
Abstraction-Safe Effect Handlers via Tunneling:
Technical Report

YIZHOU ZHANG, Department of Computer Science, Cornell University, USA

ANDREW C. MYERS, Department of Computer Science, Cornell University, USA

ABSTRACT
Algebraic effect handlers offer a unified approach to expressing control-flow transfer idioms such

as exceptions, iteration, and async/await. Unfortunately, previous attempts to make these handlers

type-safe have failed to support the fundamental principle of modular reasoning for higher-order

abstractions. We demonstrate that abstraction-safe algebraic effect handlers are possible by giving

them a new semantics. The key insight is that code should only handle effects it is aware of. In our

approach, the type system guarantees all effects are handled, but it is impossible for higher-order,

effect-polymorphic code to accidentally handle effects raised by functions passed in; such effects tunnel

through the higher-order, calling procedures polymorphic to them. By contrast, the possibility of

accidental handling threatens previous designs for algebraic effect handlers. We prove that our design

is not only type-safe, but also abstraction-safe. Using a logical-relations model that we prove sound

with respect to contextual equivalence, we derive previously unattainable program equivalence results.

Our mechanism offers a viable approach for future language designs aiming for effect handlers with

strong abstraction guarantees.

1 INTRODUCTION
Algebraic effects [5, 38, 39] have developed into a powerful unifying language feature, shown to

encompass a wide variety of other important features that include exceptions, dynamically scoped

variables, coroutines, and asynchronous computation. Although some type systems make algebraic

effects type-safe [4, 28, 30], we argue in this paper that algebraic effects are not yet abstraction-safe:
details about the use of effects leak through abstraction boundaries.

As an example, consider the higher-order abstraction map, which applies the same function to each

element in a list:

map[X,Y,E](l : List[X], f : X → Y throws E) : List[Y] throws E

In general, the computation embodied in the functional argument f may be effectful, as indicated by

the clause throws E in the type of f. To make it reusable, map is defined to be polymorphic over the

latent effects E of f, and propagates any such effect to its own caller.

The map abstraction can be implemented in many different ways; modularity is preserved if clients

cannot tell which implementation is hiding behind the abstraction boundary. It would thus be surprising

if two implementations of this map abstraction behaved differently when used in the same context.

However, current semantics of algebraic effects allow a client to observe different behaviors—and

to distinguish between the two implementations—when one of the implementations happens to use

algebraic effects internally.

For example, suppose an implementation of map traverses the list using an iterator object. The iterator

throws a NoSuchElement exception when it reaches the end of the list, and the implementation handles

it accordingly. If the client function f also happens to throw NoSuchElement, the implementation may

handle—by accident—an effect it is not designed to handle. By breaking the implementation of map in

this way, such a client thereby improperly observes internals of its implementation. This violation of

abstraction is also a failure of modularity.
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We contend that this failure is a direct consequence of the dynamic semantics of algebraic effect

handlers. Intuitively, for Reynolds’ Abstraction Theorem [41] (also known as the Parametricity Theo-

rem [45]) to hold for a language with type abstraction (such as System F), polymorphic functions cannot

make decisions based on the types instantiating the type parameters. Analogously, parametricity of

effect polymorphism demands that an effect-polymorphic function should not make decisions based

on the effect it is instantiated with. Yet the dynamic nature of algebraic effects runs afoul of this

requirement: an effect is handled by searching the dynamic scope for a handler that can handle the

effect. To restore parametricity, we propose to give algebraic effects a new semantics based on tunneling:

Algebraic effects can be handled only by handlers that are statically
aware of them; otherwise, effects tunnel through handlers.

This semantics provides sound modular reasoning about effect handling, while preserving the expressive

power of algebraic effects.

To give a formal account of abstraction safety, the typical syntactic approach to type soundness no

longer suffices, because it is difficult to syntactically track type-system properties that are deeper than

subject reduction [6, 14, 31, 46]. By contrast, a semantic approach that gives a relational interpretation

of types can be applied to the harder problem of reasoning about program refinement and equivalence.

Therefore, a prime result of the present paper is a semantic type-soundness proof for a core language

with tunneled algebraic effects. To this end, we define a step-indexed, biorthogonal logical-relations

model for the core language, giving a relational interpretation not just to types, but also to effects. We

show this logical-relations model offers a sound and complete reasoning process for proving contextual

refinement and equivalence. With this process, effectful program fragments can be rigorously proved

equivalent, supporting programmer reasoning and potentially justifying the soundness of compiler

transformations. We proceed as follows:

• We illustrate the problem of accidentally handled effects in Section 2, clarifying the observation

that algebraic effect handlers violate abstraction.

• We present tunneled algebraic effects in Section 3. Tunneling causes no significant changes to the

usual syntax of algebraic effects; it changes the dynamic semantics of effects but does not lose

any essential expressive power.

• To make the new tunneling semantics precise, in Section 4 we define a core language with

operational semantics and static semantics.

• In Section 5, we define a logical-relations model for the core language. We establish important

properties of the logical relation, including parametricity and soundness with respect to contextual

refinement. These results, checked using Coq, make rigorous the claim that tunneled algebraic

effects are abstraction-safe.

• We demonstrate the power of the logical relation in Section 6 by proving program equivalence.

As promised, effect-polymorphic abstractions in the core language hide their use of effects.

• We survey related work (Section 7) and conclude (Section 8).

2 ALGEBRAIC EFFECTS AND ACCIDENTAL HANDLING
Algebraic effects are gaining popularity among language designers because they enable statically

checked, programmer-defined control-flow transfer. Legacy language abstractions for control flow,

including exceptions, yielding iterators, and async/await, become just instances of algebraic effects.

We illustrate the problems with algebraic effects in the setting of a typical object-oriented language,

like Java, C#, and Scala, that has been extended with algebraic effects and effect polymorphism. Despite

this object-oriented setting, the problems we identify and the solution we propose are broadly applicable

to languages with algebraic effects or with mechanisms subsumed by algebraic effects.
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val tr : Tree[int] = . . .

try { iterate(tr) }

with yield(x) {

print(x)

resume()
}

(a)

1. calls

2. calls 5. yield

7. calls

yield

10. resume

iterate

3. calls 4. yield

iterate

6. yield

iterate

client

print

8. calls 9. returns

(b)

Figure 1. (a) Client code iterating over a binary tree. (b) A stack diagram showing the control flow.

2.1 Algebraic Effects and Handlers
The generality of algebraic effects comes from the ability to define an effect signature whose implemen-

tations are provided by effect handlers. An effect signature defines one or more effect operations. For
example, the code below

effect Yield[X] {

yield(X) : void

}

defines an effect signature named Yield, parameterized by a type variable X. This signature contains

only one operation, yield, and invoking this operation requires a value of type X. This Yield effect can

be used for declarative definitions of iterators. For example, the function iterate is an in-order iterator

for binary trees:

interface Tree[X] {

value() : X

left() : Tree[X]

right() : Tree[X]

}

iterate[X](tr : Tree[X]) : void throws Yield[X] {

iterate(tr.left())

yield(tr.value())

iterate(tr.right())

}

Invoking an effect operation has the corresponding effect. In the example, the iterate function

invokes the yield operation, so it has the effect Yield[X]. Static checking of effects requires that this

effect be part of the function’s type, in its throws clause.

Traversing a tree using the effectful iterate function uses the help of an effect handler (fig. 1a). The

effectful computation is surrounded by try { . . . }, while the handler follows with and provides an

implementation for each effect operation. In this example, the implementation of yield first prints the

yielded integer, and resumes the computation in the try block.

The implementation of an effect operation has access to the continuation of the computation in the

corresponding try block. This continuation, denoted by the identifier resume, takes as an argument

the result of the effect operation, and when invoked, resumes the computation at the invocation of the

effect operation in the try block. Because the result type of yield is void, the call to resume accepts no

argument. Figure 1b visualizes the control flow under this resumptive semantics using a stack diagram.

The handling code of fig. 1a is actually syntactic sugar for code declaring an anonymous handler:

try { iterate(tr) }

with new Yield[int]() {

yield(x : int) : void { print(x); resume() }

}
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1 fsize1[X,E](tr : Tree[X], f : X→ bool / E) :

2 int / E {

3 val num = 0

4 try { fiterate(tr, f) }

5 with yield(x : X) : void {

6 ++num; resume()
7 }

8 return num

9 }

(a)

fsize2[X,E](tr : Tree[X], f : X→ bool / E) :

int / E {

val lsize = fsize2(tr.left(), f)

val rsize = fsize2(tr.right(), f)

val cur = f(tr.value()) ? 1 : 0

return lsize + rsize + cur

}

(b)

Figure 2. Two implementations of a higher-order abstraction. The intended behaviors of these two implementa-

tions are the same: returning the number of elements satisfying a predicate in a binary tree.

The sugared form in fig. 1a requires the name yield to be unambiguous in the context. It is also possible

to define standalone handlers instead of inlining them. Handlers can also have state. For example,

handler printInt, defined separately from its using code, stops the iteration after 8 rounds:

handler printInt for Yield[int] {

var cnt = 0 // State of the handler
yield(x : int) : void {

if (cnt < 8) { print(x); ++cnt; resume() }

}

}

// Using code allocates a handler object
// with state cnt initialized to 0
try { iterate(tr) }

with new printInt()

Effect Polymorphism. Higher-order functions like map accept functional arguments that are in general

effectful. Such higher-order functions are therefore polymorphic in the effects of their functional

argument. Language designs for effects typically include this kind of polymorphism to allow the

definition of reusable generic abstractions [23, 28, 30, 42]. As an example, consider a filtering iterator

that yields only those elements satisfying a predicate f that has its own effects E.

fiterate[X,E](tr : Tree[X], f : X → bool / E) : void / Yield[X], E {

foreach (x : X) in tr

if (f(x)) { yield(x) }

}

Here we introduce “/” as a shorthand for throws. The higher-order function is parameterized by an

effect variable E, which is the latent effect of the predicate f. The implementation iterates over the tree

and yields elements that test true with f. Because it invokes yield and f, its effects consist of both

Yield[X] and E.

2.2 Accidentally Handled Effects Violate Abstraction
Suppose we want a higher-order abstraction that computes the number of tree elements satisfying some

predicate. It can be implemented by counting the elements yielded by fiterate, as shown in fig. 2a.

The same abstraction can also be implemented in a recursive manner, as shown in fig. 2b. We would

hope that these implementations are contextually equivalent, meaning that they can be interchanged

freely without any client noticing a difference.

Unfortunately, there do exist clients that can distinguish between the two implementations, as shown

in fig. 3a. This client code interacts with the abstraction whose implementation is provided either by

fsize1 or by fsize2, and uses a function named f as the predicate. But it also does something else with
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1 val fsize = . . . // The right-hand side is either fsize1 or fsize2
2 val g = fun(x : int) : void / Yield[int] { yield(x) ; f(x) }

3 try { fsize(tr, g) }

4 with yield(x : int) : void {

5 . . . // do something with x

6 resume()
7 }

(a)

1. calls

2. calls 5. yield

6. calls

yield

7. resume

client

fiterate

fsize1

3. calls 4. yield

g

(b)

Figure 3. (a) A client that can distinguish between fsize1 and fsize2, two supposedly equivalent implemen-

tations of the same abstraction. (b) Snapshot of the stack when fsize1 accidentally handles an Yield effect
raised by applying g.

each element that f is applied to, using the help of an effect handler: it wraps f in another function g

(line 2), which, before calling f, yields the element to a handler that does the extra work (line 5). The

client passes to the abstraction the wrapper g, which is eventually applied somewhere down the call

chain. This application of g raises an Yield[int] effect, which the programmer would expect to be

propagated back to the client code and handled at lines 4–7.

However, the programmer will be unpleasantly surprised if the client uses the implementation

provided by fsize1. At the point where the effect arises, the runtime searches the dynamic scope for a

handler that can handle the effect. Because the nearest dynamically enclosing handler for Yield[int] is

the one in fsize1 (lines 5–7 in fig. 2a), the effect is unexpectedly intercepted by this handler, incorrectly

incrementing the count. fig. 3b shows the stack snapshot when this accidental handling happens.

By contrast, the call to fsize2 behaves as expected. Hence, two well-typed, type-safe, intuitively

equivalent implementations of the same abstraction exhibit different behaviors to the same client.

Syntactic type soundness is preserved—neither program gets stuck during execution—but the type

system is not doing its job of enforcing abstraction.

The above example demonstrates a violation of abstraction from the implementation perspective,

but a similar story can also be told from the client perspective: two apparently equivalent clients can

make different observations on the same implementation of an abstraction. For example, consider the

following two clients of fsize1: one looks like fig. 3a but with line 5 left empty, and the other is simply

fsize1(tr, f).

The handling of the Yield effect in the first client ought to amount to a no-op, so the two programs

would be equivalent. Yet the equivalence does not hold because of the accidental handling of effects in

the first program. This client perspective shows directly that the usual semantics of algebraic effect

handling fails to comply with Reynolds’ notion of relational parametricity [41], which states that

applications of a function to related inputs should produce related results.

While prior efforts based on effect rows and row polymorphism have aimed to prevent client code

from meddling with the effect-handling internals of library functions [7, 27], they do not fully prevent

accidental handling (see Section 7) despite being more complex.

Notably, recent work by Biernacki et al. [7] has shown relational parametricity for a core calculus with

algebraic effects, but their type system compromises on the degree of abstraction the language provides.

In particular, the language must assign “leaky” types to functions that handle effects internally. For

example, under their typing rules, function fsize1 would not type-check unless its signature mentioned

the Yield effect, thereby exposing the implementation detail that fsize1 handles Yield internally:

fsize1[X,E](tr : Tree[X], f: X → bool / { Yield[X], E } ) : int / E
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3 TUNNELED ALGEBRAIC EFFECTS
Just as algebraic effect handlers arose as a generalization of exception handlers [39], we build on the

insight of Zhang et al. [47], who argue that tunneled exceptions make exceptions safer through a limited

form of exception polymorphism. We show that tunneling can be generalized to algebraic effects broadly

along with the general form of effect polymorphism presented in section 2.1.

Tunneled algebraic effects address the problem of accidental handling. Despite this increase in safety,

there is no increase in programmer effort. In fact, with the new tunneling semantics in effect, the

examples from section 2.2 become free of accidental handling, with no syntactic changes required.
Consider the version of fig. 3a that resulted in accidental handling of effects (i.e., the version that

uses fsize1). Under the new semantics, the Yield effect raised by applying g is tunneled straightaway

to the client code, without being intercepted by the intermediary contexts. Figure 4 shows the stack

snapshot when this tunneling happens.

3.1 Tunneling Restores Modularity
This tunneling semantics enforces the modular reasoning principle that handlers should only handle

effects they are locally aware of. In the example, the intermediary contexts, fsize1 and fiterate,

are polymorphic in an effect variable that represents the latent effects of their functional arguments.

So they ought to be oblivious to whatever effect applying g might raise at run time. The modular

reasoning principle hence prohibits handlers in these intermediary contexts from capturing any dynamic

instantiations of the effect variable; accidental handling is impossible.

The client code, by contrast, is locally aware that applying fsize1 to g manifests the latent effect of g.

The modular reasoning principle thus requires that the client code provide a handler for this effect in

order to maintain type safety.

The lack of modularity in the presence of higher-order functions is an inherent problem of language

mechanisms based on some form of dynamic scoping, many of which are subsumed by algebraic

effects. Among such effects, the one that most famously conflicts with modular reasoning is perhaps

dynamically scoped variables.

Dynamically scoped variables increase code extensibility, as exemplified by the TEX programming

language [26], because they act as implicit parameters that can be accessed—and overridden—in their

dynamic extents. But their unpredictable semantics prevents wider adoption. In particular, a higher-order

function may accidentally override variables that its functional argument expects from the dynamic

scope, a phenomenon known in the Lisp community as the “downward funarg problem” [43]. This

problem with dynamically scoped variables is an instance of accidental handling.

Fortunately, tunneling offers a solution broadly applicable to all algebraic effects, including dynami-

cally scoped variables and exceptions. We illustrate this solution through an example involving the

tunneling of multiple effects.

1. calls

2. calls

5. calls

yield

6. resume

client

fiterate

fsize1

3. calls

4. yield

g

Figure 4. Snapshot of the stack when a Yield effect raised by applying g is tunneled to the client code.
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1 interface Visitor[E] {

2 visit(While) : void/E

3 visit(Assign) : void/E

4 . . .

5 }

6 interface While extends Stmt {

7 cond() : Expr

8 body() : Stmt

9 accept[E](v : Visitor[E]) : void/E

10 { v.visit(this) }

11 . . .

12 }

13 effect Val[X]

14 { get() : X } // Immutable variables
15 effect Var[X] extends Val[X]

16 { put(X) : void } // Mutable variables

17 effect IOExc { throw() : void }

18 print(s : String) : void / IOExc { . . . }

19 indent(l : int) : void / IOExc { . . . }

20 class pretty for Visitor[{Val[int],IOExc}]{

21 visit(w : While) : void / _ { // Infers effects
22 val l = get() // Current level of indentation
23 indent(l) // Print indentation
24 print("while ")

25 w.cond().accept(this)
26 print("\n")

27 try { w.body().accept(this) }

28 with get() : int {

29 resume(l + 1) // Increment indentation level
30 }

31 }

32 . . .

33 }

34 try {

35 val v = new pretty()

36 program.accept(v)

37 } with {

38 get() : int { resume(0) }

39 throw() : void { . . . }

40 }

Figure 5. Using tunneled algebraic effects to provide access to the context for visitors.

3.2 Tunneling Preserves the Expressivity of Dynamic Scoping Safely
Consider the Visitor design pattern [20], which recursively traverses an abstract syntax tree (AST).

Visitors often keep intermediate state in some associated context. For example, a type-checking visitor

would use a typing environment as the context, while a pretty-printing visitor would use a context

to keep track of the current indentation level. The state in such contexts is essentially an instance

of dynamic scoping. Moreover, the type-checking visitor may expect the context to handle typing

errors, while the pretty-printing visitor needs the context to handle I/O exceptions. A common Visitor

interface is therefore unable to capture this variability in the notion of context. So either uses of the

Visitor pattern are limited to settings that do not need context, or the programmer has to resort to

error-prone workarounds.

One such workaround is to capture context information as mutable state. However, recursive calls

to the visitor often need to update context information. So side effects need to be carefully undone

as each recursive call returns; otherwise, subtrees yet to be visited would not have the right context

information.

Tunneled algebraic effects provide the expressive power needed to address this quandary, without

incurring the problems of dynamic scoping. Figure 5 shows a pretty-printing visitor defined using

tunneled algebraic effects. The Visitor interface (lines 1–5) is generic with respect to the effects of

the visitor methods. AST visitors can all implement this interface but provide their own notions of

context. For the pretty-printer, indentation is modeled as an (immutable) dynamically scoped variable,

whose effect signature is given on lines 13–14. This signature can be extended to support mutability

(lines 15–16), though it is not needed by this example. The visitor also uses methods print and indent

(lines 18 and 19), which can raise I/O exceptions.
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1. calls

2. calls

8. calls

get

9. resume

client

visit

accept

3. calls

accept

5. calls

accept

6. calls

visit

4. calls

visit

7. get

1. calls

2. calls

client

visit

accept

3. calls

accept

5. calls

accept

6. calls

visit

4. calls

visit

7. throw

8. throw

9. throwthrow

10. calls
11. aborts

Figure 6. Left: stack snapshot at the point when printing the loop body asks for the current indentation level.

Right: stack snapshot when an I/O exception is raised while printing the loop body.

Pretty-printing While loops (lines 21–31) manipulates the dynamic scope. To properly indent, the

current indentation level is obtained from the dynamically scoped variable by invoking the effect

operation get (line 22). The loop body is printed using the same visitor, but with an updated indentation

level. This overriding of the dynamically scoped variable is done by providing a new handler for the

recursive visit of the loop body (lines 27–30). The initial level of indentation is provided by the client

code on line 38.

Figure 6 visualizes the propagation of a Yield[int] effect and an IOExc exception raised when visiting

a loop body. Notice that these effects tunnel through the effect-polymorphic accept methods. So even if

any of the accept methods handled effects internally, they would not be able to intercept the effects

passing by.

3.3 Accomplishing Tunneling by Statically Choosing Handlers
The modular reasoning principle requires that it be possible to reason statically about which handler is

used for each invocation of effect operations. Accordingly, the language mechanism for accomplishing

tunneling requires that an effect handler be given whenever an effect operation is invoked. As we show

below, such a handler can take the form of a concrete definition or of a handler variable, and does not

have to be provided explicitly in typical usage.

The effect-handling code on the left is actually shorthand for the code on the right, which explicitly

names the exception handler to use:

try { throw() }

with throw() { . . . }

try { H.throw() }

with H = new IOExc() {

throw() : void { . . . }

}

The handler with a concrete definition is given the name H, and the invocation H.throw() indicates that

H is chosen explicitly as the handler for the effect operation.

While the try–with construct introduces bindings of handlers with concrete definitions, mentions of

effect names in method, interface, or class headers introduce bindings of handler variables. For example,

the iterate method from section 2.1 mentions Yield[X] in its throws clause:

iterate[X](tr : Tree[X]) : void / Yield[X] { . . . }

So iterate is desugared using explicit parameterization with a handler variable named h:
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iterate[X, h : Yield[X]](tr : Tree[X]) : void / h {

iterate[X, h](tr.left())

h.yield(tr.value())

iterate[X, h](tr.right())

} // Uses of the handler variable are highlighted

The method is polymorphic over a handler for Yield[X], and the effectful computation in its body is

handled by this handler.

Inferring omitted handlers. Naming the handler might seem verbose, but does not create a burden

on the programmer: when programs are written using the usual syntax, the choice of handler is obvious,

so the language can always figure out what is omitted.

To map a program written in the usual syntax into one in which the choice of handler is explicit, two

phases of rewriting are performed: desugaring, and resolving omitted handlers. Desugaring involves

(a) introducing explicit bindings for concrete handler definitions and explicit handler-variable bind-

ings for handler polymorphism, and

(b) identifying where handlers are omitted and must be resolved—namely at invocation sites of effect

operations and of handler-polymorphic abstractions.

Once the program is desugared, an omitted handler for some effect signature (or effect operation) is

always resolved to the nearest lexically enclosing handler binding for that signature (or operation).

In the examples above, the concrete handler definition H is the closest lexically enclosing one for

IOExc, and the handler variable h is the closest lexically enclosing one for Yield[X]. So when they are

omitted in the program text, the language automatically chooses them as handlers for the respective

effects.

Tunneling. Tunneling falls out naturally. Performing the rewriting discussed above on the example in

fig. 3a yields the following program:

val fsize = . . .

val g = fun[h : Yield[int]](x : int) : void / h { h.yield(x); f(x) }

try { fsize(tr, g[H]) }

with H = new Yield[int]() { yield(x : int) : void { . . . } }

When g is passed to the higher-order function, its handler variable is substituted with the locally

declared handler H, the closest lexically enclosing one for Yield[int]. As a result, the invocation of the

effect operation in g will unequivocally be handled by H, rather than being intercepted by some handler

declared in an intermediary context.

As another example, class pretty in Figure 5 is actually parameterized by two handler variables ind

and io representing the dynamically scoped indentation level and the handling of I/O exceptions:

class pretty[ind : Val[int], io : IOExc] for Visitor[{ind,io}] {

visit(w : While) : void / {ind,io} {

. . .

try { w.body().accept[{H,io}](this[H, io]) }

with H = new Val[int] {

get() : int { resume(l+1) }

}

. . .

}

. . .

}
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1 val f : int→ void

2 val g = fun[h : Yield[int]](x : int) : void
3 { . . . h.yield(x) . . . }

4 try { f = identity(g[H]) }

5 with H = new Yield[int]() {

6 yield(x : int) : void { . . . resume() }

7 }

8 f(0) // Invokes g[H](0) but causes a run-time error

val f : int→ void

val g = fun[h : IOExc](x : int) : void
{ . . . h.throw() . . . }

try { f = identity(g[H]) }

with H = new IOExc()

{ throw() : void { . . . } }

. . . // Unable to transfer control here when H finishes
return f // Run-time error if f is invoked later

Figure 7. Both programs go wrong as a result of the type system’s not tracking the effect of g other than

requiring a handler to be provided. Region capabilities (section 3.4) address this issue.

For the code that visits the loop body (i.e., line 27 of Figure 5, whose full form is also shown above),

two handlers for Val[int] are lexically in scope—the handler variable ind and the handler definition

named H. The closest lexically enclosing one is chosen, so loop bodies are visited using an incremented

indentation level. Notice that the this keyword is actually a handler-polymorphic value, so it is possible

to recursively invoke the visitor while overriding the handler. For the handling of I/O exceptions, the

handler variable io is the only applicable handler lexically in scope. Both kinds of effects are guaranteed

not to be captured by the effect-polymorphic accept methods.

Disambiguating the choice of handler. Although explicitly naming handlers is not necessary in

most cases, the ability to specify handlers explicitly adds expressivity. For example, in their recent

work on using algebraic effects to encode complex event processing, Braćevac et al. (2018) describe

a situation where different invocations of the same effect operation need to be handled by different

surrounding handlers. The ability to explicitly specify handlers addresses this need.

3.4 Region Capabilities as Computational Effects
With the rewriting described in section 3.3, it may seem superfluous to still statically track the effects

of methods like iterate and g via throws clauses. After all, the desugared method signatures explicitly

require a handler to be provided—it appears guaranteed that the effect of any call to iterate or g is

properly handled.

However, programs would go wrong if these effects were ignored. Consider the program on the left

of Figure 7, where the type system does not track the effect of g other than requiring a handler to be

provided. In this example, g is passed to the (higher-order) identity function, and the result is stored

into a local variable f. As with the fsize example, the handler to provide for g is resolved to the closest

enclosing handler H. So when a Yield effect arises as a result of applying f to an integer (line 8), the

handling code in H is executed. But H does not have a computation to resume: the current control state

is no longer within a try block!

A similar problem happens when handlers do not resume—but rather abort—computations in try

blocks, such as exception handlers. In the program on the right of Figure 7, gmay throw an IOExc excep-

tion, and the computation in g[H] is returned to the caller. When an exception handler finishes, control

ought to be transferred to the point immediately following the corresponding try–with statement.

However, when g[H] is invoked later, raising an exception, the computation following try–with is no

longer available when the exception handler H finishes execution, because the stack frame containing

the computation has been deallocated.

B

A
We can view a try–with statement as marking a program point which, at run time, divides

the stack into two regions. In the figure to the right, the stack grows downwards, and an

effect is raised at the bottom of the stack. The two regions, A and B, represent the possible
control-flow transfer targets when the handler finishes handling the effect: the upper regionA
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is the computation to jump to if the handler aborts the computation in the try block, and

the lower region B is the try-block computation possibly to be resumed.

To handle an effect thus requires the capability to access the stack regions. A try–with statement

introduces a unique capability, which the corresponding handler holds within the try block. Capabilities

must not be able to escape their corresponding try blocks; otherwise, they would refer to deallocated

stack regions.

To this end, the type system tracks these stack-region capabilities as computational effects. In the

example above, applying g needs the capability held by the handler variable h. So the effect of g is this

capability, denoted by h in the throws clause of g:

val g = fun[h : Yield[int]](x : int) : void / h { . . . h.yield(x) . . . }

In the try block, the handler H provided by the enclosing try–with is used to substitute for the handler

variable, so the expression identity(g[H])—and therefore f—must have type int→ void / H, meaning

that the capability held by H is needed to apply f. However, because f outlives the try–with that

introduces this capability, the capability will be unavailable when f is applied. Fortunately, since

capabilities are tracked statically, the type system rejects this program.

This capability-effect system is more expressive than previous approaches to effect polymorphism

that use an escape analysis to prevent accesses to deallocated regions [36, 47]. In contrast to these

approaches, we allow values with latent polymorphic effects to escape into (effect-polymorphic) data

structures, as long as uses of the data structure do not outlive the corresponding stack regions. For

example, cachingFun implements a function that caches the result of its application, and is polymorphic

over the latent effects of that function:

// An effect-polymorphic data structure
class cachingFun[X,Y,E] for Fun[X,Y,E] {

val f : X → Y/E

cachingFun(f : X → Y/E) { this.f = f }

apply(x : X) : Y/E { . . . f(x) . . . }

. . .

}

// Using code
val g = fun(x : int) : void / Yield { . . . }

try {

val f = new cachingFun(g)

. . . // Apply f

}

with yield(x : int) : void { . . . resume() }

In the using code on the right, the effectful computation in g escapes into the newly allocated data

structure denoted by f. So f has type Fun[int,void,H], assuming the handler is named H. But since f

does not outlive the try–with that introduces the capability held by H, the code is safely accepted.

3.5 Implementation
This paper does not explore the options for implementing the new effect mechanism. However, imple-

mentation is largely an orthogonal concern. It appears entirely feasible to build on ongoing work on

efficiently implementing algebraic effects [9, 28]. When algebraic effects are used as a termination-style

exception mechanism, it is important that try-block computations be cheap; it should be possible to

adapt the technique used by Zhang et al. [47], which corresponds to passing (static) capability labels

rather than whole continuations.

4 A CORE LANGUAGE
To pin down the semantics of tunneled algebraic effects, we formally define a core calculus we call λ ,

which captures the key aspects of the language mechanisms introduced in Section 3.

4.1 Syntax
The language λ is a simply typed lambda calculus, extended with language facilities essential to

tunneling, including effect polymorphism, handler polymorphism, a way to access effect operations ( ),

11



capability effects e ::= α | ℓ | h.lbl

types T , S ::= 1 | S→[T ]e | ∀α .T | Πh:F [T ]e

handlers h,д ::= h | H ℓ

terms t , s ::= () | x | λx :T . t | t s | let x :T = t in s |

Λα . t | t [e] | λh :F. t | t h | h | ℓ
[T ]e

t

handler definitions H ,G ::= handlerF x k. t

effect var. environments ∆ ::= ∅ | ∆, α

handler var. environments P ::= ∅ | P, h :F

term var. environments Γ ::= ∅ | Γ, x :T

label environments Ξ ::= ∅ | Ξ, ℓ : [T ]e

effect names F labels ℓ effect variables α handler variables h term variables x, y, k, ...

Figure 8. Syntax of λ

and a way to discharge effects ( ). For simplicity, it is assumed that handlers are always given explicitly

for effectful computations (rather than resolving elided handlers to the closest lexically enclosing

binding), that effect signatures contain exactly one effect operation, and that effect operations accept

exactly one argument. Lifting these restrictions is straightforward, but adds syntactic complexity that

obscures the key issues.

Like previous calculi, our formalism omits explicit handler state. But handler state can be encoded

within the algebraic-effects framework—and consequently in λ —as Bauer and Pretnar [5] show. It

is also possible to extend the core calculus with handler state and, potentially, existentials to ensure

encapsulation of the state. We expect such an extension to be largely orthogonal.

Figure 8 presents the syntax of λ . An overline denotes a (possibly empty) sequence of syntactic

objects. For instance, e denotes a list of effects, with an empty sequence denoted by ∅. The i-th element

in a sequence • is denoted by •(i). Metavariables standing for identifiers are given a lighter color.

Types. Types include the base type 1, function types S→[T ]e , effect-polymorphic types ∀α .T , and
handler-polymorphic typesΠh:F [T ]e . The result type of a function type or that of a handler-polymorphic

type can be annotated by effects. For brevity, we omit explicit annotations when there is no effect; for

example, the type S→T means S→[T ]∅. Computations directly quantified by effect variables must

be pure, an easily lifted simplification that matches both typical usage and previous formalizations

(e.g., [7, 28]). Abstract handlers h implement effect signatures, whose names are ranged over by F. We

assume a global mapping from effect names to effect signatures; given an effect name F, the helper
function op(·) returns the type of its effect operation.

Terms. Terms consist of the standard ones of the simply typed lambda calculus plus those concerned

with effects, including the - and -terms, effect-polymorphic abstraction Λα . t and its application,

and handler-polymorphic abstraction λh :F. t and its application. The - and - terms, which we read

as “up” and “down”, correspond in the language of Section 3 to effect operations and effect handling.

For example, given a handler variable h that implements an effect F with signature T1→T2, the term
h is an effect operation whose implementation is provided by h, while the term h v invokes the

effect operation (assuming the value v has type T1), raising an effect.

12



The try–with construct corresponds to terms of form

ℓ
[T ]e

(λh :F. t) H ℓ

where the term t corresponds to the computation in the try block, and H the handler in the with clause.

Term t is placed in a handler-polymorphic abstraction, which is then immediately applied to the handler.

The handler variable h, occurring free in t , can be thought of as creating a local binding for handler H
that t uses to handle its effects.

As discussed in section 3.4, a try–with expression implicitly marks a program point, creating a stack-

region capability that is in scope within the try block. Correspondingly, -terms in λ mark program

points that create capabilities. These capabilities are represented by labels ℓ; terms of form
ℓ
[T ]e

t bind

a label ℓ whose scope is t . Subterms of t can then use ℓ to show they possess the region capability.

Labels bound by different -terms are assumed to be unique. To ensure unique typing, a -term is

annotated with the type and effects [T ]e of the very term; they correspond to the type and effects of a

try–with expression as a whole. We omit these annotations when they are irrelevant in the context.

To handle an effect requires both the handling code and the capability. Hence, handler definitionsH are

always tagged by a label in scope, forming pairs of formH ℓ
. Our use of -terms supports pairing different

handler definitions with the same program point, a useful feature that is common in programming

languages with exception handlers but that does not seem to be captured by previous formalisms. For

example, the following term corresponds to associating two handlers with the same try block:

ℓ
[T ]e

(
λh1 :F1. (λh2 :F2. t) H

ℓ
2

)
H ℓ
1

Handlers. A handler h is either a handler variable h or a definition–label pair H ℓ
. The (statically

unknown) label embodied in a handler variable h is denoted by h.lbl. Substituting a handler of form H ℓ

for a handler variable h also replaces any occurrences of h.lbl with ℓ.
Handler definitions H are of form handlerF x k. t , where F is the effect signature being implemented

and t is the handling code. Variables x and k may occur free in t : x denotes the argument passed to the

effect operation, and k the continuation at the point the effect operation is invoked.

Effects. The type system needs to track region capabilities as computational effects. An effect e is either
an effect variable α , a label ℓ bound by a -term, or the label of a handler variable. With effects being

just capabilities, we can handle effect composition simply: effect sequences e are essentially sets—the

order and multiplicity of effects in a sequence are irrelevant. Substituting an effect sequence e for an
effect variable α that is part of another effect sequence works by flattening e and replacing α with the

flattened effects.

4.2 Operational Semantics
A small-step operational semantics of the core language is given in Figure 9. The semantics is defined

in a largely standard way using evaluation contexts [18] with capture-avoiding substitution denoted by

· {·/·}. The transitive closure and the transitive, reflexive closure of the small-step transition relation −→

are denoted by −→+ and −→∗
, respectively.

Of all the evaluation rules, [e-down-up] is most interesting, as it deals with the invocation of effect

operations. Evaluating an invocation H ℓ v amounts to evaluating the handling code in H , which

requires the capability to access the stack regions marked by ℓ. Therefore, to reduce H ℓ v , the dynamic

scope is searched for an evaluation context
ℓ K[·] that binds ℓ. Notice that since labels bound by -

terms are assumed to be unique, the inner context K does not further nest any evaluation context
ℓ [·]

binding the same label. This evaluation context K is then passed to the handling code as the resumption

continuation. In case the handler chooses to abort the computation in K , evaluation continues with the

surrounding evaluation context, as rule [e-ktx] suggests. Notice that K is guarded by
ℓ
when passed
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values v,u ::= () | λx :T . t | Λα . t | λh :F. t | H ℓ

evaluation contexts K ::= [·] | K t | v K | K [ℓ] | K H ℓ | let x :T = K in t | ℓ K

t1 −→ t2

[e-ktx]

t1 −→ t2

K[t1] −→ K[t2]
[e-app] (λx :T . t) v −→ t {v/x} [e-eapp] (Λα . t) [ℓ] −→ t

{
ℓ
/
α
}

[e-happ] (λh :F. t) H ℓ −→ t
{
H ℓ

/
h
}

[e-let] let x :T = v in t −→ t {v/x}

[e-down-val]
ℓ v −→ v [e-down-up]

H = handlerF x k. t op(F) = T1→T2

ℓ K
[

H ℓ v
]
−→ t

{
λy :T2.

ℓ K[y]
/
k
}
{v/x}

Figure 9. Operational semantics of λ

∆ | P | Γ | Ξ ⊢ t : [T ]e

[t-up]

∆ | P | Γ | Ξ ⊢ h : F | e
op(F) = T →S

∆ | P | Γ | Ξ ⊢ h : [T →[S]e ]∅
[t-down]

∆ | P | Γ | Ξ, ℓ : [T ]e ⊢ t : [T ]e, ℓ
∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ e

∆ | P | Γ | Ξ ⊢ ℓ
[T ]e

t : [T ]e

∆ | P | Γ | Ξ ⊢ h : F | e

[t-hvar]

P(h) = F

∆ | P | Γ | Ξ ⊢ h : F | h.lbl
[t-hdef]

Ξ(ℓ) = [S]e op(F) = T1→T2
∆ | P | Γ, x :T1, k :T2→[S]e | Ξ ⊢ t : [S]e

∆ | P | Γ | Ξ ⊢

(
handlerF x k. t

)ℓ
: F | ℓ

Figure 10. Selected rules from the static semantics of λ

to the handling code, so any invocation of effect operations labeled by ℓ in the resumption continuation

can be handled properly.

4.3 Static Semantics
Some of the static-semantics rules of λ are provided in Figure 10. Term well-formedness rules

have form ∆ | P | Γ | Ξ ⊢ t : [T ]e , where ∆, P, Γ and Ξ are environments of free effect variables, handler

variables, term variables, and labels, respectively. The judgment form says that under these environments

the term t has type T and effects e .
Rule [t-up] suggests that an effect operation h is a first-class value with typeT →[S]e , whereT →S

is the effect signature and e is the capability held by h.
Rule [t-down] suggests that a term t guarded by

ℓ
possesses the capability ℓ: in the premise, t

is typed under the label environment augmented with ℓ. Importantly, however, the label ℓ must not
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C ::= [·] | C[λx :T . [·]] | C[[·] t] | C[t [·]] | C[let x :T = [·] in t] |

C[let x :T = t in [·]] | C[Λα . [·]] | C[[·] [e]] | C[λh :F. [·]] | C[[·] h] |

C

[
t
(
handlerF x k. [·]

)ℓ]
| C

[ (
handlerF x k. [·]

)ℓ]
| C

[
ℓ [·]

]
Figure 11. Program contexts of λ

occur free in the result type T and effects e . Otherwise, ℓ could outlive its binding scope. For instance,

it would then be possible to type the term
ℓ
[S1→[S2]ℓ ]∅

(
H ℓ

)
as S1→[S2]ℓ , assuming H implements

effect signature S1→S2. Per evaluation rule [e-down-val], the term would then evaluate to H ℓ
. But

without a corresponding
ℓ
in the dynamic context, an invocation of the effect operation H ℓ t would

get stuck.

Handler well-formedness rules have form ∆ | P | Γ | Ξ ⊢ h : F | e , which states that handler h im-

plements the algebraic effect F and has label e . Rule [t-hdef] requires that the handling code t of a
handler H ℓ

be typable using the type and effects [S]e prescribed by the label ℓ. This requirement helps

the reduction rule [e-down-up] preserve typing.

The other static semantics rules are largely standard and can be found in the appendices. These

include the remaining rules for term well-formedness, the rules for the well-formedness of types and

effects, and the rules for the partial orderings on types and effect sequences.

Encoding data structures. For simplicity, λ does not have data structures. However, λ allows

their encoding via closures, where the captured variables may have latent polymorphic effects. For

example, a simplified pair data structure polymorphic over the latent effects of its components can be

encoded as follows:

T
def
= S1→[S2]α S1 and S2 can be any closed type

pair
def
= Λα . λx :T . λy :T . λf :T →T →T . f x y construct a pair

first
def
= Λα . λp : (T →T →T )→T . p (λx :T . λy :T . x) obtain the first component

second
def
= Λα . λp : (T →T →T )→T . p (λx :T . λy :T . y) obtain the second component

The two components, both having type T , have α as their latent effects. The pair constructor is then
polymorphic in α .
This example cannot be readily encoded in previous formalisms [36, 47], which support a limited

form of effect polymorphism by introducing second-class values that cannot escape their defining

scope. In particular, these systems do not admit the subterm λx :T . λy :T . x in the definition of first,
or the subterm λy :T . y in the definition of second. Variable x in the first subterm, being second-class

because it has a polymorphic latent effect, escapes its defining scope via the closure λy :T . x capturing

it. Similarly, in the second subterm, variable y escapes its defining scope. By contrast, our use of explicit

effect polymorphism and capability labels enables the definition of effect-polymorphic data structures.

4.4 Contextual Refinement and Equivalence
A program context is a program with a hole [·] in it. Figure 11 shows the different types of program

contexts in λ . Well-formedness judgments for program contexts have the form

⊢ C : ∆ | P | Γ | Ξ | [S]e ⇝ T
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The meaning of this judgment is that if a term t satisfies the typing judgment ∆ | P | Γ | Ξ ⊢ t : [S]e , then
plugging t into C results in a program that satisfies ∅ |∅ |∅ |∅ ⊢ C[t] : [T ]∅. These rules are available
in the appendices.

Our goal is to prove that with tunneling, algebraic effects can preserve abstraction. Abstraction is

shown by demonstrating that implementations using effects internally cannot be distinguished by

external observers. The gold standard of indistinguishability is contextual equivalence: two terms are

contextually equivalent if plugging them into an arbitrary well-formed program context always gives

two programs whose evaluations yield the same observation [33].

We define contextual equivalence in terms of contextual refinement, a weaker, asymmetric relation

that requires one term to be able to simulate the behaviors of the other:

Definition 1 (contextual refinement ≼ctx and contextual equivalence ≈ctx).

∆ | P | Γ | Ξ ⊢ t1 ≼ctx t2 : [T ]e
def
= ∀C . ⊢ C : ∆ | P | Γ | Ξ | [T ]e ⇝ T ′ ⇒

(∃v1. C[t1] −→∗ v1) ⇒ (∃v2. C[t2] −→∗ v2)

∆ | P | Γ | Ξ ⊢ t1 ≈ctx t2 : [T ]e
def
= ∆ | P | Γ | Ξ ⊢ t1 ≼ctx t2 : [T ]e ∧ ∆ | P | Γ | Ξ ⊢ t2 ≼ctx t1 : [T ]e

For programs to be equivalent in the above definition, they only need to agree on termination, but

this seemingly weak observation of program behavior does not weaken the discriminating power of

the definition, because of the universal quantification over all possible program contexts and because

λ is Turing-complete (see section 5.1). Hence, if two computations that reduce to observably different

values, one can always construct a program context that makes the two computations exhibit different

termination behavior.

However, the universal quantification over contexts also makes it hard to show equivalence by using

the definition directly. We therefore take one of the standard approaches to establishing contextual

equivalence: constructing a logical relation that implies contextual equivalence.

5 A SOUND LOGICAL-RELATIONS MODEL
We develop a logical-relations model for λ and prove the important property that logically related

terms are contextually equivalent. This semantic soundness result guarantees that the language λ is

both type-safe and abstraction-safe.

5.1 Step Indexing
A logical-relations model gives a relational interpretation of types, traditionally defined inductively

on the structure of types. But language features like recursive types require a more sophisticated

induction principle. Algebraic effects present a similar challenge because effect signatures can be

defined recursively.

Recursively defined effect signatures give rise to programs that diverge, and consequently make the

language Turing-complete. For example, suppose effect F has signature op(F) = 1→Πh:F [T ]h.lbl, which
recursively mentions F, and that H is defined as follows:

H
def
= handlerF x k. k (λh :F. h () h)

Then the evaluation of the program
ℓ
[T ]∅

(λh :F. h () h) H ℓ
does not terminate:

ℓ (λh :F. h () h) H ℓ −→ ℓ
(

H ℓ () H ℓ
)
−→

(
λy :Πh:F [T ]h.lbl.

ℓ y H ℓ
)
(λh :F. h () h)

−→ ℓ (λh :F. h () h) H ℓ −→ · · ·
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Because of this recursion in the signature of F, structural induction alone is unable to give a well-defined
relational interpretation of F.
Step indexing [2] has been successfully applied to cope with recursive types (e.g., by Ahmed [1]).

In this approach, the logical relation is defined using a double induction, first on a step index, and

second on the structure of types. Intuitively, the step index indicates for how many evaluation steps the

proposition is true; at step 0 everything is vacuously true, and if a proposition is true for any number of

steps then it is true in a non-step-indexed setting.

[löb]

P , ▷Q ⊢ Q

P ⊢ Q

[mono]

P ,Q ⊢ R

P , ▷Q ⊢ ▷R

Our definition is step-indexed. It uses a logic equipped with the modality

▷, read as “later”, which offers a clean abstraction of step indexing [3, 15]. If

proposition P holds for n steps, then ▷ P holds for n − 1 steps. So P implies ▷ P .
Importantly, the ▷modality provides the [löb] axiom, which can be viewed as

an induction principle on step indices. The ▷ modality distributes over other

connectives, so rule [mono] is derivable.

As we shall see in section 5.3, to ensure well-definedness, recursive invocations of the interpretation

of effect signatures occur under the ▷ modality.

5.2 A Biorthogonal Term Relation
We introduce a logical relation for terms, which are closed under the empty variable environments but

may use capability labels that are not locally bound. The term relation is defined using the technique of

biorthogonality, pioneered by Pitts and Stark [37]. Biorthogonality, also known as⊤⊤-closure, lends itself
to languages whose operational semantics manipulate evaluation contexts [7, 16, 24]: in a biorthogonal

term relation, two terms are related if evaluating them in related evaluation contexts yields related

observations. Hence, our term relation T is defined as follows, with a relation K providing a notion of

relatedness for evaluation contexts and relation O relating observations:

O (t1, t2)
def
= (∃v1,v2. t1 = v1 ∧ t2 −→

∗ v2) ∨
(∃t ′

1
. t1 −→ t ′

1
∧ ▷O

(
t ′
1
, t2

) )
T J[T ]eK

ρ
δ (t1, t2)

def
= ∀K1,K2. KJ[T ]eK

ρ
δ (K1, K2) ⇒ O (K1[t1], K2[t2])

KJ[T ]eK
ρ
δ (K1, K2)

def
=

(
∀v1,v2.VJT Kρδ (v1, v2) ⇒ O (K1[v1], K2[v2])

)
∧(

∀t1, t2. SJ[T ]eK
ρ
δ (t1, t2) ⇒ O (K1[t1], K2[t2])

)
SJ[T ]eK

ρ
δ (K1[t1], K2[t2])

def
= ∃ψ , ℓ1, ℓ2.UJeKρδ

(
t1, t2, ψ , ℓ1, ℓ2

)
∧(

∀i . ℓ(i)
1
↷ K1

)
∧

(
∀i . ℓ(i)

2
↷ K2

)
∧

∀t ′
1
, t ′
2
. ψ

(
t ′
1
, t ′

2

)
⇒ ▷T J[T ]eK

ρ
δ

(
K1

[
t ′
1

]
, K2

[
t ′
2

] )
Apart from the S relation, the above definitions are standard. We define logical equivalence in terms

of a notion of logical refinement, in much the same way that we define contextual equivalence in terms

of contextual refinement. Rather than requiring the terms to exhibit the same termination behavior,

the observation relation O relates two computations where termination of the first computation

merely implies that of the second one. The O relation is defined recursively; the use of the ▷ modality

suggests that the definition is implicitly indexed by the number of remaining evaluation steps the first

computation can take.

Two evaluation contexts are related by K if they yield related observations when applied to related

values. However, in the presence of algebraic effects, values are not the only kind of irreducible term.

Terms of form K
[

H ℓ v
]
where the evaluation context K does not bind ℓ (captured by the judgment

form ℓ ↷ K defined in Figure 12) are stuck when put into an empty evaluation context.
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ℓ ↷ K ℓ ↷ [·]
ℓ ↷ K

ℓ ↷ K t

ℓ ↷ K

ℓ ↷ v K

ℓ ↷ K

ℓ ↷ K [ℓ]

ℓ ↷ K

ℓ ↷ K H ℓ

ℓ ↷ K

ℓ ↷ let x :T = K in t

ℓ1 ↷ K
ℓ1 , ℓ2

ℓ1 ↷ ℓ2 K

Figure 12. ℓ ↷ K means the evaluation context K does not bind label ℓ

So we borrow from Biernacki et al. [7] a logical relation SJ[T ]eK
ρ
δ , which, being a smaller relation

than T J[T ]eK
ρ
δ , relates two computations that can possibly get stuck by themselves because they raise

effects among e . The definition of the K relation then requires that two related evaluation contexts

yield related observations when applied to not only values related byV but also terms related by S.

The S relation is discussed further in section 5.3.

Because of the use of biorthogonality, and assuming parametricity is derivable, our term relation is

automatically complete with respect to contextual refinement [16, 37]: contextually equivalent terms

are always logically related. So the key theorems to prove are parametricity and soundness.

The definitions of the relations T , K , and S are mutually recursive, and are dependent on the

semantic interpretation of a typeVJT Kρδ and that of an effect sequenceUJeKρδ , defined below.

5.3 Semantic Types, Semantic Effect Signatures, and Semantic Effects
The logical relation VJT Kρδ (Figure 13), defined by structural induction on the type T , interprets T as a

binary relation on values. The unit type and function types are interpreted in a standard way, following

the contract that the logical relation should be preserved by the elimination (or introduction) forms of

the types.

Effect-polymorphic types and handler-polymorphic types bind effect variables and handler variables.

Accordingly, environments δ and ρ are introduced to provide substitutions for variables occurring free

in the type being interpreted:

δ ::= ∅ | δ , α 7→
〈
ℓ1, ℓ2,ϕ

〉
ρ ::= ∅ | ρ, h 7→

〈
H ℓ1
1
,H ℓ2

2
,η
〉

We use δ1 and δ2 (resp. ρ1 and ρ2) to mean the substitution functions for free effect (resp. handler)

variables. In addition to these syntactic substitution functions, the environment δ maps each effect

variable to a third component that is the semantic interpretation chosen for the effect variable, while

the environment ρ maps each handler variable to a third component that is the term relation the

computations of the two handlers satisfy. (Metavariables ϕ, η, andψ range over relation variables.) The

definitions in Figure 13 are also parameterized by a label environment Ξ; labels in the domain of Ξ may

occur free in the types and effects being interpreted. We omit Ξ for brevity.

The definition of VJ∀α .T Kρδ shows the source of the abstraction guarantees provided by effect-

polymorphic abstractions: two effect-polymorphic abstractions are related if their applications are

related however the effect variable is interpreted. The definition ofVJΠh:F [T ]eK
ρ
δ says that two handler-

polymorphic abstractions are related if their applications to any related handlers are related. Handler-

relatedness is defined by the logical relation HJFK, indexed by effect signatures F. As discussed in

section 5.1, effect signatures can be recursively defined. ThusHJFK is invoked here under the ▷modality

so that the definition is admissible.

The interpretation of an effect signature F is similar to that of a function type: two handlers are

related if their handling code is related under any related substitutions for the free variables. HJFK
relates a third component η that is a term relation; the handler computations are in this relation. HJFK
is not indexed by environments δ and ρ, because effect signatures are closed.
We revisit the definition of the S relation introduced in section 5.2. As mentioned earlier, S can

relate terms of form K
[

H ℓ v
]
where ℓ ↷ K—although terms in this relation are not necessarily
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Semantic types:

VJ1Kρδ (v1, v2)
def
= v1 = () ∧ v2 = ()

VJT →[S]eK
ρ
δ (v1, v2)

def
= ∀u1,u2.VJT Kρδ (u1, u2) ⇒ T J[S]eK

ρ
δ (v1 u1, v2 u2)

VJ∀α .T Kρδ (v1, v2)
def
= ∀ℓ1, ℓ2,ϕ . T J[T ]∅Kρ

δ, α 7→

〈
ℓ1, ℓ2, ϕ

〉 (v1 [ℓ1], v2 [ℓ2])
VJΠh:F [T ]eK

ρ
δ (v1, v2)

def
= ∀H ℓ1

1
,H ℓ2

2
,η. ▷ HJFK

(
H ℓ1
1
, H ℓ2

2
, η

)
⇒

T J[T ]eK
ρ, h 7→

〈
H ℓ1
1
, H ℓ2

2
, η

〉
δ

(
v1 H

ℓ1
1
, v2 H

ℓ2
2

)
Semantic effect signatures:

HJFK
(
H ℓ1
1
, H ℓ2

2
, η

)
def
= Hi = handlerF x k. ti (i = 1, 2) ∧ op(F) = T1→T2 ∧

∀v1,v2.VJT1K∅∅ (v1, v2) ⇒

∀u1,u2.
(
∀w1,w2.VJT2K∅∅ (w1, w2) ⇒ η (u1 w1, u2 w2)

)
⇒

η (t1 {u1/k} {v1/x}, t2 {u2/k} {v2/x})

Semantic effects:

UJαKρδ
(
t1, t2, ψ , ℓ1, ℓ2

)
def
= δ (α) =

〈
ℓ′
1
, ℓ′

2
,ϕ

〉
∧ ϕ

(
t1, t2, ψ , ℓ1, ℓ2

)
UJeKρδ (t1, t2, ψ , ℓ1, ℓ2)

def
= ρ1e = ℓ1 ∧ ρ2e = ℓ2 ∧(

UAJeKρδ (t1, t2, ψ , ℓ1, ℓ2) ∨ UBJeK (t1, t2, ψ , ℓ1, ℓ2)
)

UAJeKρδ (t1, t2, ψ , ℓ1, ℓ2)
def
= t1 = H ℓ1

1
v1 ∧ t2 = H ℓ2

2
v2 ∧ ▷HJFK

(
H ℓ1
1
, H ℓ2

2
,WJeKρδ

)
∧

op(F) = T →T ′ ∧ ▷VJT K∅∅ (v1, v2) ∧ ψ ≡ ▷VJT ′K∅∅
UBJeK (t1, t2, ψ , ℓ1, ℓ2)

def
=

(
∀K . ℓ1 ↷ K ⇒ ℓ1 K[t1] −→

+ ℓ1 K
[
t ′
1

] )
∧(

∀K . ℓ2 ↷ K ⇒ ℓ2 K[t2] −→
∗ ℓ2 K

[
t ′
2

] )
∧ ψ ≡

{(
t ′
1
, t ′

2

)}
UJeKρδ (t1, t2, ψ , ℓ1, ℓ2)

def
= ∃i .Uq

e(i)
yρ
δ (t1, t2, ψ , ℓ1, ℓ2)

Semantic labels:
WJh.lblKρδ (t1, t2)

def
= ρ(h) =

〈
H ℓ1
1
,H ℓ2

2
,η
〉
∧ η (t1, t2)

WJℓKρδ (t1, t2)
def
= Ξ(ℓ) = [T ]e ∧ T J[T ]eK

ρ
δ (t1, t2)

Figure 13. Relational interpretation of types, effect signatures, and effects

effectful, because it is possible for programs that use effects and those that do not to be equivalent.

The operational meaning of these terms depends upon a larger surrounding context that binds the

label ℓ. Therefore, the relation SJ[T ]eK
ρ
δ is defined using theUJeKρδ relation, which relates the (possibly)

effectful computations t1 and t2 and also a binary term relation ψ ∈ P(Term × Term) specifying the

outcomes of these computations in a larger context. Given this specification, the definition of SJ[T ]eK
ρ
δ

checks that plugging any pair of terms (t ′
1
, t ′
2
) related by the outcome specification into the current

evaluation contexts yield related terms. Notice that K1

[
t ′
1

]
and K2

[
t ′
2

]
only need to be related in the

future as indicated by the use of the ▷ modality, because it takes evaluation steps to reach t ′
1
.

Capability effects are interpreted by theUJeKρδ relation. For an effect variable α , the interpretation is

simply the relation mapped to by the environment δ . For an effect of form ℓ or h.lbl, two interpretations
are provided. RelationUAJeKρδ relates two effect operation invocations: H ℓ1

1
v1 and H ℓ2

2
v2 are related
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provided the handlers H ℓ1
1

and H ℓ2
2

are related and the arguments v1 and v2 are related. The outcome

relationψ in this case is the value relation at the return type of the effect operation. The interpretation

of ℓ and that of h.lbl differ in the relation that the handlers satisfy, captured by the two cases in the

definition of WJeKρδ : for h.lbl, this relation is the one that ρ maps h to, while for ℓ, this relation is

T J[T ]eK
ρ
δ , provided the label environment Ξ maps ℓ to [T ]e . RelationUBJeK relates two terms t1 and t2

when evaluating them in evaluation contexts of form
ℓ K[·] (where K does not bind ℓ) preserves the

evaluation contexts.

The interpretation of a sequence of effects e is naturally the union of the interpretation of the

individual effects in the sequence.

5.4 Properties of the Logical Relations
Basic properties. We point out some basic properties of the logical relations. These properties are

employed by the proof leading to the soundness theorem and are used frequently in proofs of logical

relatedness.

The following lemma applies when the goal is to prove the relatedness of two terms in which the

subterms in the evaluation contexts are related:

Lemma 1. Given evaluation contexts K1 and K2, if

(a) for any v1 and v2,VJT Kρδ (v1, v2) implies T
q
[T ′]e ′

yρ
δ (K1[v1], K2[v2]), and

(b) for any s1 and s2, SJ[T ]eK
ρ
δ (s1, s2) implies T

q
[T ′]e ′

yρ
δ (K1[s1], K2[s2]),

then for any t1 and t2, T J[T ]eK
ρ
δ (t1, t2) implies T

q
[T ′]e ′

yρ
δ (K1[t1], K2[t2]).

The lemma says it suffices to show the evaluation contexts K1 and K2 satisfy the following conditions:

applying K1 and K2 to (a) related values and (b) related terms in the SJ[T ]eK
ρ
δ relation yields related

terms in the T
q
[T ′]e ′

yρ
δ relation. We capture the preconditions of Lemma 1 by defining a logical relation

KT

q
[T ]e ⇝ [T ′]e ′

yρ
δ : two evaluation contexts K1 and K2 are in this relation precisely when they satisfy

the preconditions (a) and (b) of Lemma 1.

The following two lemmas show that reduction on either side reflects the term relation:

Lemma 2. If t1 −→ t ′
1
and ▷T J[T ]eK

ρ
δ

(
t ′
1
, t2

)
, then T J[T ]eK

ρ
δ (t1, t2).

Lemma 3. If t2 −→ t ′
2
and T J[T ]eK

ρ
δ

(
t1, t

′
2

)
, then T J[T ]eK

ρ
δ (t1, t2).

The asymmetry with respect to the use of the ▷modality in the preconditions is a result of the asymmetry

in the definition of the O relation.

The following lemma allows proving two terms related by showing that they are in theV relation or

in the S relation:

Lemma 4. VJT Kρδ ⊆ T J[T ]eK
ρ
δ ∧ SJ[T ]eK

ρ
δ ⊆ T J[T ]eK

ρ
δ

These basic properties (Lemmas 1 to 4) are a consequence of the biorthogonal, step-indexed term

relation defined in section 5.2.

Soundness. Contextual refinement is defined for open terms, so we lift the term relation and the

handler relation to open terms and open handlers by quantifying over related closing substitutions

for the variable environments, as shown in Figure 14. Here, γ provides substitution functions for term

variables: γ ::= ∅ | γ , x 7→ ⟨v1,v2⟩. The interpretation of variable environments as relations on

substitutions, also given in Figure 14, is standard.

Central to the proof of soundness are the compatibility lemmas; they show that logical refinement≼log
is preserved by the syntactic typing rules. Figure 15 shows those compatibility lemmas corresponding
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∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T ]e
def
= ∀δ . J∆K (δ ) ⇒ ∀ρ. JPK (ρ) ⇒ ∀γ . JΓKρδ (γ ) ⇒

T J[T ]eK
ρ
δ (δ1ρ1γ1t1, δ2ρ2γ2t2)

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : F | e
def
= ∀δ . J∆K (δ ) ⇒ ∀ρ . JPK (ρ) ⇒ ∀γ . JΓKρδ (γ ) ⇒

HJFK
(
δ1ρ1γ1h1, δ2ρ2γ2h2,WJeKρδ

)
J∅K (δ )

def
= δ = ∅ J∆,αK (δ )

def
= δ = δ ′, α 7→

〈
ℓ1, ℓ2,ϕ

〉
∧ J∆K (δ ′)

J∅K (ρ)
def
= ρ = ∅ JP, h :FK (ρ)

def
= ρ = ρ ′, h 7→

〈
H ℓ1
1
,H ℓ2

2
,η
〉
∧ JPK (ρ ′) ∧

▷HJFK
(
H ℓ1
1
, H ℓ2

2
, η

)
J∅Kρδ (γ )

def
= γ = ∅ JΓ, x :T Kρδ (γ )

def
= γ = γ ′, x 7→ ⟨v1,v2⟩ ∧ JΓKρδ (γ

′) ∧ VJT Kρδ (v1, v2)
Figure 14. Logical relations for open terms and handlers

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : F | e
op(F) = T →S

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : [T →[S]e ]∅

∆ | P | Γ | Ξ, ℓ : [T ]e ⊢ t1 ≼log t2 : [T ]e, ℓ
∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ e

∆ | P | Γ | Ξ ⊢ ℓ
[T ]e

t1 ≼log
ℓ
[T ]e

t2 : [T ]e

P(h) = F

∆ | P | Γ | Ξ ⊢ h ≼log h : F | h.lbl

Ξ(ℓ) = [S]e op(F) = T1→T2
∆ | P | Γ, x :T1, k :T2→[S]e | Ξ ⊢ t1 ≼log t2 : [S]e

∆ | P | Γ | Ξ ⊢

(
handlerF x k. t1

)ℓ
≼log

(
handlerF x k. t2

)ℓ
: F | ℓ

Figure 15. Selected compatibility lemmas. The lemmas are written in the style of inference rules so that they can

be read in tandem with the corresponding typing rules [t-up], [t-down], [t-hvar], and [t-hdef] in Figure 10.

to the typing rules in Figure 10, while the rest can be found in the appendices. Parametricity, and the

fact that well-formed program contexts preserve logical refinement, are direct consequences of the

compatibility lemmas:

Theorem 1 (Parametricity, a.k.a., Fundamental Property, a.k.a., Abstraction Theorem).

(1) ∆ | P | Γ | Ξ ⊢ t : [T ]e ⇒ ∆ | P | Γ | Ξ ⊢ t ≼log t : [T ]e
(2) ∆ | P | Γ | Ξ ⊢ h : F | e ⇒ ∆ | P | Γ | Ξ ⊢ h ≼log h : F | e

Lemma 5 (Congruency). ⊢ C : ∆ | P | Γ | Ξ | [T ]e ⇝ T ′ ∧ ∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T ]e ⇒

∅ |∅ |∅ |∅ ⊢ C[t1] ≼log C[t2] : [T
′]∅

One last step leading to the soundness theorem is to show the logical relation is adequate—two

logically related pure terms are observationally related:

Lemma 6 (Adequacy). ∅ |∅ |∅ |∅ ⊢ t1 ≼log t2 : [T ]∅ ⇒ O (t1, t2)

Type safety, the property that well-typed programs can only evaluate to values or diverge, falls out as an

easy corollary of Adequacy and Parametricity, as the O relation only relates terms whose evaluations

do not get stuck.

Theorem 2 (Type Safety). If ∅ |∅ |∅ |∅ ⊢ t : [T ]∅ and t −→∗ t ′, then either there exists v such that

t ′ = v or there exists t ′′ such that t ′ −→ t ′′.
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The key theorem that logical refinement implies contextual refinement—and therefore logical equiva-

lence implies contextual equivalence—is a result of Adequacy and Congruency:

Theorem 3 (Soundness). ∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T ]e ⇒ ∆ | P | Γ | Ξ ⊢ t1 ≼ctx t2 : [T ]e

5.5 Formalization in Coq
The definitions and results presented in sections 5.3 to 5.4 have also been formalized using the Coq

proof assistant [11]. The implementation consists of about 4,000 lines of code for defining the language

and proving syntactic properties, and another 4,200 lines of code for defining the logical relations and

proving their properties.

The logical relations are defined using the IxFree library [40], which is a shallow embedding of Dreyer

et al.’s logic LSLR [15] in Coq. It also provides tactics for manipulating inference rules such as [löb] and

[mono], as well as a fixed-point operator for functions contractive in the use of the step index. Because

IxFree does not support dependently typed fixpoint functions and because we use a dependently typed

variant of de Bruijn indices, in our Coq formalization the type and effects attached to a label must be

closed. We expect to extend the IxFree library and overcome this limitation in the Coq formalization.

6 PROVING EXAMPLE EQUIVALENCES
We demonstrate that the logical-relations model allows us to prove refinement and equivalence results

that would not hold if algebraic effects were not tunneled. Beyond the usefulness of equivalence for

programmer reasoning, such equivalence results could be used to justify the soundness of compiler

transformations on effectful programs.

Example 1. In this example, we show that clients of an effect-polymorphic abstraction cannot cause

implementation details of the abstraction to leak out. We assume that λ has a second base type N
with the operator +.

Let f be a variable with an effect-polymorphic typeT
def
= ∀α . (N→[N]α )→[N]α . Our goal is to prove

the following two terms contextually equivalent:

t1
def
= f [∅] (λx :N. x + x)

t2
def
= let g : Πh:F N→[N]h.lbl = λh :F. λx :N. h x in

ℓ
[N]∅

(λh :F. f [h.lbl] (g h)) H ℓ

whereH
def
= handlerF x k. k (x + x) and op(F) = N→N. The second term t2 corresponds to the following

program written using the try–with construct, assuming the effect operation is named twice:

effect F { twice(N) : N }

val g = fun(x :N) : N /F { return twice(x) }

try { f(g) } with twice(x :N) { resume (x + x) }

Notice that this equivalence should apply to all possible (well-typed) implementations of f, so even if

the implementation handles F internally, the clients are unable to make different observations. As a

result, equivalence results of this kind ensure the correctness of compiler transformations that optimize

away uses of effects like that in t2.
By the Soundness theorem, it suffices to show that t1 and t2 are logically equivalent. Below we show

the logical refinement∅ |∅ | f :T |∅ ⊢ t1 ≼log t2 : [N]∅ holds; the proof of the other direction is similar.

By the definition of logical refinement (≼log), we need to show for any f1 and f2 in the logical relation

VJT K∅∅, the terms t1 { f1/f} and t2 { f2/f} are in the logical relation T J[N]∅K∅∅. Notice that we can make
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reduction steps on t2 { f2/f}. So applying Lemma 3, our goal becomes

T J[N]∅K∅∅
(
f1 [∅] (λx :N. x + x), ℓ

[N]∅
f2 [ℓ]

(
λx :N. H ℓ x

))
(1)

We can show a result slightly different from (1): we will show that the terms in (1) are related by

T J[N]∅K∅δ instead, where δ contains the mapping α 7→ ⟨∅, ℓ,ϕ⟩ and ϕ is the interpretation specifically

chosen for α in this example:

ϕ =
{ 〈

(λx :N. x + x) n,
(
λx :N. H ℓ x

)
n, {⟨2n, 2n⟩}, ∅, ℓ

〉 ��� n ∈ N
}

Having this result, we can use a weakening lemma (omitted) to obtain (1). Here, the presence of effect

polymorphism allows us to interpret α in arbitrary ways, but as we shall see, this particular choice

of ϕ allows us to establish logical relatedness. To obtain this result, we apply Lemma 1 with evaluation

contexts [·] and ℓ
[N]∅

[·]:

• Wewant to showKTJ[N]α ⇝ [N]∅K∅δ
(
[·], ℓ [·]

)
. We apply the [löb] rule from section 5.1: to prove

this goal, we are allowed to assume

▷KTJ[N]α ⇝ [N]∅K∅δ
(
[·], ℓ [·]

)
(2)

Unfolding the definition of KT generates the following two goals:

(a) We want to show for any v1 and v2 in the relation VJNK∅δ , the terms v1 and
ℓ v2 are related by

T J[N]∅K∅δ . This is immediate, because the right-hand side evaluates to v2 and the value relation

is included in the term relation (Lemma 4).

(b) We want to show for any K1[s1] and K2[s2] in the relation SJ[N]α K∅δ , the terms K1[s1] and
ℓ K2[s2] are related by T J[N]∅K∅δ . Unfolding the definition of S, we know there exists an

outcome relationψ such that

(i) UJαK∅δ
(
s1, s2, ψ , ℓ1, ℓ2

)
,

(ii) ∀i . ℓ(i)
1
↷ K1 and ∀i . ℓ(i)

2
↷ K2, and

(iii) ∀s ′
1
, s ′

2
. ψ

(
s ′
1
, s ′

2

)
⇒ ▷T J[N]∅K∅δ

(
K1

[
s ′
1

]
, K2

[
s ′
2

] )
.

Since we interpret α as ϕ (i.e., UJαK∅δ = ϕ), we know s1, s2,ψ , ℓ1, and ℓ2 are precisely the terms,

relation, and labels in ϕ. Thus we need to show

T J[N]∅K∅δ
(
K1[(λx :N. x + x) n],

ℓ K2

[(
λx :N. H ℓ x

)
n
] )

Making evaluation steps on both sides, the goal becomes ▷T J[N]∅K∅δ
(
K1[2n],

ℓ K2[2n]
)
. The

new goal is guarded by the ▷ modality because evaluation occurred in the first computation. Now

we can apply rule [mono] from section 5.1: the presence of the ▷ modality in the goal cancels out

the occurrence of ▷ in the Löb induction hypothesis (2) and also that in fact (iii) above. The new

proof context is as follows:

KTJ[N]α ⇝ [N]∅K∅δ
(
[·], ℓ [·]

)
∀s ′

1
, s ′

2
. ψ

(
s ′
1
, s ′

2

)
⇒ T J[N]∅K∅δ

(
K1

[
s ′
1

]
, K2

[
s ′
2

] )
T J[N]∅K∅δ

(
K1[2n],

ℓ K2[2n]
)

We already haveψ (2n, 2n), so the new goal follows.

• We are left to show T J[N]α K∅δ
(
f1 [∅] (λx :N. x + x), f2 [ℓ]

(
λx :N. H ℓ x

) )
. By the hypothesis

VJ∀α . (N→[N]α )→[N]α K∅∅ (f1, f2) and by the definition of V , we have that the terms f1 [∅] and

f2 [ℓ] are in the relation T
q
[(N→[N]α )→[N]α ]∅

y∅
δ . Because the logical relation is compatible

with the typing rule for applications, it suffices to show that the values that f1 [∅] and f2 [ℓ]
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are applied to (i.e., λx :N. x + x and λx :N. H ℓ x) are in the relation VJ(N→[N]α )K
∅
δ , which by

definition means applications of these two abstractions to the same natural number are in the term

relation T J[N]α K∅δ . By Lemma 4, we show the applications are actually in the smaller S relation:

SJ[N]α K∅δ
(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n
)

With the evaluation contexts being [·], the following conditions are straightforward to show:

(i) UJαK∅δ
(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n, {⟨2n, 2n⟩}, ∅, ℓ

)
,

(ii) ℓ ↷ [·], and

(iii) for any s ′
1
and s ′

2
related by {⟨2n, 2n⟩}, ▷T J[N]∅K∅δ

(
s ′
1
, s ′

2

)
.

Example 2. In this example, we show tunneled algebraic effects preserve the abstraction of handler

polymorphism.

Let f be a handler-polymorphic abstraction with type Πh:F (N→[N]h.lbl)→[N]h.lbl. Our goal is to

prove the following two terms contextually equivalent:

t1
def
= ℓ

[N]∅
(λh :F. f h (λx :N. x + x)) H ℓ

t2
def
= ℓ

[N]∅
(λh :F. f h (λx :N. h x)) H ℓ

where H
def
= handlerF x k. k (x + x) and op(F) = N→N. Again, this equivalence is expected to hold

regardless of the implementation of f, which is free to handle F internally.

The proof is structured in an analogous way to that in Example 1: we apply Lemma 1 and prove

that the evaluation contexts
ℓ [·] and ℓ [·] are in the relation KTJ[N]h.lbl ⇝ [N]∅Kρ∅ and that the

application terms f H ℓ (λx :N. x + x) and f H ℓ
(
λx :N. H ℓ x

)
are in the relation T J[N]h.lblK

ρ
∅. Here ρ

is defined as ρ = h 7→
〈
H ℓ,H ℓ,T J[N]∅K∅∅

〉
, andHJFK

(
H ℓ, H ℓ, T J[N]∅K∅∅

)
holds by Parametricity.

The new element in this proof is the interpretation of the effect h.lbl. In particular, showing the subgoal

SJ[N]h.lblK
ρ
∅

(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n
)

involves showing UJh.lblKρ∅
(
(λx :N. x + x) n,

(
λx :N. H ℓ x

)
n, {⟨2n, 2n⟩}, ℓ, ℓ

)
, which can be veri-

fied as follows:

∀K . ℓ ↷ K ⇒ ℓ K[(λx :N. x + x) n] −→+ ℓ K[2n]
∀K . ℓ ↷ K ⇒ ℓ K

[ (
λx :N. H ℓ x

)
n
]
−→∗ ℓ K[2n]

Note that the corresponding definition in Figure 13 requires the first computation to take at least one

reduction step, so when verifying that the evaluation contexts are in the KT relation, the [mono] rule

allows shifting reasoning to a future world where the Löb induction hypothesis applies.

7 RELATEDWORK
Previous work proposes ways to make algebraic effects composable. Leijen [27] suggests using an

inject function to prevent client code from meddling with the effect-handling internals of library

functions. Applying inject to a computation causes effects raised from that computation to bypass the

innermost handler enclosing it. Biernacki et al. [7] propose an operator called “lift” that works in a similar

fashion: computations surrounded by a lift operator [·]F bypass the innermost effect handler for F. The
programmer can use inject or lift to stop effects of a client-provided function being intercepted by the

effect-polymorphic, higher-order function that applies it. Both of these type systems use effect rows

and row polymorphism, distinguish different occurrences of the same effect name in a row, and by fiat,

reject an effect variable α as a “subeffect” (cf. subtype) of F,α .
Despite the added complexity in the type systems, these approaches are not truly composable: well-

typed programs can still handle effects accidentally if the programmer fails to carefully thread inject

24



or lift through effect-polymorphic code. Suppose that in such a type system a function д has type

∀α . (1→[T ]α )→[T ]F,α , and that another function h calls g and handles its effect F:

h : ∀α . (1→[T ]α )→[T ]α
h = Λα . λf :1→[T ]α . handleF д f with . . .

Notice that h is not supposed to handle effects of f, because it is statically oblivious to any such effect.

But although h is well-typed, it will accidentally handle F-effects raised at run time by applying f. One
could apply the lift operator [·]F to the subterm д f so that F-effects raised by applying f could bypass

the handler, but then the F-effects of д would not be handled as intended. In order for the F-effects of д
and those raised by applying f to be handled by the right handlers, one changes the subterm д f to

д (λx :1. [f x]F). But then the type of h becomes ∀α . (1→[T ]α )→[T ]F,α , exposing the implementation

detail that the higher-order function h handles F internally.

Biernacki et al. [7] show that effect polymorphism in a core language equipped with the lift operator

satisfies parametricity, and we borrow useful techniques from their logical-relations definition. But as

discussed, their type system does not hide the handling of effects inside effect-polymorphic functions.

Zhang et al. [47] propose an alternate semantics for exceptions in their Genus language, in which

exceptions are tunneled through contexts that are not statically aware of them. While we build on

this insight, this prior work is limited to exceptions rather than more general algebraic effects, and

importantly, the mechanism is not shown formally to be abstraction-safe. The kind of exception

polymorphism it supports is also more limited: functions are polymorphic in the latent exceptions of

only those types that are annotated weak. It is argued that trading weak annotations for explicit effect

variables reduces annotation burden. However, this approach makes it cumbersome, if not impossible,

to define exception-polymorphic data structures, such as the cachingFun class in section 3.4. The weak

annotations are essentially a mechanism for region-capability effects: values of weak types have a stack

discipline and thus can only be used in a second-class way, but data structures require a finer-grained

notion of region capability.

Functional programming languages like ML and Haskell do not statically check that exceptions are

handled, so we do not consider them fully type-safe. Interestingly, accidental handling can be avoided in

SML, because SML exception types are generative [32] and because a handler can only handle lexically

visible exception types. However, the type system does not ensure that accidental handling is avoided

or that exceptions are handled at all. Bračevac et al. [10] observe the need to disambiguate handlers for

invocations of the same algebraic effect operation. Compared with their proposed solution of generative

effect signatures, tunneling addresses the issue straightforwardly: it is possible to specify handlers

explicitly for each invocation of the effect operation.

Brachthäuser and Schuster [8] encode algebraic effect handlers as a Scala library named Effekt.

Like our use of handler polymorphism, the encoding passes handlers down to the place where effect

operations are invoked, using Scala’s implicits feature [35] and in particular, implicit function types [34],

to resolve implicit arguments as handler objects in scope. Clients of Effekt do not have to worry about

accidental handling, but this approach does not guarantee the absence of run-time errors. In addition to

the handling code, a stack-marking prompt must be passed down too, so that when the effect operation

is invoked, the continuation up to the prompt is captured and passed to the handling code. But there is

no static checking that the prompt obeys the stack discipline—type-safety relies on client code using

the library in a disciplined way.

It is hypothesized that this safety issue could be remedied by using the @local annotation provided

in a Scala extension [36]. Parameters of functions and local variables can be annotated @local, making

them second-class. In contrast to the Genus weak annotation [47], @local is applied to uses of types

(instead of definitions of types), so it seems no lighter-weight than explicit effect variables. Like the
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weak annotations, @local cannot offer the fine-grained notion of region capability needed to express

effect-polymorphic data structures.

Our use of capability effects to ensure soundness is adapted from work on region-based memory

management [12, 21, 44]. A capability is a set of live memory regions. To prevent accesses to deallocated

memory regions, computations are typed with capability effects that specify the set of regions they

might access. We apply this idea to make sure continuations of handling code are always accessible.

Our type system is simpler than a full-fledged region type system because safety concerns only those

lexical regions delimited by effect handlers.

The problem of accidentally handled effects generalizes the problem of variable capture in early

programming languages (e.g., Lisp) that supported dynamically scoped variables. Dynamically scoped

variables do not have to be dynamically typed; Lewis et al. [29] provide a type system for them,

treating them as implicit parameters. To avoid variable capture, Lewis et al. ban the use of implicitly

parameterized functions as first-class values, losing the extensibility that makes dynamically scoped

variables attractive. Tunneled algebraic effects offer abstraction-safe dynamically scoped variables

without sacrificing their expressive power.

Kammar et al. [25] distinguish between deep and shallow semantics for handlers. A shallow handler

is discarded after it is first invoked, while a deep handler can continue to handle the rest of the

computation it envelops. Handlers for tunneled algebraic effects are deep. Shallow handlers pose

challenges to modular reasoning, because it is difficult to reason statically about how effects raised

from the rest of the computation are handled.

Our core language expresses the semantics of effects using constructs that are essentially a pair of

delimited control operators [13, 19]. With delimited control, one operator C (cf. in λ ) captures the

continuation delimited by a corresponding operator of the other kind D (cf. in λ ). Among the

variety of delimited control operators that have been suggested in the literature, ours is closest to those

with named prompts [17, 22]. Rather than pairing a C operation with the dynamically closest enclosing

D, these mechanisms allow uses of D to be named and consequently referenced by invocations of

C. Therefore, they allow static reasoning about delimited control. However, despite being embedded

in statically typed languages, these mechanisms do not guarantee type safety—it is possible for a C

operation to go unhandled.

8 CONCLUSION
We have argued that tunneling is the right semantics for algebraic effects because, as we have shown

formally, it makes them abstraction-safe, preserving modular reasoning. Because algebraic effects

generalize other mechanisms such as exceptions, dynamically scoped variables, and coroutines, the

tunneling semantics fixes not only algebraic effects generically, but also the design of several specific

language features. We have provided a strong foundation for the design of algebraic-effect mechanisms

that are not only type-safe, but also abstraction-safe. Our new semantics should be a useful guide for

future language designs and also motivate support for algebraic effects in mainstream languages.
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A STATIC SEMANTICS OF λ
A.1 Term and Handler Well-Formedness

∆ | P | Γ | Ξ ⊢ t : [T ]e

[t-unit] ∆ | P | Γ | Ξ ⊢ () : [1]∅ [t-var]

Γ(x) = T

∆ | P | Γ | Ξ ⊢ x : [T ]∅

[t-abs]

∆ | P | Ξ ⊢ S ∆ | P | Γ, x :S | Ξ ⊢ t : [T ]e

∆ | P | Γ | Ξ ⊢ λx :S . t : [S→[T ]e ]∅

[t-app]

∆ | P | Γ | Ξ ⊢ t : [S→[T ]e ]e ∆ | P | Γ | Ξ ⊢ s : [S]e

∆ | P | Γ | Ξ ⊢ t s : [T ]e

[t-let]

∆ | P | Ξ ⊢ S ∆ | P | Γ | Ξ ⊢ s : [S]e ∆ | P | Γ, x :S | Ξ ⊢ t : [T ]e

∆ | P | Γ | Ξ ⊢ let x :S = s in t : [T ]e

[t-eabs]

∆, α | P | Γ | Ξ ⊢ t : [T ]∅

∆ | P | Γ | Ξ ⊢ Λα . t : [∀α .T ]∅
[t-eapp]

∆ | P | Γ | Ξ ⊢ t : [∀α .T ]e1 (∀i) ∆ | P | Ξ ⊢ e(i)
2

∆ | P | Γ | Ξ ⊢ t [e2] : [T {e2/α }]e1

[t-habs]

∆, h :F | P | Γ | Ξ ⊢ t : [T ]e

∆ | P | Γ | Ξ ⊢ λh :F. t : [Πh:F [T ]e ]∅

[t-happ]

∆ | P | Γ | Ξ ⊢ t :
[
Πh:F [T ]e1

]
e2

∆ | P | Γ | Ξ ⊢ h : F | e3

∆ | P | Γ | Ξ ⊢ t h : [T {h/h}]e1 {h/h}, e2

[t-up]

∆ | P | Γ | Ξ ⊢ h : F | e op(F) = T →S

∆ | P | Γ | Ξ ⊢ h : [T →[S]e ]∅

[t-down]

∆ | P | Γ | Ξ, ℓ : [T ]e ⊢ t : [T ]e, ℓ ∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ e

∆ | P | Γ | Ξ ⊢ ℓ
[T ]e

t : [T ]e

[t-sub]

∆ | P | Γ | Ξ ⊢ t : [T1]e1 ∆ | P | Ξ ⊢ T1 ≤ T2 ∆ | P | Ξ ⊢ e1 ≤ e2

∆ | P | Γ | Ξ ⊢ t : [T2]e2

∆ | P | Γ | Ξ ⊢ h : F | e

[t-hvar]

P(h) = F

∆ | P | Γ | Ξ ⊢ h : F | h.lbl
[t-hdef]

Ξ(ℓ) = [S]e op(F) = T1→T2
∆ | P | Γ, x :T1, k :T2→[S]e | Ξ ⊢ t : [S]e

∆ | P | Γ | Ξ ⊢

(
handlerF x k. t

)ℓ
: F | ℓ
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A.2 Type and Effect Well-Formedness

∆ | P | Ξ ⊢ T

∆ | P | Ξ ⊢ 1
∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ S (∀i) ∆ | P | Ξ ⊢ e(i)

∆ | P | Ξ ⊢ T →[S]e

∆, α | P | Ξ ⊢ T

∆ | P | Ξ ⊢ ∀α .T
∆ | P, h :F | Ξ ⊢ T (∀i) ∆ | P, h :F | Ξ ⊢ e(i)

∆ | P | Ξ ⊢ Πh:F [T ]e

∆ | P | Ξ ⊢ e

α ∈ ∆

∆ | P | Ξ ⊢ α

ℓ ∈ domain(Ξ)

∆ | P | Ξ ⊢ ℓ

h ∈ domain(P)

∆ | P | Ξ ⊢ h.lbl

A.3 Partial Orders on Types and Effect Sequences

∆ | P | Ξ ⊢ T ≤ S

∆ | P | Ξ ⊢ 1 ≤ 1
∆ | P | Ξ ⊢ T2 ≤ T1 ∆ | P | Ξ ⊢ S1 ≤ S2 ∆ | P | Ξ ⊢ e1 ≤ e2

∆ | P | Ξ ⊢ T1→[S1]e1 ≤ T2→[S2]e2

∆, α | P | Ξ ⊢ T1 ≤ T2

∆ | P | Ξ ⊢ ∀α .T1 ≤ ∀α .T2
∆ | P, h :F | Ξ ⊢ T1 ≤ T2 ∆ | P, h :F | Ξ ⊢ e1 ≤ e2

∆ | P | Ξ ⊢ Πh:F [T1]e1 ≤ Πh:F [T2]e2

∆ | P | Ξ ⊢ T1 ≤ T2 ∆ | P | Ξ ⊢ T2 ≤ T3

∆ | P | Ξ ⊢ T1 ≤ T3

∆ | P | Ξ ⊢ e1 ≤ e2

(∀j, ∃i) e(j)
1
= e(i)

2
(∀i) ∆ | P | Ξ ⊢ e(i)

2

∆ | P | Ξ ⊢ e1 ≤ e2
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A.4 Well-formedness of Program Contexts

⊢ C : ∆ | P | Γ | Ξ | [S]e ⇝ T

⊢ [·] : ∅ |∅ |∅ |∅ | [T ]∅ ⇝ T
⊢ C : ∆ | P | Γ | Ξ | [T →[S]e ]∅ ⇝ T ′ ∆ | P | Ξ ⊢ T

⊢ C[λx :T . [·]] : ∆ | P | Γ, x :T | Ξ | [S]e ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [S]e ⇝ T ′

∆ | P | Γ | Ξ ⊢ t : [T ]e

⊢ C[[·] t] : ∆ | P | Γ | Ξ | [T →[S]e ]e ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [S]e ⇝ T ′

∆ | P | Γ | Ξ ⊢ t : [T →[S]e ]e

⊢ C[t [·]] : ∆ | P | Γ | Ξ | [T ]e ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [S]e ⇝ T ′ ∆ | P | Ξ ⊢ S ∆ | P | Γ, x :S | Ξ ⊢ t : [T ]e

⊢ C[let x :S = [·] in t] : ∆ | P | Γ | Ξ | [S]e ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [T ]e ⇝ T ′ ∆ | P | Ξ ⊢ S ∆ | P | Γ | Ξ ⊢ s : [S]e

⊢ C[let x :S = s in [·]] : ∆ | P | Γ, x :S | Ξ | [T ]e ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [∀α .T ]∅ ⇝ T ′

⊢ C[Λα . [·]] : ∆, α | P | Γ | Ξ | [T ]∅ ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [T {e2/α }]e1 ⇝ T ′

(∀i) ∆ | P | Ξ ⊢ e(i)
2

⊢ C[[·] [e2]] : ∆ | P | Γ | Ξ | [∀α .T ]e1 ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [Πh:F [T ]e ]∅ ⇝ T ′

⊢ C[λh :F. [·]] : ∆ | P, h :F | Γ | Ξ | [T ]e ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [T {h/h}]e1 {h/h}, e2 ⇝ T ′

∆ | P | Γ | Ξ ⊢ h : F | e

⊢ C[[·] h] : ∆ | P | Γ | Ξ |
[
Πh:F [T ]e1

]
e2
⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [T {ℓ/h.lbl}]e1 {ℓ/h.lbl},e2 ⇝ T ′

∆ | P | Γ | Ξ ⊢ t :
[
Πh:F [T ]e1

]
e2

Ξ(ℓ) = [S]e3 op(F) = T1→T2

⊢ C

[
t
(
handlerF x k. [·]

)ℓ]
: ∆ | P | Γ, x :T1, k :T2→[S]e3 | Ξ | [S]e3 ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [T1→[T2]ℓ]∅ ⇝ T ′ Ξ(ℓ) = [S]e op(F) = T1→T2

⊢ C

[ (
handlerF x k. [·]

)ℓ]
: ∆ | P | Γ, x :T1, k :T2→[S]e | Ξ | [S]e ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [T ]e ⇝ T ′ ∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ e

⊢ C
[

ℓ
[T ]e

[·]

]
: ∆ | P | Γ | Ξ, ℓ | [T ]e, ℓ ⇝ T ′

⊢ C : ∆ | P | Γ | Ξ | [T2]e2 ⇝ T ′ ∆ | P | Ξ ⊢ T1 ≤ T2 ∆ | P | Ξ ⊢ e1 ≤ e2

⊢ C : ∆ | P | Γ | Ξ | [T1]e1 ⇝ T ′
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B COMPATIBILITY LEMMAS
Lemma 7 (Compatibility with [t-sub]).

∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T1]e1 ∆ | P | Ξ ⊢ T1 ≤ T2 ∆ | P | Ξ ⊢ e1 ≤ e2

∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [T2]e2

Lemma 8 (Compatibility with [t-unit]).

∆ | P | Γ | Ξ ⊢ () ≼log () : [1]∅

Lemma 9 (Compatibility with [t-var]).

Γ(x) = T

∆ | P | Γ | Ξ ⊢ x ≼log x : [T ]∅

Lemma 10 (Compatibility with [t-abs]).

∆ | P | Ξ ⊢ S ∆ | P | Γ, x :S | Ξ ⊢ t1 ≼log t2 : [S]e

∆ | P | Γ | Ξ ⊢ λx :S . t1 ≼log λx :S . t2 : [S→[T ]e ]∅

Lemma 11 (Compatibility with [t-app]).

∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [S→[T ]e ]e ∆ | P | Γ | Ξ ⊢ s1 ≼log s2 : [S]e

∆ | P | Γ | Ξ ⊢ t1 s1 ≼log t2 s2 : [T ]e

Lemma 12 (Compatibility with [t-eabs]).

∆, α | P | Γ | Ξ ⊢ t1 ≼log t2 : [T ]∅

∆ | P | Γ | Ξ ⊢ Λα . t1 ≼log Λα . t2 : [∀α .T ]∅

Lemma 13 (Compatibility with [t-eapp]).

∆ | P | Γ | Ξ ⊢ t1 ≼log t2 : [∀α .T ]e ′ (∀i) ∆ | P | Ξ ⊢ e ′(i)

∆ | P | Γ | Ξ ⊢ t1 [e] ≼log t2 [e] : [T {e/α }]e ′

Lemma 14 (Compatibility with [t-habs]).

∆ | P, h :F | Γ | Ξ ⊢ t1 ≼log t2 : [T ]e

∆ | P | Γ | Ξ ⊢ λh :F. t1 ≼log λh :F. t2 : [Πh:F [T ]e ]∅

Lemma 15 (Compatibility with [t-happ]).

∆ | P | Γ | Ξ ⊢ t1 ≼log t2 :
[
Πh:F [T ]e ′

]
e ′′ ∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : F | e

∆ | P | Γ | Ξ ⊢ t1 [h1] ≼log t2 [h2] : [T {e/h.lbl}]e ′ {e/h.lbl}, e ′′
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Lemma 16 (Compatibility with [t-up]).

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : F | e op(F) = T →S

∆ | P | Γ | Ξ ⊢ h1 ≼log h2 : [T →[S]e ]∅

Lemma 17 (Compatibility with [t-down]).

∆ | P | Γ | Ξ, ℓ : [T ]e ⊢ t1 ≼log t2 : [T ]e, ℓ ∆ | P | Ξ ⊢ T ∆ | P | Ξ ⊢ e

∆ | P | Γ | Ξ ⊢ ℓ
[T ]e

t1 ≼log
ℓ
[T ]e

t2 : [T ]e

Lemma 18 (Compatibility with [t-hvar]).

P(h) = F

∆ | P | Γ | Ξ ⊢ h ≼log h : F | h.lbl

Lemma 19 (Compatibility with [t-hdef]).

Ξ(ℓ) = [S]e op(F) = T1→T2 ∆ | P | Γ, x :T1, k :T2→[S]e | Ξ ⊢ t1 ≼log t2 : [S]e

∆ | P | Γ | Ξ ⊢

(
handlerF x k. t1

)ℓ
≼log

(
handlerF x k. t2

)ℓ
: F | ℓ
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