than using the
underlying under both jump and volatility risks.

We consider GMDB with a ratchet feature, the most difficult benefit to hedge. We assume
that the mortality risk can be diversified and thus consider here the hedging problem with a
fixed maturity. We first describe, in §2, computation of dynamic discrete risk minimization
hedging strategies, using either the underlying or standard options, for the options embedded
in the GMDB with a ratchet feature. We show that the risk minimization hedging using the
underlying as the hedging instrument outperforms the delta hedging strategy in §3. We then
compare the hedging effectiveness of using the underlying with that of using liquid options
in §4 and we illustrate that, in the absence of volatility risks, risk minimization hedging
using liquid option instruments can be significantly more effective than hedging using the
underlying. Finally, in §5, we compute a risk minimization hedging when at-the-money im-
plied volatility follows an Ornstein-Uhlenbeck process and compare its hedging effectiveness
with that of using the underlying under both instantaneous and implied volatility risk. We
illustrate that, when implied volatility risk is suitably modeled, risk minimization hedging
using options can potentially be more robust and provide better risk reduction than hedging
using the underlying.

2 Hedging GMDB in Variable Annuities

For risk management of variable annuities, one is interested in risk quantification and risk
reduction under a statistical model for the real price dynamics. In this paper we are inter-
ested in computing an optimal hedging strategy, under an assumed statistical market price
model, for a variable annuity which has a minimum death guarantee benefit with a ratchet
feature. We first describe a delta hedging computation, based on the risk adjusted fair value
computation, and risk minimization hedging based on an incomplete market assumption.

Assume that the benefit depends on the value of an equity linked insurance account with
anniversaries at

0250<51<"'<£M_1<£M:T.

Assume that the account value at time ¢; is Sz, Since we assume that the mortality risk can
be diversified, we consider here the hedging problem with a fixed maturity 7. The option
embedded in a variable annuity with a ratchet GMDB is a path dependent lookback option.
The payoft of GMDB with a ratchet feature is

payoff = max<maX{St0, S St2’ o SEN{—I}’ ST)

= Sr+ maX(maX{Sg £ Sk Sk, F = 571,0)
= Sr+max(H; — Sr, ) (1)

where Hj, denotes the running max account value up to the anniversary time t; 1, i.e.,

Hfi = maX{S St17 Stz? o St 1} HlaX<H

to> ti—17
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Note that £,; = T Let Iy denote the second term in the payoff in (1), i.e., I = max(Hy —
St,0) (recall that Hr = H;_). The benefit of GMDB with a ratchet feature equals the
account value plus a lookback put option with payoff II7.

Most hedging strategies used in the financial industry are computed based on a risk
adjusted option valuation. In particular, at any time ¢ and underlying price S;, a delta
hedging strategy is determined by first computing the option value V(S;,¢) under a risk
adjusted measure and the hedging position in the underlying is given by %.

The fair value of a European path dependent option can be computed given a model for
the underlying price dynamics under a risk adjusted measure. Consider a European path
dependent option whose single payoff at the fixed time 7" = T); depends on the price path

of a single underlying asset S;:
{Sf()? SEN U 7St~M}
Assume more generally that the option payoff at the maturity 7" is given by

¢(HT7 ST)

where

H{i = gi(HfFNSfifNSfi)v 1 = 1’ . “]\Z7

and Hy = S; = Sp. For a lookback option, H; = max(H; ,S; ) and ¢(Hyp,Sr) =
maX(HT — ST, 0)
The time ¢; value of such a path dependent option is

V(Si, Hy, t;) = E (¢(Hr, Sr)lt;) . i< M

where E(-) denotes the expectation under a risk adjusted measure. Using the recursive
property of conditional expectations, for any random variable Z

E(Z|l;) = E(BE(Z|li1;)|t)
where 0 < j < M —i. The value V(ng, H,gj,fj) can be computed recursively as follows:
given V(S£M7H£M7t1\?1) = ¢(Hp,Sy), for j=M —1:—1:0,
V(Si, iy dy) = e T0E (V(S, Hyyt)lE)
= B (B(V(Sy, . Byt )l )

= e—r(tj+1—tj)E <V(S£j+1’ H£j+1 s Ej+1) |E])
Assume that the transitional density function of S; from fj to fj+1, under a risk adjusted
measure, is p; j+1(z). Then

E(V(Sij-i,-l’H£j+17£j+1)‘gj) = /0 V(:I:,Hg].+1,tj+1)pj7j+1(x)dx (2)

tj+1) comes from Sj ., since H; =

Note that the only random component of V/(S; 1, H |,
g] (HEJ b St} b S{j+1 ) :



In practice a hedging portfolio cannot be rebalanced continuously; the rebalancing fre-
quency may be further limited for hedging variable annuities due to the unusually long
maturities. Given that a hedging portfolio can be rebalanced only at a limited discrete set of
times, what is the optimal hedging strategy? How can this strategy be determined? This is
a question of option hedging in an incomplete market and the optimal hedging strategy can
be computed to minimize a measure of the hedge risk. In most of the present literature for
pricing and hedging in an incomplete market, a hedging strategy is computed to minimize
either the quadratic local risk or the quadratic total risk, e.g., [16, 18, 19, 22, 26, 29, 30]. As
an alternative to quadratic risk measure, a piecewise linear measure is used in [12, 11, 24] to
compute discrete local and total risk minimization hedging strategies. The total risk mini-
mization hedging strategy is computed by solving a stochastic optimization problem in which
the risk of failure to match the payoff through the dynamic hedging strategy is minimized,
see e.g., [16, 18, 19, 22, 26, 29, 30]. In [16], Follmer and Schweizer first consider the local risk
measure. A mean variance total risk minimizing strategy is first considered by Schweizer [28]
and Duffie [14]. The quadratic criteria for risk minimization in the framework of discrete
hedging have been studied in [4, 16, 22, 26, 29].

Assume that T" > 0 is a hedging time horizon and assume that there are M trading
opportunities (it is assumed that, for simplicity, the anniversaries of the variable annuity
form a subset of rebalancing times) at

O=th<ti < - <ty 1 <ty=T1T.

Suppose that we want to hedge a European option whose payoff at the maturity 7" is denoted
by II7. Suppose also that the financial market is modeled by a probability space (2, F, P),
with filtration (Fj)g=o1,. ., and the discounted underlying asset price follows a square-
integrable process. As discussed before, we compute optimal hedging strategies under a
statistical model for the real world price dynamics. This is essential because we want to
quantify and reduce the risk of our hedging strategies and this should be done under the real
probability measure. Denote by Pj the value of the hedging portfolio at time ¢, and by Cj
the cumulative cost of the hedging strategy up to time t;; this includes the initial cost for
setting up the hedging portfolio and the additional costs for rebalancing it at the hedging
times g, - -, tg.

When trading is limited to a set of discrete times using a finite number of instruments, it
is impossible to eliminate the intrinsic option risk. Based on the risk minimization principle,
there are two main quadratic approaches for choosing an optimal hedging strategy. One
possibility is to control the total risk by minimizing E((IIz — Py)?), where E(-) denotes
the expected value with respect to the objective probability measure P and P, is portfolio
value at t); associated with a self financed trading strategy; thus Py, is the initial portfolio
value Py plus the cumulative gain. This is the total risk minimization criterion. A total risk
minimizing strategy exists under the additional assumption that the discounted underlying
asset price has a bounded mean-variance tradeoff. In this case, the strategy is given by an
analytic formula. The existence and the uniqueness of a total risk minimizing strategy have
been extensively studied in [29].

Computing an optimal total risk minimization requires solving a dynamic stochastic pro-
gramming problem which is, in general, computationally very difficult. In addition, a total
risk minimization strategy is weakly dynamically consistent [23]. Local risk minimization
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hedging, on the other hand, assumes that the hedging portfolio value P,; equals the liability
17 and computes the hedging strategy to minimize each incremental cost E((Cyy1 —Cy)?|Fr)
fork=M—1,M —2,---,0; here C}, denotes the cumulative cost of the hedging strategy.
Compared to the total risk minimization hedging strategy, computation of a local risk min-
imization strategy is simpler. In addition, a local risk minimization hedging strategy is
strongly dynamically consistent [23]. The same assumption that the discounted underlying
asset price has a bounded mean-variance tradeoff is sufficient for the existence of an explicit
local risk minimizing strategy (see [26]). This strategy is no longer self-financing, but it is
mean-self-financing, i.e., the cumulative cost process is a martingale. In general, the initial
costs for the local risk minimizing and total risk minimizing strategies are different. However,
as Schél noticed in [26], the initial costs agree in the case when the discounted underlying
asset price has a deterministic mean-variance tradeoff.

In this paper, we focus on the local risk minimization hedging. In the current literature
on pricing and hedging in an incomplete market, the hedging instruments are typically the
underlying assets. In this paper, we also consider standard options as hedging instruments;
thus, the traded instruments may exist for a sub-period of the entire hedging horizon.

Assume that at time ¢, n risky hedging instruments with values U, € R" can be traded;
we assume that Uy are normalized by riskless bonds. At time t;.1, these instruments have
values Uy (t41); we have omitted dependence on the underlying value for notational simplic-
ity.

A hedging strategy is a sequence of the trading positions { (&, nx), k = 0,1,--- , M} in the
risky hedging instruments Uy and riskless bond respectively. The hedging position (&, nx)
at time ¢, is liquidated at time ¢;,1; at which time a new hedging position (&xy1, pr1) 18
formed.

The initial cost of the trading portfolio is

Co=PFy=Uy-& +mo

where Uj is a n-row vector of the initial hedging instrument values. Similarly, the value of
the trading portfolio P at any time tj is

Py =Uy - &+

The cumulative gain of the trading strategy at time ¢ is

k—1

Gr= ) (Uilty+) = Uj) - §

=0
The cumulative cost of the trading strategy at tj is
Cr = P, — G,
A trading strategy is self-financed if
Cr1 = Ck = Upsr - §er1 — Up(tigr) &+ s —me =0, k=0,1,--- , M —1

When a market is incomplete, a risk minimization hedging strategy is fundamentally
different from hedging strategies based on risk adjusted option values, e.g., delta hedging



and semi-static hedging which is based on the principal of replicating a complex option with
standard options [8, 9]. Consider hedging a lookback option using the underlying as an ex-
ample. Delta hedging, which is based on continuously rebalancing, is computed from the
sensitivity of risk adjusted option values to the underlying. Thus delta hedging requires a
price dynamics under a risk adjusted measure which is typically obtained by calibration to
the standard option market. For hedging lookback options embedded in insurance benefits,
there are potentially serious difficulties due to the requirement of market calibration to the
option market. Firstly, for risk management and hedging purposes, real world price dynam-
ics models are needed. Such models are essential to accurately quantify risks, for example,
in emerging cost analysis and calculating reserves. They are equally essential for hedging
strategy computation and analysis. A model for the market price evolution (in contrast to a
risk adjusted price dynamics) is needed, particularly when hedging is difficult due to market
incompleteness. Secondly, any parsimonious model inevitably leads to calibration errors.
Thirdly, if standard options are used as hedging instruments, it is crucial for a model to
calibrate to the forward implied volatilities (due to the long maturity). Unfortunately, this is
difficult to accomplish. For risk minimization hedging, one typically assumes statistical mod-
els for the market value of the underlying and the market values of the hedging instruments
at trading times; risk adjusted liability values are not needed. It may be possible to estimate
such a model from the historical observable prices of the underlying and hedging instruments.
We further discuss this possibility of computing risk minimization hedging strategies using
standard options by explicitly model implied volatilities in §5. Given a statistical model for
both the underlying asset and hedging instruments, a risk minimization hedging strategy is
computed to minimize hedge risk. Finally a risk minimization hedging achieves optimality
under a chosen risk measure. For example, a local risk minimization hedging strategy is
optimal with respect to the specified trading requirement and the quadratic increment cost.
Delta hedging and semi-static hedging are typically not optimal with respect to the discrete
trading specification.

3 Hedging Using the Underlying Asset

In practice, hedging options embedded in the variable annuities is a risk management problem
in an incomplete market. In our discussion so far, we have emphasized the theoretical
difference between a risk minimization hedging strategy based on an incomplete market
assumption and a hedging strategy based on risk adjusted valuation. In this section, we
evaluate, computationally, the effectiveness of delta hedging and risk minimization hedging
using the underlying asset for a GMDB with a ratchet feature. As discussed in §2, the payoff
of the option embedded in the variable annuity with a ratchet benefit can be expressed as
Il = max(Hr — St,0) where the path dependent (ratchet) value Hr = H;_ and

Hgi = maX{Sfoasflasfga cee ’Sfi—1} = maX(Hfi—1’Sfi—1)’ 1< < M.

We evaluate hedging performance in terms of the total risk and total cost at the maturity
T for the entire hedging horizon from t = 0 to 7. Let P§} denote the time T self-financed
hedging portfolio value corresponding to a hedging strategy. For example, if {(&., nx), k =
0,---, M —1} represents the optimal holdings computed from the risk minimization hedging



annually monthly biweekly
II RM delta I1r RM delta II RM delta
Co 0 18.1 20 0 19.8 20 0 199 20

mean(Ily — P5}) | 24.4 0.387  -8.45 24 0.0638 -0.762 |249 0.2 -0.186
std(Ily — P5h) 36.9 24 36.2 36.3  7.96 11.4 37.7 5.62 7.98
VE((Ily — P§h)?) | 443 24 37.2 43.6  7.96 11.4 45.2  5.62 7.99
mean(total cost) | 24.4 30.2 24.5 24 327 322 | 249 33 32.8
VaR(95%) 95.2 40.7 45 94.8 12,5 16.6 976 9 12.1
CVaR(95%) 136 63.9 73.9 134 19.5 26.4 140 13.8 18.9

#scenarios =20000 0 =02 r=0.05 pu=0.1

Table 1: Delta Hedging versus RM Hedging Using the Underlying (under a BS Model)

computation, then

M-—1
Pi=Po+Gu=Us-So+m+ Y Uinltin) —U)) - §
=0

The total risk IT; — P§ measures the amount of money that the hedging strategy is short
of meeting the liability at maturity 7. The total cost I — G, is the time T lookback option
payoff plus the cumulative loss, —G);, of the hedging strategy.

We compare the expected total cost and the first two moments of the total risk. Infor-
mation about liability (payoff) at maturity 7" is listed under the column Il for comparison;
it corresponds to no hedging. Results obtained using the underlying for biweekly hedging,
monthly hedging, and annually hedging are given under the column biweekly, monthly, and
annually respectively.

In addition, for a given confidence level, we report the Value-at-Risk (VaR) and the
conditional Value-at-Risk (CVaR) of the total risk at the maturity 7. For example, VaR(95%)
is the minimum amount of money, that the self-financed hedging portfolio P§! is short of
meeting the liability II7, with 5% probability; it is the cost at T, for the hedger, that is
exceeded with 5% probability. The value CVaR(95%) is, with a 95% confidence level, the
conditional expected cost that a hedging strategy requires at 7', conditional on the cost is
greater than VaR(95%).

For computational results in this paper, analytic formula for the standard option prices
and transitional density functions under a Black-Scholes model or a Merton’s jump diffusion
model are used to compute delta hedging strategies and risk minimization hedging strate-
gies. For delta hedging, the analytic formula for the transitional density function is used to
compute values of lookback options based on (2). For risk minimization hedging strategies,
analytic formula for the transitional density function and standard option values are used to
compute optimal hedging positions on a finite grid; the hedging strategies corresponding to
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independent simulations are computed using spline interpolations from the hedging positions
on the grid.

Although a Black-Scholes model is not adequate for modeling a return distribution with
a fat tail, we first assume a Black-Scholes model and consider using the underlying as the
hedging instrument; this is interesting since the market incompleteness in this case comes
entirely from our inability to hedge continuously. Under a Black-Scholes model, the real
world underlying price S; is modeled as a geometric Brownian motion

d—St:u-dt—i—U-th (3)
St
where 1 is the expected rate of asset return, o is the volatility, and W, is a standard Brownian
motion. Assume that the instantaneous risk free rate is » > 0. Note that positions in a delta
hedging strategy are independent of the actual expected rate of return pu.
In our computational results, it is assumed that the initial account value Sy = 100. Table
1 compares hedging performance of delta hedging with that of the risk minimization hedging
using the underlying. Table 1 illustrates that, under a Black-Scholes model,

e The effectiveness of both risk minimization hedging using the underlying and delta
hedging improves significantly as the portfolio is rebalanced more frequently. In par-
ticular, the extreme risk of biweekly rebalancing, measured in VaR and CVaR, is no-
ticeably smaller than that of the monthly rebalancing.

e For risk minimization hedging, the initial cost Cyy decreases as the rebalancing frequency
decreases. The initial cost of delta hedging, on the other hand, does not change with
the frequency of rebalancing; it equals the unique initial lookback option price. The
initial hedging cost of the risk minimization hedging is smaller compared to that of the
delta hedging.

e Compared to delta hedging, risk minimization hedging using the underlying is signifi-
cantly more effective in reducing risk, measured either in standard deviation, VaR, or

CVaR.

e For both delta hedging and risk minimization hedging, the expected total cost increases
as the hedging portfolio is rebalanced more frequently. For annual rebalancing, the
average total cost of the risk minimization hedging is larger than that of delta hedging.
For monthly and biweekly rebalancing, the average total costs of risk minimization are
close to that of delta hedging; however the risk from the risk minimization hedging is
significantly smaller than that from delta hedging.

Table 1 clearly indicates that, under a Black-Scholes model, risk minimization hedging
using the underlying is better than delta hedging since the former minimizes risk under the
assumption that hedging portfolio is rebalanced at the specified times.

Unfortunately, a Black-Scholes model (3) is not appropriate for the risk management of
variable annuities since the embedded options are sensitive to tails of the underlying dis-
tribution; we consider the Black-Scholes model here to illustrate the difference between risk
minimization hedging using the underlying and delta hedging when the incompleteness comes
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from discrete rebalancing, not additional risks such as jump or volatility. Determining a suit-
able model is usually a challenging task; it is even more difficult for variable annuities due
to the long maturities and sensitivities of the payoff to the extreme price movements. The
Canadian Insurance Association on Segregated Funds (SFTF) recommends that model cali-
bration be adjusted to give a sufficiently accurate fit in the left tail of the distribution [17]. A
Black-Scholes model certainly seems a poor choice in this regard. Next we consider Merton’s
jump diffusion model which is more suitable to model fat tails of return distributions.

Let us assume that the real world price dynamics is modeled by a jump diffusion model
with a constant volatility, i.e.,

%St:(u—q—/ﬁ)\)-dt+a-th+(J—1)-d7rt (4)
t

where r is the risk free rate, ¢ is the continuous dividend yield, o is a constant volatility. In
addition, m; is a Poisson counting process, A > 0 is the jump intensity, and J is a random
variable of jump amplitude with k = E(J — 1). For simplicity, log J is assumed here to be
normally distributed with a constant mean p; and variance o%; thus E(J) = e/ +397 . Under
this assumption, we compute the transitional density function for an underlying price process
(4) using an analytic formula [21].

While a risk minimization hedging strategy is computed directly from the original process
(4), delta hedging is computed from a risk adjusted value of the option. When jump risk
exists, no arbitrage option value is no longer unique. Thus a delta hedging strategy and its
associated hedging cost depends on how the risk is adjusted from the real world price process
(4).

From the utility-based equilibrium theory, assuming v < 1 is the risk aversion parameter,
a risk-adjusted price process corresponding to (4) is

as
?tt:(r—q—mQ/\Q)-dt—I—a-dV[QQ—l—(JQ—l)-dW? (5)
where WtQ is a standard Brownian motion and 7rtQ is a Poisson counting process and log J%
is normally distributed with

O'?:O'J

pd =y —(1=7)o;

AQ = N\~ (- +103)

where kK9 = E(JY — 1). As an investor becomes more risk averse, the jump frequency and
the expected magnitude of jumpsize are adjusted to larger quantities. In other words, the
options are priced according to a larger (combined diffusion and jump) risk.

Our objective is to compute a hedging strategy under the assumption that a real world
price dynamics (4) is given. To determine a delta hedge one needs to first choose a risk aver-
sion parameter and then evaluate the risk adjusted lookback option values V (S, ¢). Choosing
a risk aversion parameter is ad-hoc in nature and much effort has been spent by economists to
find appropriate risk aversion parameters. Alternatively, one can calibrate with the current
market standard option prices to determine a risk adjusted process from these prices.

12



annually monthly biweekly

II RM delta II RM delta 11y RM delta

Co 0 22.7 20.8 0 24.3 20.8 0 24.4 20.8

mean(Ily — P}) | 27.9 0427  -7.77 | 274 0.042 -0.746 |28.2 0.0777 -0.274
std(Ily — P5h) 43.6  28.5 44.9 43.5 20.8 27.4 45.3  19.7 25.7
VE((Ily — P3h)?) | 51.7 285 45.5 51.4  20.8 27.4 53.4  19.7 25.7
mean(total cost) | 27.9 37.8 26.6 274 40.1 33.6 |28.2 40.2 34.1
VaR(95%) 116 499 62.4 115 35.3 44.9 120 33.7 42.6
CVaR(95%) 162 778 97.8 162 54.9 68.9 169 514 64.5

MJD Model:  #scenarios = 20000 oc=0.15 r=0.05 nw=0.1
risk aversion v =1 A=0.2 pwy=-—0.3 o;,=0.15

Table 2: Delta Hedging versus RM Hedging Using the Underlying (under a MJD Model)

When the risk aversion parameter v = 1, options are priced risk neutrally; the investors
price the asset under the risk free interest rate. In our example, we assume that the jump
frequency A = 12%, i.e., approximately a jump once every 8.3 years on average, a mean of
—30% and a volatility of 15% for the logarithm of the jumpsize. Table 2 compares, under
the risk neutral assumption, the effectiveness of delta hedging with the risk minimization
hedging using the underlying. From Table 2, it cab be observed that

e Both hedging strategies are more effective as one rebalances more frequently. How-
ever, due to jump risk, the improvement of more frequent rebalancing is less dramatic
compared to that under the Black-Scholes model. Specifically, compared to annual
rebalancing, monthly or biweekly rebalancing, under a Merton’s jump diffusion model,
improves the hedging performance only slightly further.

e Compared to delta hedging, risk minimization hedging using the underlying is signifi-
cantly more effective in reducing risk under a jump diffusion model. Not surprisingly,
risk minimization hedging incurs a larger average cost.

e For annual rebalancing, delta hedging can perform worse than not hedging at all as
measured by the standard deviation of hedging error.

e The monthly risk minimization hedging using the underlying significantly reduces the
risk, relative to an un-hedged position.

If delta hedging is determined from a risk adjusted model which is calibrated from the
option market and has a risk aversion parameter v < 1, the option is not priced risk neutrally.
Thus the delta hedging strategy depends on how the option market or the hedger adjusts
the jump risk; risk minimization hedging, on the other hand, is typically determined under
the objective probability measure.
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4 Hedging Using Standard Options

With the rapid growth of derivative markets, it is now a common practice in the financial
industry to use liquid vanilla options to hedge an exotic option. The S&P 500 index options
traded on the exchange, for example, are natural instruments for hedging variable annuities
with guarantees linked directly to or correlated closely to the S&P 500 index.

In this section, we assume that there is no transaction cost and compare risk minimization
hedging using the underlying with risk minimization hedging using standard options under
the Black-Scholes model as well as Merton’s jump model; we discuss volatility risks in the
next section.

To illustrate, we assume that hedging instruments are standard options with one year
maturity; more liquid options with a shorter maturity can similarly be used. We consider
hedging using 6 options, 3 calls with strikes [100%, 110%, 120%] - S; and 3 puts with strikes
[80%, 90%, 100%] - S;, and hedging using 2 options (one call and one put with strike equal
the current underlying value).

Table 3 compares, under a Black-Scholes model, monthly and annually rebalancing using
the underlying with annual rebalancing using 6 options and 2 options respectively. Table 4
presents a similar comparison but under a Merton’s jump diffusion model (4).

Table 3 and Table 4 illustrate that, compared to hedging using the underlying, option
hedging leads to better risk reduction. More specifically,

e Under a Black-Scholes model, monthly rebalancing using the underlying and annual
rebalancing using two options have similar initial costs and average total costs. How-
ever, better risk reduction (measured either in standard deviation, VaR, or CVaR of
the total risk) is achieved using two options compared to monthly hedging using the
underlying. In addition, compared to hedging using 2 options, hedging using 6 options
incurs slightly larger initial and average total costs but achieves significantly better risk
reduction.

e Under a Merton’s jump model, hedging using 6 options incurs slightly more initial and
average total costs than hedging using 2 options. However, hedging using 6 options
achieves better risk reduction than hedging using 2 options: contrast a CVaR(95%)
value of 4.55 using 6 options with a CVaR(95%) value of 15.2 using 2 options. In
addition, hedging using 2 options is much better than monthly rebalancing using the
underlying in risk reduction; the initial cost and average total cost of option hedging is
larger than that of hedging using the underlying. This result suggests that, under jump
risk, option hedging leads to better risk reduction even though it may incur slightly
larger costs.

5 Hedging Under Volatility Risks

Computational results in §4 clearly suggest that standard options have potential use in
hedging risks embedded in variable annuities. Specifically, Table 3 and 4 suggest that,
hedging using standard options produces significantly greater risk reduction than using the
underlying, particularly under a jump diffusion model.
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I monthly annually  annually  annually
underlying underlying option(6) option(2)
Co 0 17.3 13.9 17.7 17.4
mean(Ily — P51) | 11.4 0.0766 0.326 0.00956  -0.0927
std(Ily — P5) | 20.9 5.46 15.9 1.6 4.61
VE((Ily — Ph)?) | 23.8 5.47 15.9 1.6 4.61
mean(total cost) | 11.4 23.5 19.1 23.9 23.4
VaR (95%) 55.4 8.91 28.5 2.42 7.02
CVaR (95%) 77.3 13 43.2 3.81 11.9
BS Model: #scenarios = 20000 c=0.15 r=003 ¢g=0 pu=0.1

Table 3: RM Hedging Using the Underlying versus RM hedging Using Options (a BS Model)

I monthly annually  annually  annually
underlying underlying option(6) option(2)
Co 0 22.8 19.5 24.5 24

mean(Ily — P5}) | 16.3 0.115 0.49 0.0183 -0.0976
std(Ilp — P5) | 29.1 12.9 21.5 1.83 6.03
VE((Ilr — Pih?) | 334 12.9 21.5 1.83 6.03
mean(total cost) | 16.3 30.9 26.8 33.1 32.4
VaR (95%) 75.9 23.3 39.8 2.79 8.56
CVaR (95%) 109 38 59.8 4.55 15.2

MJD Model:  #scenarios = 20000 c=015 r=0.03 q=0 w=0.1
v=—1.5 A=0.1 pwy=-—02 o0;=0.15

Table 4: RM Hedging Using the Underlying versus RM hedging Using Options (a MJD

Model)
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Does this imply that one should hedge using options? To make this decision, we need
to evaluate hedging strategies under more realistic market price evolution assumptions. In
particular, when standard options are used as hedging instruments, quantifying risk and
hedging performance depends on accurately modeling the market option price dynamics, in
addition to the underlying dynamics. Moreover, one needs to consider other factors such
as transaction costs, liquidity risk, and default risk. In this section, we focus on evaluating
hedging effectiveness under more realistic market price models which account for volatility
risks.

Given the current market convention of quoting implied volatilities instead of option
prices, accurately modeling evolution of market implied volatilities is necessary. Following
market practice, implied volatility here is defined by inverting the Black-Scholes formula
from an option price.

Implied volatilities have been observed to display a curvature across moneyness and a
term structure across time to maturity. In addition to modeling this static implied volatility
structure, the evolution of the implied volatilities over time needs to be accurately modeled
when standard options are used as hedging instruments. There has been active research in
recent years on the evolution of the market implied volatilities over time based on historic
implied volatility data, e.g., [13, 15, 31]. Zu and Avellaneda [31] construct a statistical
model for the term structure of the implied volatilities for currency options. Cont et al
[13] observe that, for major indices including S&P 500, the implied volatility surface changes
dynamically over time in a way that is not taken into account by current modeling approaches,
giving rise to ”Vega” risk in option portfolios. They believe that option markets may have
become increasingly autonomous and option prices are driven, in addition to movements in
the underlying, also by internal supply and demand in the options market. They study the
implied volatility time series for major indices, including S&P500 from March 2, 2002 and
February 2, 2003, and observe that:

e Implied volatilities are not static; they fluctuate around their means. The daily stan-
dard deviation of the implied volatility can be as large as a third of its typical value
for out-of-the money options.

e The variance of daily log-variations in the implied volatility surface can be satisfactorily
explained in terms of two or three principal components.

e The first principal component reflects an overall shift in the level of all implied volatil-
ities which accounts for around 80% of the daily variance [13]. The second principal
component explains the opposite movement of the out-of-the-money call and put im-
plied volatilities while the third principal component reflects change in the convexity
of the volatility surface. In addition, there is a strong negative correlation between the
index return and the change of the implied volatility level; the correlations between
the underlying return and the other components of implied volatility changes are either
significantly smaller or negligible.

Hence, in order to accurately quantify the hedging effectiveness when the hedging in-
struments consist of standard options, implied volatility risk needs to be suitably modeled.
Unfortunately, under both the Black-Scholes model and Merton’s jump diffusion model, im-
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plied volatilities are constant over time. This clearly is a substantial departure from the
observed dynamics of the market implied volatilities.

How should the dynamics of the implied volatilities be modeled? To hedge a derivative
contract, the typical approach is to assume a model for the underlying price evolution and
derive implied volatilities from the assumed underlying price model; an underlying model can
be estimated through calibration to the option market. Since both the Black-Scholes model
and Merton’s jump model lead to a static volatility surface, they are inadequate in modeling
the observed stochastic implied volatilities. Amongst the typical models for underlying prices,
only a stochastic instantaneous volatility underlying model can generate stochastic implied
volatilities.

Unfortunately, the fact that instantaneous volatility is not directly observable presents
many challenges for hedging and model estimation under an instantaneous volatility model.

e Firstly, it is difficult to adjust hedging positions according to an unobservable value.

e Secondly, it is not clear how to estimate an instantaneous volatility price model, from
historical data, given that the instantaneous volatility is not observable; a stochastic
instantaneous volatility underlying model can only be calibrated from liquid option
prices. Moreover, the model obtained by calibrating to the market option prices gives
the price model under a risk adjusted measure. As previously discussed, for hedging
and risk management assessment we need a model for the real world market price
dynamics.

e Thirdly it is difficult to calibrate the current market option prices sufficiently accu-
rately using a parsimonious stochastic volatility model with a small number of model
parameters, e.g., the Hestons model [20]. In addition, there is no evidence that such
a stochastic volatility model for the underlying is capable of modeling the evolution of
the implied volatilities over time.

e Fourthly, even if a model calibrates the market prices by allowing a sufficient number
of model parameters, e.g., a jump diffusion model with a local volatility function [2], it
is difficult to accurately model the implied volatility evolution for a long time horizon
based on market calibration. A model that sufficiently calibrates the market implied
volatilities today may give a poor fit for the implied volatilities tomorrow. This can be
problematic for hedging and risk management purposes.

In addition to the cautionary remarks provided above, there are also arguments about
whether an option pricing model derived from any underlying price model can adequately
model option price evolution because of the autonomy of option market, e.g., [13]. This
suggests that it is reasonable and possibly better to consider a joint model for the underlying
price and implied volatility evolutions.

In [27], Schonbucher jointly models, under a risk adjusted measure, the underlying and
implied volatility evolution in which the instantaneous volatility and implied volatility both
become state variables. No arbitrage restriction is established for the joint processes under
a risk adjusted measure.

Since our focus is risk management and hedging for options embedded in variable annu-
ities, we are interested in modeling the real world price evolution for both the underlying and

17



hedging options. To evaluate hedging effectiveness of discrete dynamic hedging strategies for
variable annuities, a joint discrete time model for real-world underlying and hedging instru-
ment price changes between each rebalancing time is needed. In particular, this model needs
to accurately describe the tails of the underlying price distribution and (mean reverting)
stochastic implied volatility dynamics.

More specifically, we are interested in modeling the most liquid implied volatilities. We
assume that the time to maturity of the option hedging instruments is fixed at one year (a
shorter maturity can similarly be used) and far out-of-the money options are not used as
hedging instruments due to liquidity considerations. Since change in the implied volatility
level explains 80% of the daily variation in implied volatilities, as a first improvement, we
model the at-the-money implied volatility evolution and assume that the ratios of implied
volatilities to the at-the-money implied volatility are constant over time.

Let 5, denote the at-the-money implied volatility with a time to maturity of one year.
Using an Ornstein-Uhlenbeck process, this at-the-money implied volatility &, is modeled as
follows

dlog(dy) = a - (log o —log(dy)) - dt + 7] - dZy (6)

where Z, is a standard Brownian, log & denotes the long term average value (of the logarithm
of the at-the-money implied volatility level). Figure 1 displays a sample path and distribution
of the implied volatility d; at time t = 1 year under the assumed model parameters; this model
is used for at-the-money implied volatility in our subsequent computational investigation.

It is important to note that, by modeling implied volatilities directly, the standard option
prices are directly given by the implied volatilities via the Black-Scholes formula; these
liquid option values are no longer determined by the underlying price model. There are many
advantages gained by computing a risk minimization hedging using standard options based on
a model with implied volatilities directly as state variables. Firstly, the implied volatilities are
directly observable from the market. This makes it possible to estimate a model from historic
data and adjust hedging positions based on the implied volatilities. Secondly, by modeling
the market implied volatility directly, calibration to market is automatically accomplished
by setting the initial implied volatilities to the market implied volatilities. Thirdly, the
hedging instruments are valued exactly using the Black-Scholes formula according to the
market practice. For simplicity, we have modeled here only change in the level of the implied
volatilities; but the approach can be extended (with additional computational complexity)
to model the opposite movement of the implied volatilities for out-of-the money calls and
puts and change in the convexity of the implied volatility curve.

Since the instantaneous volatility is not directly observable in practice, it is difficult to
estimate a model with an instantaneous volatility as a state variable and adjust hedging
positions based on this unobservable variable. Thus, when computing hedging strategies, we
only assume a crude (constant) approximation oy of the instantaneous volatility (for example
0p can be an estimation of the average of the instantaneous volatility over time). In other
words, we compute risk minimization option hedging strategies under the joint model (7)
below for the underlying price and the implied volatility &,:

{ 95— (11— g — kA) - dt + 00 - AW, + (T — 1) - dr,

dlog(oy) = a - (log o — log(oy)) - dt + 7y, - dZ;, (M
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Figure 1: Implied Volatility ¢: @ = 0.6, 7] = 0.45, 6o = 30%, and log & = log(20%)
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where W; and Z; can be correlated in general. Note that the approach of determining option
prices by modeling the underlying price evolution as described in §3 and §4 can be considered
as a special case of a model (7) with a@ = &,,,) = 0. In addition, jumps can be introduced in
the mean reverting implied volatility dynamics as well.

Presently, for computational simplicity, we compute hedging strategies based on a joint
model (7) assuming that W; and Z; are independent. However, we evaluate hedging effec-
tiveness under a joint model with both instantaneous volatility risk and implied volatility risk,
and possibly correlation between risks. Specifically, we evaluate hedging performance under
the joint price model (8) below:

B — (p—q— kKA -dt+ o, -dW, + (J = 1) - dm,
dlog(oy) = a- (g7 — log()) - dt + o) - AX, (8)
dlog(6;) = a - (log & — log()) - dt + Oyol * A2t

where logo denotes the long term average value (of the logarithm of the instantaneous
volatility), and Wy, X;, and Z; can be correlated. Evaluating hedging effectiveness under this
joint dynamics provides an assessment of the impact of ignoring correlation and instantaneous
volatility risk in the hedging strategy computation.

We now compare effectiveness of the risk minimization hedging using the underlying with
risk minimization hedging using six standard options. In addition to monthly hedging using
the underlying, we compare the option hedging strategy computed by explicitly modeling the
implied volatility risk in the risk minimization hedging computation (under column option(6)-
o) with the risk minimization option hedging strategy for which the hedging positions at time
ty are computed assuming that the implied volatility remains at the time ¢, level from ¢, to the
maturity 7" (under column option(6)-reset); this is similar to computing a hedging strategy
by recalibrating implied volatilities. We note that the risk minimization hedging option(6)-o
computes holdings on a 3-dimensional grid, along the directions of the underlying, running
max, and at-the-money implied volatility.

Tables 5 & 6 compare the hedging performance of these three strategies. In these com-
putations, the initial implied volatilities are set to the Black-Scholes implied volatilities cor-
responding to the option prices computed under the underlying dynamics in the model (7);
parameters for the model (7) are a = @ = 0.6, logo = log & = log(20%), with other parame-
ters given explicitly in the table. The only difference in computational setup between Table
5 and Table 6 is that the constant volatility oy in the model (7) is set to different values;
thus the initial implied volatilities g, are different as well. From Table 5 & 6, we observe the
following:

e Hedging using the underlying is sensitive to instantaneous volatility risk which is dif-
ficult to model; this is indicated by the different cost and risk under the column
underlying-o. In Table 5, hedging using the underlying leads to an under hedge of
the payoff since a constant volatility of 15%, which is lower than the average of 20%, is
used in the hedging computation. In Table 6, hedging using the underlying leads to an
over hedge since a constant volatility of 22%, higher than the average of 20%, is used
in the hedging computation.

e For hedging strategy option(6)-reset computed by resetting the implied volatility level
at time ¢, to &, from t; to the maturity 7', the hedging strategy and its performance is
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115, monthly annually annually

underlying-o | option(6)-reset | option(6)-¢
Co 0 23.7 21.5 28.8
mean(Ily — P5Y) | 31.4 20.5 10.8 0.612
std(Ily — P3Y) | 46.4 18.8 8.1 6.78
VE(Ir — Pi2 | 56.1 27.8 13.5 6.81
mean(total cost) | 31.4 52.5 39.9 39.4
VaR (95%) 118 54.4 24.3 114
CVaR (95%) 174 76.8 31.5 18.6

MJD Model: #scenarios = 20000 op=0.15 r=20.03 q=0 a=0.1
A=0.12 pwy=-02 0;=015 ~=1

Table 5: Hedging Comparison Under a Volatility Model (8) : gyo= 0.45 , Fpo= 0.45

similarly sensitive to the initial implied volatility level. For example, hedging strategy
option(6)-reset under-estimates the initial hedging cost in Table 5, while the initial
hedging cost is over-estimated in Table 6.

e When the implied volatility ; is explicitly modeled in the risk minimization hedging
framework, column option(6)-c, the hedging strategy computation takes the future
implied volatility dynamics into consideration and the initial hedging cost is signifi-
cantly less sensitive to the initial implied volatility level; note the striking similarities
of the performance assessment under column option(6)-6 for Table 5 & 6. Moreover,
we note that, compared to hedging using the underlying, hedging using options remains
significantly more effective in risk reduction under both jump and volatility risks.

Table 7 displays the hedging performance when there is no instantaneous volatility risk
(instantaneous volatility is a constant). We recall that the implied volatility evolution is
modeled in the option hedging strategy option(6)-6. Comparing Table 7 with Table 5, the
hedging results indicate sensitivities to the instantaneous volatility risk. It can be observed
that hedging effectiveness of the risk minimization hedging using options under the implied
volatility model (corresponding to the hedging strategy option(6)-¢) is relatively insensitive
to instantaneous volatility risk. This suggests that hedging using standard options may
potentially be an effective way of reducing instantaneous volatility risk. Hedging using the
underlying, on the other hand, is sensitive to the instantaneous volatility risk.

Table 5 and Table 6 indicate that hedging using options by simply resetting the implied
volatility level at the rebalancing time, i.e., option(6)-reset, either over- or under- estimates
the initial hedging costs. Figure 2 display the relative frequency (frequency divided by the
number of simulations) of the increment cost (Uyy1&k+1 + Mer1) — (Ug(te+1)Ek + mi). The top
plot displays the relative frequency of the incremental cost for the hedging strategy option(6)-
o computed by explicitly modeling the implied volatility evolution; the bottom plot is for
the hedging strategy option(6)-reset which simply assumes that the future implied volatility
stays at the current level at each rebalancing time. The hedging strategy, option(6)-reset,
leads to a significantly larger average and variance of the incremental cost at each rebalancing
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117 monthly annually annually

underlying-o | option(6)-reset | option(6)-¢
Co 0 35.6 35 28.9
mean(Ily — P5) | 31.5 -6.26 -8.65 0.374
std(Ily — P5Y) | 46.7 15.6 7.72 6.48
VE(r — PiH2 | 56.3 16.8 11.6 6.49
mean(total cost) | 31.5 41.8 38.5 39.4
VaR (95%) 119 18.4 3.08 10.8
CVaR (95%) 175 33.9 8.64 16.8

MJD Model: #scenarios = 20000 00p=022 r=0.03 q=0 a=0.1
A=0.12 pwy=-02 0;=015 ~y=1

Table 6: Hedging Comparison Under a Volatility Model (8): g,= 0.45 , dyo= 0.45

117 monthly annually annually

underlying-o | option(6)-reset | option(6)-¢
Co 0 23.7 21.5 28.8
mean(lly — P | 17.7 | 0.583 10.8 0.627
std(Lly — Py) | 30.8 13.9 6.25 5.71
VE(y — Pi2 | 355 13.9 12.5 5.74
mean(total cost) | 17.7 32.5 39.9 39.4
VaR (95%) 80.4 25.1 21.5 10.2
CVaR (95%) 116 40.7 26 14.8

MJD Model: #scenarios = 20000 op=0.15 r=20.03 q=0 a=0.1
A=0.12 pwy=-02 o0;=015 ~=1

Table 7: Hedging Comparison Under a Volatility Model (8): o,u= 0, dyo= 0.45
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115, monthly annually annually
underlying-o | option(6)-reset | option(6)-¢

Co 0 23.7 21.5 28.8

mean(Ily — P5Y) | 31.4 20.5 10.1 -0.401
std(Ily — P3Y) | 46.4 18.8 7.89 6.5
VE(Ir — Pi2 | 56.1 27.8 12.8 6.51
mean(total cost) | 31.4 52.5 39.1 38.4
VaR (95%) 118 54.4 22.8 8.89
CVaR (95%) 174 76.8 29.8 14.6

MJD Model: #scenarios = 20000 op=0.15 r=20.03 q=0 a=0.1
A=0.12 pwy=-02 0;=015 ~=1

Table 8: Hedging Comparison Under a Volatility Model (8): corr(Z,, W;) = —.6, o,0= 0.45,
GToor= 0.45

time compared to the risk minimization hedging option(6)-o for which the implied volatility
risk is properly modeled.

Finally, Table 8 illustrates the hedging effectiveness of the three strategies evaluated
under a correlation assumption between the change in log g, and the Brownian innovation
of the asset return, specifically corr(Wy, Z;) = —0.6 in the model (8). Comparing Table
8 with Table 5, it can be observed that hedging effectiveness using standard options is not
significantly affected by the correlation risk in terms of the standard deviation of the hedging
error. However, VaR and CVaR become slightly smaller for this example.

6 Concluding Remarks

Accurate quantification and robust hedging of the market risk embedded in a guaranteed
minimum death benefit of a variable annuity contract is a challenging task. This is mainly
due to the long maturity of the insurance contract and the sensitivity of the benefit to the
tails of the account value distribution. For this type of contracts, risk quantification and
risk reduction require accurately modeling of the evolution of both the underlying account
value and hedging instrument prices. In addition to a good model, effectiveness of a hedging
strategy depends on the method from which hedging positions are determined. A delta
hedging strategy is computed based on option values under a risk adjusted measure. A risk
minimization hedging strategy is computed to minimize risk based on a model for the real
world price evolution and rebalancing specification. We analyze and compare these different
hedging methods using either the underlying or standard options to hedge a lookback option
embedded in variable annuity contracts for which the minimum death guarantee has a ratchet
feature.

Due to sensitivity of a variable annuity benefit to the tails of the account value distri-
bution, jump risk and volatility risks need to be appropriately modeled. These additional
risks, and the fact that dynamic hedging can only be implemented at discrete times with a
limited choice of hedging instruments, suggest that hedging options embedded in variable
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annuities are hedging problems in an incomplete market. Thus it may be more appropriate
to compute a hedging strategy to directly minimize a measure of the hedge risk given a set
of trading times and a set of hedging instruments; this is the risk minimization hedging.

We evaluate and compare effectiveness of delta hedging with risk minimization hedging
using the underlying under a Black-Scholes model as well as a Merton’s jump diffusion
model. We first assume that there is no volatility risk and illustrate that risk minimization
hedging using the underlying is superior to delta hedging. In addition, monthly rebalancing
risk minimization hedging using the underlying is relatively effective under a Black-Scholes
model; the hedging effectiveness further improves as hedging portfolio is rebalanced more
frequently. Moreover, under a Merton’s jump model, risk reduction in both delta hedging
and risk minimization hedging using the underlying is less effective. In particular, for both
methods, improvement of biweekly hedging over monthly hedging is less significant.

Due to the increasing liquidity of standard options, we compare risk minimization hedging
using standard options to that of using the underlying. We observe that the risk minimization
hedging using standard options (even with only two at-the-money options) is significantly
more effective than that of using the underlying, particularly when jump risk is considered.

Maturities of variable annuities are usually long; this makes modeling of relevant risks
especially challenging. For hedging a long term derivative, volatility risk clearly cannot
be ignored. Hedging using the underlying asset is susceptible to instantaneous volatility
risk. When standard options are used as hedging instruments, hedging effectiveness needs
to be evaluated under the implied volatility risk. Since the instantaneous volatility is not
directly observable, it is difficult to model instantaneous volatility risk and implement hedging
strategies which adjust hedging positions according to this unobservable variable. The typical
approach of calibrating a model for the underlying evolution from the option prices is faced
with the need for a complex model to match the current option prices and the need for a
parsimonious model to stably model future option prices evolution. Moreover, the underlying
price dynamics calibrated to the option market is under a risk adjusted measure rather than
the real price dynamics necessary for risk quantification and hedging.

We compute a risk minimization hedging using standard options by explicitly modeling
evolutions in the underlying as well as the at-the-money implied volatility. The ratios of the
implied volatilities of hedging instruments to the at-the-money implied volatility is assumed
to be constant over time for simplicity. Since instantaneous volatility is not observable, we
compute hedging strategy assuming a constant approximation to the instantaneous volatility
in a model (7). By evaluating hedging performance under a joint model (8) of the underlying
account value evolution, which includes instantaneous volatility risk, and implied volatilities,
we illustrate that, when implied volatility risk is suitably modeled, risk minimization hedg-
ing using standard options is effective in reducing lookback option risk embedded in variable
annuity with a ratchet guaranteed minimum death benefit. In particular, unlike hedging
using the underlying, which yields larger hedging error due to failure to model instantaneous
volatility risk, effectiveness of the risk minimization hedging using standard options is rela-
tively insensitive to the presence of instantaneous volatility risk. We also illustrate hedging
performance when the change of the implied volatility is correlated to the change of the
underlying.

Hedging variable annuities is a complex and challenging task. Investigation and analysis
in this paper are based on models which have been used to describe evolution of asset
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price with fat tails in the return distribution. For future investigation, it is important to
evaluate how well a joint model (8) for the underlying and implied volatility can describe
the underlying price and implied volatility evolution for a long time horizon. In addition to
jump risk, volatility risks, other risks such as mortality risk, basis risk, and surrender risk
also need to be properly analyzed. In a separate paper [10], we analyze sensitivity of risk
minimization hedging to interest risk and compute the optimal risk minimization hedging
strategy under both equity and interest risks.
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