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Abstract. In some data sets, it may be the case that a portion of the extreme obser-
vations are missing. This might arise in cases where the extreme observations are just
not available or are imprecisely measured. For example, considering human lifetimes, a
topic of recent interest, birth certificates of centenarians may not even exist and many
such individuals may not even be included in the data sets that are currently available.
In essence, one does not have a clear record of the largest lifetimes of human populations.
If there are missing extreme observations, then the assessment of risk can be severely
underestimated resulting in rare events occurring more often than originally thought. In
concrete terms, this may mean a 500 year flood is in fact a 100 (or even a 20) year flood.
In this paper, we present methods for estimating the number of missing extremes together
with the tail index associated with tail heaviness of the data. Ignoring one or the other
can severely impact the estimation of risk. Our estimates are based on the HEWE (Hill
estimate without extremes) of the tail index that adjusts for missing extremes. Based
on a functional convergence of this process to a limit process, we consider an asymptotic
likelihood-based procedure for estimating both the number of missing extremes and the
tail index. We derive the asymptotic distribution of the resulting estimates. By artificially
removing segments of extremes in the data, this methodology can be used for assessing
the reliability of the underlying assumptions that are imposed on the data.

1. Introduction

For modeling heavy-tailed data, the typical operating assumption is that the tails of
the common distribution function F are regularly varying. That is,

F̄ (tx)

F̄ (t)
→ x−α(1.1)

as t → ∞ for all x > 0, where α > 0 and F̄ (t) = 1 − F (t) is the survival function. The
tail index α which governs how heavy the tail is, with smaller α indicating heavier tails, is
often the key parameter of interest in applications. The ratio in (1.1) corresponds to the
risk probability of P (X > tx|X > t) ∼ x−α for large t and x ≥ 1. In fact, the generalized
Pareto distribution (GPD), for heavy-tailed distributions essentially originates from this
equation:

P (X > t(1 + x)|X > t) ∼ (1 + γx)−1/γ x ≥ 0(1.2)

where γ = 1/α > 0 is known as the shape parameter 1.

1991 Mathematics Subject Classification. Primary 62G32, 60G70.
Key words and phrases. heavy tails, regular variation, missing extremes, tail estimation.
∗The corresponding author. This research was partially supported by the ARO grant W911NF-18 -10318

at Cornell University.
1The general form of the GPD includes for light- and heavy-tailed has a similar form, see de Haan and

Ferreira (2006)
1



2 HUI XU, RICHARD DAVIS, AND GENNADY SAMORODNITSKY∗

The most commonly used estimator of γ is the Hill estimator defined by

Hn(k) =
1

k

k∑
i=1

logX(i) − logX(k+1),

where X(1) ≥ X(2) ≥ · · · ≥ X(n) are the order statistics of an independent and identically
distributed (iid) sample X1, X2, . . . , Xn ∼ F . See Hill (1975) and Drees et al. (2000) for
further discussion on this estimator. The Hill estimator is weakly consistent for estimating
γ provided the number of order statistics k = k(n) used in estimating γ satisfies, k → ∞
and k/n→ 0 as n→∞ (see for example de Haan and Ferreira (2006).)

The principal goal of this research is to provide estimates of γ and the number of
missing extremes in the case when some of the extreme values in the data are missing. As
noted in Zou et al. (2019), if some of the extremes in the sample are missing and this is
ignored in an estimation procedure, then the tails of the distribution will be underestimated,
i.e., they will appear to be lighter than they really are. In terms of risk calculations such as
estimating large quantiles, these would be severely underestimated if the estimate of γ is
too small. With missing extremes, the plot of the Hill estimate as a function of the number
k of upper order statistics tends to be increasing and much smoother than without the
missing values.

In Zou et al. (2019), the in-degree distribution from a snapshot on October 19, 2012
of the social network Google+ was examined. The Google+ data, which is owned and
operated by Google, consisted of 76,438,791 nodes (registered users) and 1,442,504,499 edges
(directed connections). The in-degree of each user is the number of other users following
the user. The degree distributions in natural and social networks are often heavy-tailed
(see Newman (2010)). Based on the analysis in Zou et al. (2019), it was estimated that
around 150 extreme in-degree values were missing, which raises the question of whether
these values were excluded from the Google+ data set provided to the researchers.

In addition to detecting possible manipulation of data, being aware of the possibility
of missing extremes, and developing tools for modeling and analyzing data in the presence
of missing extremes, is important in a variety of fields. This includes analysis of natural
disasters such as earthquakes, forest fires and floods for which extreme values might be
missing due to difficulty in data collection and in an actuarial science context where claims
of extremely large amounts might be covered by a reinsurance company and not included
in the claims total (Embrechts et al. (1997), Benchaira et al. (2016)). In short, some of the
extremes may be just under-reported.

This research builds on the work in Zou et al. (2019), in which an adjusted Hill esti-
mator, called the Hill Estimator Without Extremes (HEWE) is defined that allows for the
possibility of missing extreme observations. The HEWE estimator, Hn(·) is a process on
(0,∞) that, suitably normalized, converges in law to a Gaussian process G(·) whose co-
variance function depends on the shape parameter γ, and on δ, a parameter related to the
number of missing extremes. By approximating the distribution of (Hn(θ1), . . . ,Hn(θm))
for m distinct θ values, by the distribution of the limiting process, i.e., the distribution of
(G(θ1), . . . , G(θm)), one can use an approximate likelihood procedure to estimate γ and δ.

We suggest two implementations of this estimation procedure. The first uses a fixed
number of points θ in which the Hill estimator is evaluated. In the second, where we assume
that the observations come from a Pareto sample, the number of points increases to infinity
with the sample size. For both estimators we show consistency and asymptotic normality.
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The key to proving our results for the first implementation of the procedure is the strong
approximation of the HEWE process Hn(·) derived in Zou et al. (2019).

A limitation in our modeling framework is that we assume a consecutive block of the
largest observations is missing. A more realistic assumption is that the missing extremes are
not necessarily consecutive. A graphical method grounded on our theory for estimating the
number of missing extremes is given in Section 5.2. The basic idea is to artificially remove
a number of extremes from the observed data. If enough extremes have been removed, then
we will have a consecutive number of the largest observations missing from which we can
apply our method. The graphical procedure will help us identify the number of extremes
to artificially remove from the data in order to perform this second stage estimation.

The paper is organized as follows. In Section 2, we provide some background on the
HEWE process Hn(·). In Section 3 we describe an approximate asymptotic maximum
likelihood estimation procedure of the parameters γ and δ based on the HEWE process,
in the case when the Hill estimator is evaluated at a fixed number of points, and establish
its consistency and asymptotic normality. In the case when the observations are drawn the
Pareto distribution, we describe, in Section 4, another estimation procedure, not directly
based on the HEWE process, when the number of points increases to infinity. Section 5
illustrates the methodology via a simulation study. In Section 6, we apply our methodology
to three data sets: the well-known Danish fire-insurance claim data, the Google+ data,
and a a NOAA data set consisting of insurance costs associated with climate and natural
disasters in the U.S. The proofs of the results in Sections 3 and 4 are contained in the
Appendix (Section 7).

2. Preliminaries

In this section we set up the framework for estimating the shape parameter and the
number of missing extremes, if any. We assume that the observations come from a sequence
{Xt} of iid random variables with distribution function F satisfying the regular variation
condition (1.1). Let X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the order statistics of X1, . . . , Xn.
Given a sequence of integers kn → ∞ and kn/n → 0, we view the first bδknc of the order
statistics as missing, hence unobservable. Here δ ≥ 0, and δ = 0 corresponds to the case
where no extremes are missing. Hence, with respect to the complete sample, we only have
access to the order statistics X(bδknc+1), X(bδknc+2), . . . , X(n). The HEWE process is the
functional Hill process based on bθknc of the observed upper order statistics, given by

Hn(θ) =

{
1

bθknc
∑bθknc

i=1 logX(bδknc+i) − logX(bδknc+bθknc+1), θ ≥ 1/kn,

0, θ < 1/kn.
(2.1)

Occasionally, when we want to emphasize the dependence of the HEWE process on δ, we
will use the notation Hn(θ; δ) instead of Hn(θ).

Of course in practice, we do not know the value of δ and so δ is a key parameter of
interest to be estimated. If δ = 0, then there are no missing extremes and Hn(·) is the
usual Hill process based on a complete data set.

In Zou et al. (2019), a strong approximation to Hn(·) was established under a second-
order regular variation. This condition, which is given in the Appendix (see (7.1)) quantifies
the rate of convergence in (1.1). Pareto distributions with tail index α > 0 (F̄ (x) = x−α for
x ≥ 1 and zero otherwise) should be viewed as satisfying this condition when the function A
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in the denominator in the left hand side of (7.1) vanishes. In this case (7.2) is automatically
satisfied with λ = 0.

We now state the key result (Theorem 2.1(b)) in Zou et al. (2019) that is the basis for
our procedures to estimate the shape parameter and the number of the missing extremes,
i.e. γ and δ.

Theorem 1. Assume that the second-order condition (7.1) holds. Let kn → ∞ be such
that kn/n→ 0 and that (7.2) holds for some λ ∈ R. Then√

kn

(
Hn(·; δ)− γgδ(·)

)
− λbδ,ρ(·)⇒ γGδ(·)

weakly in D(0,∞), where

gδ(θ) =

{
1, δ = 0,

1− (δ/θ) log
(
(θ/δ) + 1

)
, δ > 0,

(2.2)

bδ,ρ(θ) =

{
1

1−ρ
1
θρ , δ = 0,

1+(θ/δ)ρ−(θ/δ+1)ρ

(θ/δ)(1−ρ)ρ
1

(δ+θ)ρ , δ > 0,
(2.3)

and Gδ(·) is a centered Gaussian process with the following representation. Denoting by
W the standard Brownian motion,

Gδ(θ) =
1

θ

∫ δ+θ

δ
(1− δ/x)dW (x), θ > 0 .

The process Gδ(·) has continuous sample paths and a covariance function given by

Cov
(
Gδ(θ1), Gδ(θ2)

)
=

 1
θ1θ2

[
θ1 ∧ θ2 − 2δ log

(
1 + θ1∧θ2

δ

)
+ δ(θ1∧θ2)

δ+(θ1∧θ2)

]
, δ > 0,

1
θ1∨θ2 , δ = 0.

(2.4)

3. An algorithm for estimating γ and δ

Throughout this section we fix points 0 < θ1 < · · · < θm. According to Theorem 1 the
random vector Hn = (Hn(θ1), · · · , Hn(θm))′ has, for large n, an approximately Gaussian
likelihood given by√

kmn
(2π)mγ2m|Σm,δ|

exp

{
− kn

2γ2

(
Hn − gδγ −

λbδ,ρ√
kn

)T
Σ−1
m,δ

(
Hn − gδγ −

λbδ,ρ√
kn

)}
,(3.1)

where Σm,δ is the covariance matrix of the Gaussian vector (Gδ(θ1), · · · , Gδ(θm))T , gδ =
(gδ(θ1), . . . , gδ(θm))′, and bδ,ρ = (bδ,ρ(θ1), . . . , bδ,ρ(θm))′, with gδ(·) and bδ,ρ given in (2.2)
and (2.3), respectively. Since we are interested in estimating γ and δ, while ρ and λ are
nuisance parameters, we devised a procedure that estimates the parameters of interested
while assuming that λ = 0. Note that this eliminates the nuisance parameter ρ as well
and leads to a significant simplification in calculations. We will show that the resulting
estimators are still consistent and asymptotically normal even if the true value of λ is
different from 0. That is, we will maximize the “pseudo-likelihood” function given by√

kmn
(2π)Mγ2m|Σm,δ|

exp

{
− kn

2γ2
(Hn − gδγ)TΣ−1

m,δ(Hn − gδγ)

}
.(3.2)
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A change in notation makes the optimization more convenient. Set θ0 = 0, and denote

Tni = Hn(θi)− (θi−1/θi)Hn(θi−1), hδi = gδ,i − (θi−1/θi)gδ,i−1, i = 1, . . . ,m ,

with gδ,i = gδ(θi), and we interpret Tn1 = Hn(θ1), hδ1 = gδ,1. We putTn = (Tn1, . . . , Tnm))′

and hδ = (hδ1, . . . , hδm)′. After some algebraic manipulations, the pseudo-log-likelihood
corresponding to (3.2) can be written in the form

C −m log γ +
1

2

m∑
i=1

logωi,δ −
kn
2γ2

m∑
i=1

ωi,δ(Tni − γhδi)2,

where

ωi,δ =

1
/(

1/θi − θi−1/θ
2
i

)
δ = 0

δ
/(

v(θi/δ)− (θi−1/θi)
2v(θi−1/δ)

)
δ > 0

, v(x) =
1

x
− 2 log(1 + x)

x2
+

1

x(x+ 1)

and C is a constant independent of γ and δ; see (11) in Zou et al. (2019).
We now separate the notation for the unknown true parameters γ0 and δ0 in the

observed sample from the optimization variables which we continue denoting by γ and δ.
Let Yn = (Yn1, . . . , Ynm) = γ−1

0 Tn

√
kn−hδ0

√
kn. This random vector converges weakly to

a Gaussian vector with independent components such that, in the limit,

the ith component is N
(
γ−1

0 λb∗δ0,ρ,i, 1/ωi,δ0
)
,(3.3)

where

b∗δ0,ρ,i = bδ0,ρ(θi)−
θi−1

θi
bδ0,ρ(θi−1), i = 1, . . . ,m ;(3.4)

see Zou et al. (2019). Then the pseudo-log-likelihood becomes

C −m log γ +
1

2

m∑
i=1

logωi,δ −
1

2γ2

m∑
i=1

ωi,δ

(
γ0Yni − (γhδi − γ0hδ0i)

√
kn

)2
.

Since C is independent of γ and δ, we ignore this term and optimize the function

Ln(γ, δ) = 2m log γ −
m∑
i=1

logωi,δ +
1

γ2

m∑
i=1

ωi,δ

(
γ0Yni −

√
kn(γhδi − γ0hδ0,i)

)2
.

The main result of this section, Theorem 3.1 below, proves the consistency and the
asymptotic normality of the estimators obtained by minimizing the function Ln. It applies
only in the case when δ0 > 0, i.e. when some extremes are missing. One can interpret the
case when no extremes are missing as corresponding to a small but positive value of δ0. We
will assume that the true value of the parameters, (γ0, δ0), belong to the interior Θo of a
known compact set Θ = [m1,M1]× [m2,M2] ⊂ (0,∞)2, and compute our estimator via

(γ̂, δ̂) = arg min
(γ,δ)∈Θ

Ln(γ, δ) .(3.5)

The following quantities will be used in the statement of our main results. Let

bm =
m∑
i=1

ωi,δ0h
2
δ0,i, cm =

m∑
i=1

ωi,δ0(h′δ0,i)
2, dm =

m∑
i=1

ωi,δ0hδ0,ih
′
δ0,i .(3.6)

where h′δ0,i =
dhδ,i

dδ |δ=δ0 .
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Theorem 3.1. Assume that the second-order condition (7.1) holds. Let kn → ∞ be such
that kn/n→ 0 and that (7.2) holds for some λ ∈ R. Suppose that δ0 > 0, that (γ0, δ0) ∈ Θo,
and let m ≥ 2 be fixed. Then the optimization problem (3.5) has a unique solution (γ̂, δ̂)
with probability increasing to 1 as n → ∞. This solution is a weakly consistent estimator
of (γ0, δ0), and (√

kn(γ̂ − γ0),
√
kn(δ̂ − δ0)

)
⇒ N

(
.5Γ−1

m a,Γ−1
m

)
(3.7)

as n→∞, where in the notation of (3.6),

Γm =

[
bm
γ20

dm
γ0

dm
γ0

cm

]
and Γ−1

m =

[
γ20cm

bmcm−d2m
− γ0dm
bmcm−d2m

− γ0dm
bmcm−d2m

bm
bmcm−d2m

]
,(3.8)

and a = (a1, a2)T with

a1 = 2γ0
−2λ

m∑
i=1

ωi,δ0hδ0,ib
∗
δ0,ρ,i, a2 = 2γ0

−1λ
m∑
i=1

ωi,δ0h
′
δ0,ib

∗
δ0,ρ,i .(3.9)

A part of the claim of Theorem 3.1 is the non-singularity of the matrix Γm, which we
will establish below. It is interesting to compare the performance of the estimator γ̂ of the
shape parameter given in the theorem with the limiting variance of the plain Hill estimator
of the shape parameter. Of course, the Hill estimator is only consistent when there are no
missing extremes, i.e. when δ0 = 0, whereas Theorem 3.1 only applies in the case δ0 > 0.
However, the comparison is instructive if one takes the limiting distribution in Theorem
3.1 and considers the situation when δ0 → 0. It would not be surprising to expect a loss in
efficiency, in the sense that having to estimate both γ and δ may lead to higher bias and/or
higher variance of the estimator of the shape parameter from Theorem 3.1 in comparison
with the Hill estimator which does not need to estimate δ. However, it turns that there is
no loss of efficiency, after all. We have the following proposition.

Proposition 3.1. Suppose that δ0 > 0 and let m ≥ 2 be fixed. Then the matrix Γm is is
invertible and, as δ0 ↓ 0, the parameters of the Gaussian limit of

√
kn(γ̂ − γ0) satisfy

the mean converges to
λ

1− ρ
θ1−ρ
m − θ1−ρ

1

θm − θ1
,(3.10)

the variance converges to
γ2

0

θm − θ1
.

Recall that under the assumptions(7.1) and (7.2) the Hill estimator of γ satisfies√
kn(Hn(kn)− γ0)⇒ N

(
λ/(1− ρ), γ2

0

)
;(3.11)

see e.g. Theorem 3.2.5 in de Haan and Ferreira (2006).
The significance of (3.10) becomes clear when we let θm = 1 and choose θ0 close to 0,

in which case the bias and the variance become the same as those in (3.11).
The proof of Theorem 3.1 (including the invertibility of the matrix Γm) will follow

from a sequence of lemmas, whose proofs are given in the appendix. We start with the
asymptotic behavior of the gradient of the function Ln evaluated at the true values of the
parameters.
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Lemma 3.1. Suppose that δ0 > 0 and let m ≥ 2 be fixed. Then(
∂1Ln(γ0, δ0)√

kn
,
∂2Ln(γ0, δ0)√

kn

)
⇒ N

(
− a, 4Γm

)
.

Next, we address the asymptotic behavior of the Hessian matrix

Hn(γ, δ) =

[
∂2

1Ln(γ, δ) ∂1∂2Ln(γ, δ)
∂1∂2Ln(γ, δ) ∂2

2Ln(γ, δ)

]
(3.12)

of the function Ln evaluated at any weakly consistent estimator of the true values.

Lemma 3.2. Suppose that δ0 > 0 and let m ≥ 2 be fixed. If (γ̃, δ̃)
P→ (γ0, δ0) then

k−1
n Hn(γ̃, δ̃)

P→ 2Γm.

The next lemma proves the weak consistency of our estimator.

Lemma 3.3. Suppose that δ0 > 0 and let m ≥ 2 be fixed. Then the optimization problem
(3.5) has a unique solution (γ̂, δ̂) with probability increasing to 1 as n→∞ and

(γ̂, δ̂)
P→ (γ0, δ0) .

Proof of Theorem 3.1. The Taylor expansion of the gradient of Ln around the true values
of the parameter tells us that(
∂1Ln(γ̂, δ̂)√

kn
,
∂2Ln(γ̂, δ̂)√

kn

)T
=

(
∂1Ln(γ0, δ0)√

kn
,
∂2Ln(γ0, δ0)√

kn

)T
+
Hn(γ̄, δ̄)√

kn
(γ̂ − γ0, δ̂ − δ0)T

for some (γ̄, δ̄) between (γ̂, δ̂) and (γ0, δ0). By Lemma 3.3, with probability increasing
to 1, the infimum in (3.5) is achieved in the interior of the set Θ, and on that event
(∂1Ln(γ̂, δ̂), ∂2Ln(γ̂, δ̂))T = (0, 0)T . Therefore, the relation

−
(
∂1Ln(γ0, δ0)√

kn
,
∂2Ln(γ0, δ0)√

kn

)T
=
Hn(γ̄, δ̄)√

kn
(γ̂ − γ0, δ̂ − δ0)T

also holds on an event whose probability increases to 1. Lemma 3.3, also implies that
(γ̄, δ̄)

P→ (γ0, δ0), so the claim of the theorem follows from Lemma 3.1 and Lemma 3.2. �

4. Estimating γ and δ in a Pareto sample

In this section we assume that the observations X1, X2, . . . follow the Pareto distri-
bution F̄ (x) = x−α for x ≥ 1. In this case the exact distribution of the order statistics
is available, so we will not need to rely as much on the asymptotic normality of Hn in
Theorem 1. Unlike the algorithm of the previous section, we will now use kn equally spaced
points θi,n = ε+ i/kn, 1 ≤ i ≤ kn, for some ε > 0.

Let, once again, X(1) > X(2) > · · · > X(n) be the order statistics from the sample
X1, . . . , Xn. Then

(X(1), · · · , X(n))
d
=

((
Sn+1

S1

)1/γ

, · · · ,
(
Sn+1

Sn

)1/γ )
,
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see e.g. Corollary 1.6.9 of Reiss (1989). Here Si =
∑i

j=1Ej , with (Ej) iid standard
exponential random variables. It follows that the HEWE process satisfies

(
Hn(θi,n), i = 1, . . . , kn

) d
=

 γ

bθi,nknc

bθi,nknc∑
i=1

log
(Sbδknc+bθi,nknc+1

Sbδknc+i

)
, i = 1, . . . , kn

 .

Since E∗i =: i log(Si+1/Si), i = 1, . . . , n, are also iid standard exponential random variables,
a bit of algebra shows that

(
Hn(θi,n), i = 1, . . . , kn

) d
=

 γ

bθi,nknc

bδknc+bθi,nknc∑
i=bδknc+1

(
1− bδknc

i

)
E∗i , i = 1, . . . , kn

 .

Denote now ξi,n = Hn(θi,n)−bθi−1,nkncHn(θi−1,n)/bθi,nknc, i = 1, . . . , kn and set θ0,n = 0.
Since for any i ≥ 2 we have bθi,nknc − bθi−1,nknc = 1, it follows that(

ξi,n, i = 2, . . . , kn
) d

=

(
γE∗bδknc+bθi,nknc

bδknc+ bθi,nknc
, i = 2, . . . , kn

)
.(4.1)

We wish to perform an MLE procedure based on the joint density of (ξ1,n, · · · , ξkn,n). The
joint density of (ξ2,n, · · · , ξkn,n) can be read off (4.1). Since these random variables are
independent of ξ1,n, we will construct a mixed likelihood function by combining the exact
joint density of (ξ2,n, · · · , ξkn,n) with the asymptotic normal density for ξ1,n given in (3.2)
with m = 1 and θ1 = θ1,n. We simplify the resulting expression by dropping the rounding
(replacing bδknc by δkn and bθi,nknc by θi,nkn as needed) Taking the logarithm of the
result multiplied by −2 gives us the following function of γ and δ (a pseudo-log-likelihood
function, modulo additive constants not depending on γ or δ), to be optimized:

Ln(γ, δ) =2 log γ − logω1,δ − 2

kn∑
i=2

log
(δ + θi,n

γ

)
+
knω1,δ

γ2
(ξ1,n − γgδ,1)2 +

2kn
γ

kn∑
i=2

(δ + θi,n)ξi,n .

As in the previous section, we separate the notation for the unknown true parameters γ0

and δ0 from the optimization variables γ and δ. Denote ηn = γ−1
0 ξ1,n

√
kn − gδ0,1

√
kn and

Zi,n = kn(δ0 + θi,n)ξi,n/γ0, and notice that these independent random variables satisfy
ηn

d→ N(0, 1/ω1,δ0) and each Zi,n converges to a standard exponential random variable.
With this notation the function to be minimized becomes

Ln(γ, δ) = 2kn log γ − logω1,δ − 2

kn∑
i=2

log(δ + θi,n) +
ω1,δ

γ2

(
γ0ηn −

√
kn(γgδ,1 − γ0gδ0,1)

)2

+
2γ0

γ

kn∑
i=2

(δ + θi,n)Zi,n
δ0 + θi,n

.(4.2)

As in the previous section we will assume that the true value of the parameters, (γ0, δ0),
belong to the interior Θo of a known compact set Θ = [m1,M1]× [m2,M2] ⊂ (0,∞)2, and
compute our estimator via (3.5), this time using Ln in (4.2).

The following is the main result of this section.
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Theorem 4.1. Suppose that the observations X1, X2, . . . follow the Pareto distribution.
Let kn → ∞ be such that kn/n → 0. Suppose that δ0 > 0, that (γ0, δ0) ∈ Θo, and let
θi,n = ε + i/kn, 1 ≤ i ≤ kn for some ε > 0. Then the optimization problem (3.5) has a
unique solution (γ̂, δ̂) with probability increasing to 1 as n→∞. This solution is a weakly
consistent estimator of (γ0, δ0), and(√

kn(γ̂ − γ0),
√
kn(δ̂ − δ0)

)
⇒ N

(
0,Γ−1

∞

)
where

Γ∞ = Γ1 +

 γ−2
0 −γ−1

0 log
(

1 + 1/(δ0 + ε)
)

−γ−1
0 log

(
1 + 1/(δ0 + ε)

)
(δ0 + ε)−1(δ0 + ε+ 1)−1

(4.3)

and Γ1 is as in (3.8) with m = 1 and θ1 = ε. The matrix Γ∞ is invertible with

Γ−1
∞ = ∆−1

γ2
0

(
c1 + (δ0 + ε)−1(δ0 + ε+ 1)−1

)
γ0

(
−d1 + log

(
1 + 1/(δ0 + ε)

))
γ0

(
−d1 log

(
1 + 1/(δ0 + ε)

))
b1 + 1

 ,
where ∆ = (b1 + 1)

(
c1 + (δ0 + ε)−1(δ0 + ε+ 1)−1

)
−
(
d1 − log

(
1 + 1/(δ0 + ε)

))2.
The structure of proof of Theorem 4.1 is nearly identical to that of Theorem 3.1, with

Lemmas 3.1-3.3 replaced by their counterparts, Lemmas 4.1–4.3. Once again, we start with
the asymptotic behavior of the gradient of the function Ln evaluated at the true values of
the parameters.

Lemma 4.1. Suppose δ0 > 0 and θi,n = ε+ i/kn, 1 ≤ i ≤ kn. Then(
∂1Ln(γ0, δ0)√

kn
,
∂2Ln(γ0, δ0)√

kn

)
⇒ N

(
0, 4Γ∞

)
.

As before, we proceed with the asymptotic behavior of the Hessian matrix (3.12) of
the function Ln evaluated at a weakly consistent estimator of the true values.

Lemma 4.2. Suppose that δ0 > 0 and let θi,n = ε+ i/kn, i = 1, . . . , kn. If (γ̃, δ̃)
P→ (γ0, δ0)

then k−1
n Hn(γ̃, δ̃)

P→ 2Γ∞.

The final lemma, once again, proves the weak consistency.

Lemma 4.3. Suppose that δ0 > 0 and let θi,n = ε + i/kn, i = 1, . . . , kn. Then the
optimization problem (3.5) has a unique solution (γ̂, δ̂) with probability increasing to 1 as
n→∞ and

(γ̂, δ̂)
P→ (γ0, δ0).

Proof of Theorem 4.1. One can use an argument identical to that in the proof of Theorem
3.1, hence only the invertibility of Γ∞ needs to be shown. Since Γ1 is nonnegative definite,
we only have to check that the second matrix in Γ∞ has a positive determinant. However,
by Jensen’s inequality,

(δ0 + ε)−1(δ0 + ε+ 1)−1 −
(

log
(

1 +
1

δ0 + ε

))2
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=

∫ 1+ε

ε

1

(δ0 + x)2
dx−

(∫ 1+ε

ε

1

δ0 + x
dx
)2

> 0 ,

as required. �

Remark 4.1. It is elementary to check that the entry in the upper left corner of the matrix
Γ−1
∞ converges, as δ0 → 0, to γ2

0 . This is the same somewhat surprising lack of efficiency
lost we have seen in Proposition 3.1.

5. Simulation results

5.1. Estimation of δ and γ. In this section, we compare the performance of the estimation
procedures described in Sections 3 and 4 on simulated data. As a test data set, we generate
n = 5000 observations from a Pareto distribution (F (x) = 1 − 1/x, x ≥ 1) and from a
standard Fréchet distribution (F (x) = exp{−x−1}, x ≥ 0). We chose kn = 200 in all cases,
and use 3 different values of δ0 = 0.1, 0.2, 0.5 corresponding to the top 20, 40 and 100 missing
extremes, respectively. For the estimation method of Section 3, we chosem = 10 distinct θ’s
with θi = i/10, i = 1, . . . , 10, and minimized the pseudo-likelihood function given in (3.5)
with respect to δ and γ. This was repeated 1000 times and the summary statistics (means
and standard deviations) are given in Table 1 (Pareto) and Table 2 (Fréchet) corresponding
to the columns labeled δ̂a and γ̂a. Notice that both the bias and standard deviation of δ̂a
increase with δ0 where the latter increases at a rate that is roughly proportionally to δ0.

We also used the estimation procedure of Section 4 (m = kn, ε = 1/200) in which the
objective function in (4.2) was minimized. This procedure was applied to the same Pareto
and Fréchet generated data as before, even though, in theory, the method was introduced
only for Pareto samples. The results are also summarized in Tables 1 and 2 using the labels
δ̂b and γ̂b. The bias for δ̂b is considerably smaller than that for δ̂a in most cases (even in
the Fréchet samples). The standard deviations were also a bit smaller in all cases. On
the other hand the biases for γ̂b were similar to those for γ̂a, but in all cases the standard
deviation was a touch smaller. This may not be too surprising since these estimates are
based on more θi. The asymptotic standard deviations for both the two estimates using
m = 10 and m = kn can be computed using the formulae in (3.8) and (4.3), respectively,
were all smaller than their finite sample counterparts. For example, in the Pareto case for
δ̂a the asymptotic standard errors for δ0 = 0.1, 0.2, 0.5 were 0.047, 0.083, 0.219, respectively.

It is worth emphasizing again that the two estimation procedures based on m = 10 and
m = kn generally performed well for the Fréchet case even though our theory for m = kn is
not directly applicable to this case. Interestingly, the biases and standard deviations were
generally smaller in the Fréchet case in comparison with the Pareto case, across the range
of parameter values and the two estimation procedures. The histograms of the estimates
leading to δ̂a in Table 2 corresponding to δ0 = 0.1 and 0.5 are displayed in Figure 1. Notice
the long right tails. This is more pronounced in the δ0 = 0.5 case, which is due in part to
having fewer of the most extreme observations to estimate tail parameters.

Tables 1 and 2 also contain two additional columns showing correlations (both sample
and asymptotic based on (3.8) and (4.3)) between δ̂a and γ̂a and between δ̂b and γ̂b. There
is good agreement between the sample and asymptotic correlations and all are large (close
to 1). That means that in the two-dimensional optimization likelihood procedure moderate
errors in estimating γ0 lead to significant errors in estimating δ0 because of the large stan-
dard errors of the estimates of δ0. It turns out, however, that fixing γ, the one-dimensional
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likelihood optimization procedures for δ has less variability and is, moreover, fairly robust
to a mild misspecification of γ. We exploit this fact in the sequel.

Table 1. Pareto distribution, n = 5000, kn = 200

δ̂a γ̂a ρδ̂a,γ̂a δ̂b γ̂b ρδ̂b,γ̂b
δ0 mean (sd) mean (sd) corr (asy) mean (sd) mean (sd) corr (asy)
0.1 0.113 (0.057) 1.015 (0.143) 0.858 (0.829) 0.104 (0.049) 1.006 (0.129) 0.841 (0.796)
0.2 0.222 (0.104) 1.025 (0.187) 0.915 (0.894) 0.207 (0.096) 1.010 (0.177) 0.915 (0.878)
0.5 0.547 (0.285) 1.040 (0.309) 0.965 (0.956) 0.515 (0.254) 1.014 (0.282) 0.962 (0.951)

Table 2. Fréchet distribution, n = 5000, kn = 200

δ̂a γ̂a ρδ̂a,γ̂a δ̂b γ̂b ρδ̂b,γ̂b
δ0 mean (sd) mean (sd) corr (asy) mean (sd) mean (sd) corr (asy)
0.1 0.106 (0.050) 0.992 (0.130) 0.829 (0.829) 0.101 (0.045) 0.988 (0.122) 0.826 (0.796)
0.2 0.208 (0.094) 0.993 (0.176) 0.906 (0.894) 0.196 (0.085) 0.981 (0.165) 0.904 (0.878)
0.5 0.535 (0.287) 1.011 (0.300) 0.961 (0.956) 0.502 (0.252) 0.985 (0.274) 0.961 (0.951)

5.2. Graphical methods for estimating the number of missing extremes. Although
our estimation procedure assumes that δ0kn of the largest extremes are missing, in practice,
it might be more likely that missing extremes, if any exist, do not occur consecutively
from the largest. Our method can still be used to estimate the total number of missing
extremes. For example if there are 10 missing extremes scattered among the largest 50, we
can artificially remove the largest 40 extremes from the data set. The altered data set can
then be viewed as having 50 consecutive missing extremes and our estimation procedure
for estimating the number of missing extremes is applicable. If the resulting estimate is
near 50, as it should be, then since we know that 40 have been artificially removed, we
would be able to recover an estimate of the number of original missing extremes, even when
non-consecutive. We use a graphical procedure to give an idea of how this works.

For a given data set with δ0kn missing observations among the largest (δ0 + δ†)kn
observations, we remove for each i = 1, 2, . . . , kn, the i largest observations (this corresponds
to δ = i/kn) from the observed data and produce estimates δ̂. Once δ ≥ δ†, then the
(δ + δ0)kn largest extremes (δ0kn unknown to us plus δkn artificially removed) are now
missing. The estimates δ̂ for δ ≥ δ† should be approximately linear in δ with a slope close
to 1. The idea is then to pick off the threshold for which the plot of δ̂ vs. δ becomes linear
for δ larger than that threshold. This value is then identified as δ† and the difference δ̂− δ†
is then an estimate of δ0. Once we have estimated δ†, if desired, we can remove the largest
δ†kn observations and re-apply our estimation procedure to provide updated estimates of
δ0 and γ0.

We illustrate this procedure with several simulation examples under three different
scenarios: (i) no missing extremes, (ii) the upper δ0kn are missing and (iii) the δ0kn missing
extremes are not consecutive upper extremes. The setup for this simulation is similar to
that of Section 5.1. Samples of size n = 5000 are generated from both Pareto and Fréchet
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Figure 1. Histogram for estimates in Table 2 for the Fréchet simulation
corresponding to δ0 = 0.1 (top) and δ0 = 0.5 (bottom).

distributions with index α = 1.0. In all cases, we take kn = 200 and begin by maximizing
the bivariate likelihood to obtain initial estimates of δ0 and, more importantly, γ0. The
method of Section 3 is used throughout.

(i) no missing extremes. In this case, no extremes have been removed from the simulated
data so that δ0 = 0. The estimates of δ0 and γ0 using the method of Section 3 with
m = 10 are near 0 and 0.912 in the Pareto case, and 0.001 and 0.904 in the Fréchet case.
In order to test our estimation procedure, for each δi = i/kn, i = 1, . . . , kn, we remove
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the upper i extremes of the simulated data set and then compute δ̂i, by minimizing the
objective function (3.5) for fixed values of γ = .9, 1.0, 1.1, 1.2 using the altered data, i.e.,
with the appropriate number of extremes removed. (As mentioned above, we avoid here
maximizing the bivariate likelihood and, at the same time, check the robustness of the
univariate likelihood maximization to a mild misspecification of γ.) In Figure 2 we plot δ̂
vs. δ for each of the the four choices of γ for the Pareto sample (left panel) and the Fréchet
sample (right panel). Notice that each of the four curves are approximately linear with
intercept 0, strongly suggesting that δ0 = 0. The red line (corresponding to the true γ = 1)
has the slope closest to 1.

Figure 2. Estimated number of missing extremes for samples from Pareto
and Fréchet distributions with n = 5000, kn = 200, γ0 = 1.

(ii) the upper δ0kn extremes are missing. For this simulation, we take δ0 = .25 so
that 50 largest observations are removed from the samples described in (i). The estimates
of δ0 and γ0 are 0.145 and 0.769 for the Pareto case and 0.431 and 1.122 for the Fréchet
case. The same style plots as those in Figure 2 are displayed in Figure 3. The reader should
keep in mind that now the horizontal axis for δ corresponds to δkn extreme observations
missing from the observed data (in addition to the 50 largest removed from the originally
generated data). The plots of δ̂ vs δ are again nearly linear for the four values of γ, with
the red line (γ = 1) having slope closest to 1, and the corresponding intercept value close
to the true δ0 = .25.
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Figure 3. Estimated number of missing extremes for samples from Pareto
and Fréchet distributions with the 50 largest observations removed. n =
5000, kn = 200, γ0 = 1.

(iii) the δ0kn missing extremes are not consecutive. For this simulation, we again
take δ0 = .25, but this time the 50 missing extremes are randomly selected from among
the 100 largest observations. The estimate of δ0 is near 0 and the estimate of γ0 is 0.774
in the Pareto case, while the estimates of δ0 and γ0 are 0.004 and 0.789 in the Fréchet
case. For this scenario δ† = 50/200 = .25 so that after removing another 50 extremes from
the observed data, we have all 100 of the top extremes removed. The corresponding plots
displayed in Figure 4 now have a different look. They are essentially connected segments
with nodes around δ just over .1 and just over .2 for both the Pareto and Fréchet cases,
respectively. Notice that locations of these nodes are robust to the choice of γ; each of the
4 curves have nodes at approximately the same horizontal location. On the Pareto plot we
would estimate δ† to be around .24, which is near the true δ† of .25. The third segment of
the red curve (corresponding to the true γ = 1), from .24 to 1, has the slope closest to 1.
For this curve the value at .24 is .63. This gives us an estimate of δ0 as .63 − .24 = .39.
A similar analysis for the Fréchet case gives us an estimate of δ† = .22 with corresponding
value on the red curve of .54. The estimate of δ0 is then .54− .22 = .32. So in both cases,
we retrieve reasonable (though not perfect) estimates of δ0 = .25.

Figure 4. Estimated number of missing extremes and tail index for sam-
ples from Pareto and Fréchet distributions, with 50 observations among the
largest 100, removed. n = 5000, kn = 200, γ0 = 1.
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6. Applications

In this section, we apply the methodology described in Sections 5.1 and 5.2 to several
real data sets. The goal here is to estimate the shape parameter γ0 in addition to δ0 and δ†,
where δ0kn is the number of missing extremes among the largest (δ† + δ0)kn extremes. Of
course if our estimate is δ̂† = 0, we declare that missing extremes, if any, are consecutive.
Once again, the estimation method of Section 3 is used throughout.

6.1. Danish Fire Insurance. The Danish Fire Insurance data set is a standard example
used in extreme value theory. It is a part of the R-statistics package and consists of 2492
large Danish fire insurance claims from January 1, 1980 to December 31, 1990. Using
kn = 50 and m = 10, the estimate of δ0 is near 0 and the estimate of γ0 is 0.565. Next we
explore the possibility of some missing (not necessarily consecutive) extremes by applying
the methodology in Section 5.2 with 4 values of γ based on the initial estimate. The
resulting plots of δ̂ vs δ for four different values of γ are displayed in Figure 5. All of these
plots look roughly linear without any obvious nodes, with the intercepts close to 0. Hence
we estimate δ̂† = 0 = δ̂0. The blue curve appears to have the slope closest to 1, so we
estimate γ̂0 to be around .7.

Figure 5. Estimated number of missing extremes for Danish fire insurance.
n = 2492, kn = 50.

6.2. Google+. The second example consists of the in-degrees values from 76,438,791 nodes
in a snapshot of the Google+ social network that was explored in Zou et al. (2019). They
concluded that around 150 consecutive largest extremes were missing. Using kn = 500, the
methodology of Section 3 gives initial estimates of δ0 and γ0 as .327 and 1.418, respectively,
so that the number of missing would be .327*500=163 missing extremes. This estimate
is consistent with the number of missing found in Zou et al. (2019). Unfortunately, our
estimate of γ0 does not produce reasonable plots as described in Section 5.2, so upon
further experimentation we settled on a different range of γ and construct plots of δ̂ by
removing the largest observations for four values of γ = 3, 3.5, 4, 4.5. The resulting plots
are displayed in Figure 6. Using the methodology of Section 5.2, we would estimate δ̂† to
be near 0.036, and the red curve appears to have slope closest to 1. We therefore estimate
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γ0 to be close to 3.5. The value of the red curve corresponding to δ̂† is 1.38, so we estimate
δ0 as 1.38− .036 = 1.344. That corresponds to 1.344 ∗ 500 = 672 missing extremes among
1.38*500= 690 largest extremes. We now remove the additional .036 ∗ 500 = 18 largest
values in the data set and re-plot in Figure 7, the curves corresponding to the 4 values of
γ above. Note that all curves are roughly linear and that the red curve (γ = 3.5) has the
slope closest to 1.

Figure 6. Estimated number of missing extremes for Google+ with kn =
500, with δ̂† = 0.036 marked.

Figure 7. Estimated number of missing extremes for Google+ with the 18
largest observations removed, kn = 500.

6.3. Natural and Climate Disasters in the U.S. from 1980-2019. This data, which
can be accessed from http://ncdc.noaa.gov/billions/, was assembled by the National Oceanic
and Atmospheric Administration (NOAA). They identify 258 costly natural and climatic
events such as wild fires, hurricanes, flooding, earthquakes, droughts, tornadoes, and severe
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storms during the period from January 1980 through December 2019. This data set repre-
sents the financial costs in billions of 2019 US dollars associated with these events. More
details about the data set can be found in Smith and Katz (2013). While one should always
exercise caution in applying extreme value theory to small data sets, we nevertheless apply
our methods in this case with kn = 30. The initial estimates of δ0 and γ0 are .08 and 1.349,
respectively. This would lead to an estimate of 0.08 ∗ 30 = 2.4 missing extremes. Since
there are no truly missing extremes (every disaster event has a recorded value), we interpret
missingness as being reflective of some extremes being underreported. As done previously,
we explore the possibility that there are non-consecutive missing extremes among of a frac-
tion of the largest observations. To this end, we construct plots of δ̂ by removing largest
observations for four values of γ = 1.3, 1.4, 1.5, 1.6. The resulting plots are in Figure 8.
As in Section 5.2, the estimate δ̂† is near 0.667, and the red curve has the slope closest
to 1 in the last part of the plot. We therefore estimate γ0 to be near 1.4. The value of
the red curve at δ̂† is 1.193, so we estimate δ0 as 1.193 − 0.667 = 0.526, corresponding to
16 missing extremes. Now re-estimating δ0 and γ0 for the observed data with the addi-
tional δ̂†kn = 0.667 ∗ 30 = 20 extreme observations removed, we obtain δ̂0 = 1.193 and
γ̂0 = 1.718. So our final estimate of δ0 would be 1.193 − 0.667 = 0.526. This corresponds
to 0.526 ∗ 30 = 16 missing observations among the 1.193 ∗ 30 = 36 largest extremes. After
having removed 36 − 16 = 20 largest values from the data set and re-plotting the curves
corresponding to the four value of γ above, we see the results in Figure 9. The curves are
roughly linear, with the red curve having the slope closest to 1.

Figure 8. Weather and climate disasters from 1980 to 2019. n = 258, kn = 30.

7. Appendix

7.1. Second-order regular variation. Second-order regular variation can be thought of
as a way to quantify the vanishing difference between the left hand side and the right hand
side of (1.1). It assumes that there is ρ ≤ 0 and a positive or negative function A that is
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Figure 9. Weather and climate disasters from 1980 to 2019 with 20 largest
observations removed. n = 258, kn = 30.

regularly varying with exponent ρ and limt→∞A(t) = 0, such that for x > 0,

lim
t→∞

logU(tx)− logU(t)− γ log x

A(t)
=

{
xρ−1
ρ ρ < 0,

log x ρ = 0,
(7.1)

where U(t) = F←(1 − 1/t) and F← is the generalized inverse of F ; see e.g. de Haan and
Ferreira (2006).

The results of this paper assume that the sequence (kn) used to define our estimators
satisfies

lim
n→∞

√
knA(n/kn) = λ(7.2)

for some λ ∈ R. Since kn →∞, condition (7.2) implies that n/kn →∞.
Distributions that satisfy the second-order condition include the Student’s tν , stable,

and Fréchet distributions; see, e.g. Drees (1998) and Drees et al. (2000). In fact, any
distribution with F̄ (x) = c1x

−α + c2x
−α+αρ(1 + o(1)) as x → ∞, where c1 > 0, c2 6= 0,

α > 0 and ρ < 0, satisfies the second-order condition with the indicated values of α and ρ
(de Haan and Ferreira (2006)).

7.2. Proofs. In this section we present the proofs of the results in the earlier parts of the
paper.

Proof of Lemma 3.1. Since

∂1Ln(γ0, δ0) =
2m

γ0
− 2

γ0

m∑
i=1

ωi,δ0Y
2
ni −

2
√
kn
γ0

m∑
i=1

ωi,δ0hδ0,iYni

and

∂2Ln(γ0, δ0) = −
m∑
i=1

ω′i,δ0
ωi,δ0

+
m∑
i=1

ω′i,δ0Y
2
ni − 2

√
kn

m∑
i=1

ωi,δ0h
′
δ0,iYni ,

the claim of the lemma follows from (3.3). �
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Proof of Lemma 3.2. We proceed as in the proof of Lemma 3.1, except now one needs to
take second derivatives. For example, elementary calculations give us

∂2
1Ln(γ̃, δ̃)

kn
= − 2k

γ̃2kn
+

6γ2
0

γ̃4kn

m∑
i=1

ωi,δ̃Y
2
ni −

12γ0

γ̃4
√
kn

m∑
i=1

ωi,δ̃(γ̃hδ̃,i − γ0hδ0,i)Yni

+
6

γ̃4

m∑
i=1

ωi,δ̃(γ̃hδ̃,i − γ0hδ0,i)
2 +

8γ0

γ̃3
√
kn

m∑
i=1

ωi,δ̃hδ̃,iYni

− 8

γ̃3

m∑
i=1

ωi,δ̃hδ̃,i(γ̃hδ̃,i − γ0hδ0,i) +
2

γ̃2

m∑
i=1

ωi,δ̃h
2
δ̃,i
.

Using (3.3) and the fact that (γ̃, δ̃)
P→ (γ0, δ0) we see that

∂2
1Ln(γ̃, δ̃)

kn

P→ 2

γ2
0

m∑
i=1

ωi,δ0h
2
δ0,i =

2bm
γ2

0

.

The other terms of the Hessian matrix can be handled in a similar manner. �

Proof of Lemma 3.3. Denote

L(γ, δ) = γ−2
m∑
i=1

ωi,δ(γhδ,i − γ0hδ0,i)
2, (γ, δ) ∈ Θ .

Since we can write

Ln(γ, δ)/kn =
2m log γ

kn
− 1

kn

m∑
i=1

logωi,δ +
γ2

0

γ2kn

m∑
i=1

ωi,δY
2
ni

− 2γ0

γ2
√
kn

m∑
i=1

ωi,δ(γhδ,i − γ0hδ0,i)Yni +
1

γ2

m∑
i=1

ωi,δ(γhδ,i − γ0hδ0,i)
2 ,

we have

sup
(γ,δ)∈Θ

∣∣∣∣Ln(γ, δ)

kn
− L(γ, δ)

∣∣∣∣
≤ sup

(γ,δ)∈Θ

∣∣∣∣2m log γ

kn
− 1

kn

m∑
i=1

logωi,δ

∣∣∣∣+ sup
(γ,δ)∈Θ

∣∣∣∣ γ2
0

γ2kn

m∑
i=1

ωi,δY
2
ni

∣∣∣∣
+ sup

(γ,δ)∈Θ

∣∣∣∣ 2γ0

γ2
√
kn

m∑
i=1

ωi,δ(γhδ,i − γ0hδ0,i)Yni

∣∣∣∣ P→ 0, n→∞ ,

by (3.3), since we know that, by assumption, γ, ωi,δ and hδ,i are bounded away from 0 and
infinity on Θ.

Clearly, the point (γ0, δ0) is a minimizer of the function γ2L. Furthermore, it is ele-
mentary to check that the Hessian matrix of γ2L at that point is equal to 2γ2

0Γm. We will
see in the proof of Proposition 3.1 below that the matrix Γm is invertible, hence the point
(γ0, δ0) is the unique minimizer of the function γ2L, hence also of the function L. The
uniform convergence in probability of the function Ln/kn to the function L implies that
any minimizer of the former function converges in probability to the unique minimizer of
the limit function. Hence the statement of the lemma. �
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Proof of Proposition 3.1. Introduce functions of x > 0

lδ(x) = x2/(x+ δ), mδ(x) = x2v(x/δ)/δ = x− 2δ log(1 + x/δ) + δx/(x+ δ) ,

so that

ωi,δ0 =θ2
i /
(
mδ0(θi)−mδ0(θi−1)

)
, gδ0,i =

(
mδ0(θi) + lδ0(θi)

)
/2θi,

g′δ0,i =
(
mδ0(θi)− lδ0(θi)

)
/2δ0θi, i = 1, . . . ,m .

Therefore we can write

bm =
mδ0(θm) + 2lδ0(θm)

4
+

1

4

m∑
i=1

(
lδ0(θi)− lδ0(θi−1)

)2
mδ0(θi)−mδ0(θi−1)

,

cm =
mδ0(θm)− 2lδ0(θm)

4δ2
0

+
1

4δ2
0

m∑
i=1

(
lδ0(θi)− lδ0(θi−1)

)2
mδ0(θi)−mδ0(θi−1)

,

dm =
mδ0(θm)

4δ0
− 1

4δ0

m∑
i=1

(
lδ0(θi)− lδ0(θi−1)

)2
mδ0(θi)−mδ0(θi−1)

.

We now show that the matrix Γm is invertible. A direct computation shows that

4δ2
0(bmcm − d2

m) = mδ0(θm)
m∑
i=1

(
lδ0(θi)− lδ0(θi−1)

)2
mδ0(θi)−mδ0(θi−1)

− l2δ0(θm) .

It is easy to check that the functions lδ0 and mδ0 are increasing on (0,∞), so that for any
i ≥ 1, lδ0(θi)− lδ0(θi−1) > 0 and mδ0(θi)−mδ0(θi−1) > 0. Further, by the Cauchy-Schwarz
inequality,

mδ0(θm)

m∑
i=1

(
lδ0(θi)− lδ0(θi−1)

)2
mδ0(θi)−mδ0(θi−1)

=

m∑
i=1

(
mδ0(θi)−mδ0(θi−1)

) m∑
i=1

(
lδ0(θi)− lδ0(θi−1)

)2
mδ0(θi)−mδ0(θi−1)

≥
( m∑
i=1

(
lδ0(θi)− lδ0(θi−1)

))2

= l2δ0(θm),

and the equality holds if and only if

lδ0(θ1)

mδ0(θ1)
=

lδ0(θ2)− lδ0(θ1)

mδ0(θ2)−mδ0(θ1)
= · · · = lδ0(θm)− lδ0(θm−1)

mδ0(θm)−mδ0(θm−1)
.

The latter requirement is equivalent to

lδ0(θ1)

mδ0(θ1)
=

lδ0(θ2)

mδ0(θ2)
= · · · = lδ0(θm)

mδ0(θm)
,(7.3)

so invertibility of Γm will follow once we show that (7.3) cannot hold. If we put

Q(x) =: mδ0(x)−
lδ0(x)m′δ0(x)

l′δ0(x)
= mδ0(x)− x3

(x+ δ0)(x+ 2δ0)
,

then Q(0) = 0 and

Q′(x) = − 2δ0x
2

(x+ δ0)(x+ 2δ0)2
< 0, x > 0,
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which implies that

Q(x) =
l′δ0(x)

m2
δ0

(x)

(
lδ0(x)

mδ0(x)

)′
< 0

for any x > 0. Since l′δ0(x) > 0, we conclude that the function lδ0(x)/mδ0(x) is strictly
decreasing on the positive half line, and so (7.3) cannot hold. Hence the matrix Γm is
invertible.

It is elementary to check that, as δ0 → 0,

bm → θm, cm ∼ θ−1
1 (log δ0)2, dm → log δ0 .(7.4)

Substituting this into (3.8) shows convergence of the variance in (3.10).
Similarly, it is elementary to check that, as δ0 → 0,

a1 →
2λ

1− ρ
γ−2

0 θ1−ρ
m , a2 ∼

2λ

1− ρ
γ−1

0 θ−ρ1 log δ0 .(7.5)

Substituting (7.4) and (7.5) into (3.8) and (3.9) proves convergence of the mean in (3.10).
�

Proof of Lemma 4.1. By (4.2),

∂1Ln(γ0, δ0) =
2kn
γ0
−

2ω1,δ0η
2
n

γ0
− 2
√
kn
γ0

ω1,δ0gδ0,1ηn −
2

γ0

kn∑
i=2

Zi,n

and

∂2Ln(γ0, δ0) = −
ω′1,δ0
ω1,δ0

−
kn∑
i=2

2

δ0 + θi,n
+ ω′1,δ0η

2
n − 2

√
knω1,δ0g

′
δ0,1ηn + 2

kn∑
i=2

Zi,n
δ0 + θi,n

.

Since (
− 2
γ0
ω1,δ0gδ0,1ηn

−2ω1,δ0g
′
δ0,1

ηn

)
⇒ N

(
0, 4Γ1

)
,

the claim of the lemma will follow once we show that(
−k−1/2

n γ−1
0

∑kn
i=2

(
Zi,n − 1

)
k
−1/2
n

∑kn
i=2

Zi,n−1
δ0+θi,n

)
⇒ N

(
0,Γ0

)
,

where Γ0 is the second matrix in the right hand side of (4.3). By (4.1) we only need to
prove that (

−k−1/2
n γ−1

0

∑kn
i=2

kn(δ0+θi,n)
[δ0kn]+[θi,nkn]

(
E∗[δ0kn]+[θi,nkn] − 1

)
k
−1/2
n

∑kn
i=2

kn
[δ0kn]+[θi,nkn]

(
E∗[δ0kn]+[θi,nkn] − 1

) )
⇒ N

(
0,Γ0

)
.(7.6)

Since the covariance matrix the random vector in the right hand side of (7.6) converges to
Γ0, only the Lyapunov condition needs to be checked for an application of the central limit
theorem. The latter can be performed component-wise and is elementary when taking, for
instance, the 4th powers of the terms. �

Proof of Lemma 4.2. Once again, computing the second derivatives, we obtain, for example,

∂2
1Ln(γ̃, δ̃)

kn
= − 2

γ̃2
+

6ω1,δ̃

γ̃4kn

(
γ0ηn −

√
kn(γ̃gδ̃,1 − γ0gδ0,1)

)2
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+
8ω1,δ̃gδ̃,1

γ̃3
√
kn

(
γ0ηn −

√
kn(γ̃gδ̃,1 − γ0gδ0,1)

)
+

2

γ̃2
ω1,δ̃g

2
δ̃,1

+
4γ0

γ̃3kn

kn∑
i=2

(δ̃ + θi,n)Zi,n
δ0 + θi,n

.

Clearly, the second and the third terms in the right hand side are op(1) as n → ∞. Fur-
thermore,

− 2

γ̃2
→ − 2

γ2
0

,
2

γ̃2
ω1,δ̃g

2
δ̃,1
→ 2

γ0
2
ω1,δ0g

2
δ0,1 in probability,

and by computing the mean and the variance we see that

4γ0

γ̃3kn

kn∑
i=2

(δ̃ + θi,n)Zi,n
δ0 + θi,n

→ 4

γ2
0

in probability. Therefore,

∂2
1Ln(γ̃, δ̃)

kn
→ 2

γ2
0

+
2

γ0
2
ω1,δ0g

2
δ0,1

in probability, and the limit is the appropriate entry in the matrix 2Γ∞. The other terms
of the Hessian matrix can be handled in a similar manner. �

Proof of Lemma 4.3. We proceed as in the proof of Lemma 3.3. Denote now

L(γ, δ) = 2 log γ +
ω̃1,δ

γ2
(γg̃δ,1 − γ0g̃δ0,1)2 − 2

∫ 1+ε

ε
log(δ + x) dx+

2γ0

γ

∫ 1+ε

ε

δ + x

δ0 + x
dx ,

where ω̃1,δ is defined as ω1,δ and g̃δ,1 is defined as gδ,1, both with θ1 = ε. Since we can write

Ln(γ, δ)/kn = 2 log γ − 1

kn
logω1,δ −

2

kn

kn∑
i=2

log(δ + θi,n) +
γ2

0ω1,δ

γ2kn
η2
n

−
2γ0ω1,δ

γ2
√
kn

(γgδ,1 − γ0gδ0,1)ηn +
ω1,δ

γ2
(γgδ,1 − γ0gδ0,1)2 +

2γ0

γkn

kn∑
i=2

(δ + θi,n)Zi,n
δ0 + θi,n

,

it follows that

sup
(γ,δ)∈Θ

∣∣∣∣Ln(γ, δ)

kn
− L(γ, δ)

∣∣∣∣
≤ sup

(γ,δ)∈Θ

∣∣∣∣ω1,δ

γ2
(γgδ,1 − γ0gδ0,1)2 −

ω̃1,δ

γ2
(γg̃δ,1 − γ0g̃δ0,1)2

∣∣∣∣
+ sup

(γ,δ)∈Θ

∣∣∣∣− 1

kn
logω1,δ +

γ2
0ω1,δ

γ2kn
η2
n −

2γ0ω1,δ

γ2
√
kn

(γgδ,1 − γ0gδ0,1)ηn

∣∣∣∣
+ sup

(γ,δ)∈Θ

∣∣∣∣∣ 2

kn

kn∑
i=2

log(δ + θi,n)− 2

∫ 1+ε

ε
log(δ + x) dx

∣∣∣∣∣
+ sup

(γ,δ)∈Θ

∣∣∣∣∣ 2γ0

γkn

kn∑
i=2

(δ + θi,n)Zi,n
δ0 + θi,n

− 2γ0

γ

∫ 1+ε

ε

δ + x

δ0 + x
dx

∣∣∣∣∣ .
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It is clear that the first three terms in the right hand side vanish as n → ∞. The same is
true for the last term in the right hand side because we can bound the latter by

sup
(γ,δ)∈Θ

∣∣∣∣2γ0δ

γ

∣∣∣∣ ·
∣∣∣∣∣ 1

kn

kn∑
i=2

Zi,n
δ0 + θi,n

−
∫ 1+ε

ε

1

δ0 + x
dx

∣∣∣∣∣
+ sup

(γ,δ)∈Θ

∣∣∣∣2γ0

γ

∣∣∣∣ ·
∣∣∣∣∣ 1

kn

kn∑
i=2

θi,nZi,n
δ0 + θi,n

−
∫ 1+ε

ε

x

δ0 + x
dx

∣∣∣∣∣ .
It is clear that both suprema are finite, while by computing once again the means and the
variances we see that the two differences converge to zero in probability.

Clearly, the point (γ0, δ0) is a minimizer of the function ω̃1,δγ
−2(γg̃δ,0 − γ0g̃δ0,1)2. Let

us denote the remaining part of the function L(γ, δ) by L1(γ, δ). To check that the point
(γ0, δ0) is a unique minimizer of the latter function, note that for a fixed value of δ the
unique minimizer of L1(·, δ) is the point

γ(δ) = γ0

∫ 1+ε

ε

δ + x

δ0 + x
dx.

Since, up to δ-independent terms,

L1(γ(δ), δ) = log

(∫ 1+ε

ε

δ + x

δ0 + x
dx

)
−
∫ 1+ε

ε
log

(
δ + x

δ0 + x

)
dx ,

which vanishes for δ = δ0 and is strictly positive by Jensen’s inequality for δ 6= δ0, we see
that δ = δ0 and γ = γ(δ0 = γ0 is the unique minimizer of L1 and, hence, also of L.

As before, the uniform convergence of Ln/kn to L implies now that any minimizer of
the former function convergence in probability to (γ0, δ0). Lemma 4.2 and the fact that Γ∞
is invertible mean that, with probability converging to 1, the minimizer of Ln is unique. �
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