On the Complexity of ML Typability
with Overloading*

Dennis M. Volpano
Geoffrey S. Smith

TR91-1210
May 1991

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*The authors acknowledge joint support from the NSF and DARPA under grant
ASC-88-00465. This paper was presented at the Conference on Functional
Programming Languages and Computer Architecture, Cambridge, MA, August 1991.

On the Complexity of ML Typability with Overloading

Dennis M. Volpano and Geoffrey S. Smith!

Department of Computer Science
Cornell University
Ithaca, New York 14853 USA

ABSTRACT

We examine the complexity of type checking in an ML-style type system that permits func-
tions to be overloaded with different types. In particular, we consider the extension of the
ML type system proposed by Wadler and Blott in the appendix of [WB89], with global over-
loading only, that is, where the only overloading is that which exists in an initial type assump-
tion set; no local overloading via over and inst expressions is allowed. It is shown that under
a correct notion of well-typed terms, the problem of determining whether a term is well typed
with respect to an assumption set in this system is undecidable. We then investigate limiting
recursion in assumption sets, the source of the undecidability. Barring mutual recursion is
considered, but this proves too weak, for the problem remains undecidable. Then we consider
a limited form of recursion called parametric recursion. We show that although the problem
becomes decidable under parametric recursion, it appears harder than conventional ML typa-
bility, which is complete for DEXPTIME [Mai90].

1. Introduction

A rather obvious limitation of the Hindley-Milner type system [Hin69, Mil78, DM82] is that
it does not allow an identifier to be overloaded, that is, to possess more than one assumption
in a type assumption set. For example, we may want equality to possess precisely types
Int —» Int - Bool and Char — Char — Bool , but in the Hindley-Milner type discipline,
there is no type assumption set from which we can deduce all and only these types for equal-
ity. For this reason, languages whose type systems are based on the Hindley-Milner system
are forced to avoid overloading altogether, as in Miranda [Tur86], or allow it but fix the set of
overloaded operators, as in Standard ML [HMTSS].

Wadler and Blott, in the appendix of [WB89], present an extension of the Hindley-
Milner type system that incorporates overloading. The system is the basis for the type system
of Haskell, a functional programming language aimed at providing a more standardized nota-
tion for the functional programming language community [HW90]. But unlike an earlier
extension proposed by Kaes [Kae88], their type system has a new form of type, called a
predicated type, and allows more expressive type assumption sets. The computational conse-
quences of this increased expressiveness are explored in this paper.

The language considered by Wadler and Blott in the design of their type system is core
ML [MHS88] with two new kinds of expressions, over and inst, for overloading identifiers
locally. The language we consider is just core ML, so all overloading has global scope, and is
introduced through an initial type assumption set only. We call Wadler and Blott’s type sys-
tem without the inference rules for over and inst system WB.

! The authors acknowledge joint support from the NSF and DARPA under grant ASC-88-00465. This paper
was presented at the Conference on Functional Programming Languages and Computer Architecture, Cambridge MA,
August 1991.

2. System WB

Given a set of type variables {a, B, v,...} and type constructors (%, Int, Char, Set, List,
Pair,... } , the types of system WB are defined by

Types T m=a|Tt->T | x@,...Th)
Predicated types p = (xz1)pl"
Type schemes ¢ = Voo|p

The parentheses of y are omitted if it has no arguments. The term (x :: 1) is called a predi-
cate and is viewed as a restriction stating that x has type T . The t-describable part of a type
scheme is referred to as its type part, or body.

2.1. Type assumption sets

Type checking is done in the context of a set of assumptions which bind type information to
the free identifiers in an expression. Wadler and Blott also require type assumptions to
specify translations of overloaded identifiers, but we omit them here for they are not relevant
to our discussion. An assumption set may contain multiple assumptions per identifier, called
instance assumptions, each of which is designated ::;. All types appearing in the instance
assumptions for an identifier are specializations of a single type given in an overload assump-
tion, designated ::, , for the identifier. All assumption sets in WB must be valid, a property
whose definition depends on a notion of overlapping type schemes.

Definition. (overlap). Two type schemes ¢ and ¢’ overlap if there exists a type T and a
valid set of assumptions A suchthat >, 1T and ¢’ 2, 1. We write 6# ¢’ if 6 and o’
do not overlap.

The definition of overlap is given in terms of the instance relation >, , but it need not
be, for it is equivalent, under a renaming of bound variables, to merely a test for whether the
type parts of two schemes are unifiable.

Theorem 2.1. Two type schemes, each with bound variables not occurring free or bound in
the other, overlap if and only if their type parts are unifiable.

Proof. Let 6=Va; -** Va,.p.T and ¢’ =V, --- VB,.p’.7 such that ¢; is notin
o’ and f; isnotin ©.

(only if). Suppose ¢ and ¢’ overlap. Then there is a valid assumption set A and type 7y
such that 6 >,y and ¢’ 2, y. By the definition of >, , then, there are substitutions
S=[oy =7,...,0, =1,] and S’=[B;, =1,",...,B, :=1,’] such that 1§ =y and
'S’ =y (we write the application of a substitution to a term in postfix notation). Thus,
18§’ =1/SS’ ,or T and 1’ are unifiable.

(if). Suppose there is a substitution § such that ©§ = 'S = y. Let A be an assumption set
formed by adding to it x::, Vo.a and x:;IT foreach x =TT in (pup’)S. IT; # I,
whenever IT; # I1;, so A is valid. Since ©S =7y and A I pS, 6 2, v. Likewise, 'S =y
and A | p’S,s0 ¢’ 2, y. Thus, ¢ and ¢’ overlap.

Therefore we adopt a much simpler test for whether two type schemes overlap, one that
only requires renaming their bound variables so that no bound variable of one occurs in the
other and then checking to see if their type parts are unifiable.

Definition. (valid assumption set). The empty set is valid. Let A be a valid assumption set, x
an identifier that does not appear in 4, and o a type scheme. Then A, x:: ¢ is valid. If
T ,.., Ty aretypesand o, ,..., ¢, are type schemes such that

o240 ,for 1<i<n,and
02,71 ,for 1<i<m,and
o;#c; fori#jand 1<i,j<n

then
A x:,0,
X501 ,.0..,X25;0,,
XUT e, X2 Ty

is a valid assumption set.

The types given to each overloaded identifier in a valid assumption set are pairwise
nonoverlapping. This restriction guarantees that any type for an overloaded identifier has at
most one derivation in WB, thus ensuring that each resolved occurrence of the identifier in an
expression has a unique translation.

A predicated type enables one to assert, via an instance assumption, that an identifier
has a certain type provided that the identifier itself has some other type. We characterize
those assumption sets in which this capability is exploited as recursive.

Definition. (recursive assumption set). Let R be a binary relation on the identifiers of an
assumption set A such that g R & if and only if there is an instance assumption about g in A
with a predicate involving # (g and 4 may be the same identifier). Then A is recursive if and
only if R* is not irreflexive.

For example, the assumptions in Figure 1 form a valid, recursive assumption set.
Under the assumptions in this set, it would be type correct to apply predicate eq to valucs of
types such as List(List(Int)) , List(Pair (Int, Char)) and so on.

2.2. Inference rules

The inference rules that we regard as part of system WB, for the purpose of this paper, are all
but the rules for over and inst given in the appendix of [WB89]. These include basically the
inference rules of Damas and Milner [DM82], and two new rules PRED and REL, which are
given below without translation information.

eq::, Vo.o— o — Bool

eq ::; Int = Int — Bool

eq ::; Char — Char — Bool

eq:; Va.(eq:: o — a— Bool). List (o) — List (o) — Bool

eq:; Va.VB.(eq::a— o —> Bool).(eq:: B — B — Bool).
Pair (o, B) — Pair(a, B) — Bool

Figure 1. A recursive assumption set.

A, xzDlFexp . (PRED)

AFe:(x:1).p i 0€ A

Aler(x:1.p, Alxut i, €A (REL)
Ale:p

The PRED rule allows an assumption about an identifier used to deduce a type for an
expression to be shifted from the assumption set into the type of the expression. Eliminating,
or releasing, a predicate (x::T) from a type relative to an assumption set A using rule REL
requires showing A | x:: 7, that is, that the predicate can be satisfied with respect to A.

2.3. Well-typed expressions

The ability to move assumptions about overloaded identifiers from an assumption set into the
type of an expression via PRED calls into question the notion of typability in WB. That is,
when is an expression e well typed with respect to a valid assumption set A? The obvious
condition is that e is well typed with respect to A if and only if

A | e: o, forsome type scheme G. e))

However, this appears incorrect based on the objectives of system WB. In particular, the con-
dition is too weak to force certain terms to be the source of type errors.

For example, let A be a valid, initial assumption set defined by

mult ., Vo.ao»>a—-a,

mult ::; Int — Int — Int

mult ::; Float — Float — Float ,
¢ :: Char

In this set, mult (multiplication) is defined for, or has instances at, types /nt and Float only.
Suppose square is a function defined as Ax. mult x x . Wadler and Blott suggest that square
applied to ¢ should cause a type error under A since mult has no instance at type Char in A
(see pg. 64 of [WB89]). Yet in their type system, according to condition (1), the application
is well typed under A because a type scheme can be derived for it from A as follows.

by rules TAUT and COMB

A, mult:: Char — Char — Char, x:: Char & (mult x x):: Char
by rule ABS

A, mult:: Char — Char — Char + (Ax. mult x x) :: Char — Char
by rule TAUT

A, mult:: Char — Char — Char + c :: Char
by rule COMB

A, mult:: Char —» Char — Char + ((Ax. mult x x) c¢):: Char
by rule PRED

A+ ((Mx. mult x x) c¢):: (mult :: Char — Char — Char).Char

So under condition (1), the application is well typed with respect to A, for we are able to give
it a type scheme. That is, it does not cause a type error. In order for it to be the source of a

type error, a stronger condition is needed to judge whether terms are well typed. A suitable
condition is that e is well typed if and only if it can be givena 7 type.

Definition. (well-typed expression). An expression e is well typed with respect to A if and
only if A |- e: 1, for some 1.2

Under this condition, the preceding derivation is not enough to show that function
square applied to ¢ is well typed. The condition forces us to try to eliminate predicate
(mult :: Char — Char — Char) relative to A, which is impossible since mult does not have
an instance at type Char in A. So the application is regarded as untypable in the context A,
giving us the desired type error.

3. WB typability is undecidable

The power of recursion in assumption sets renders the typability problem in WB (determining
whether a term is well typed under a given valid assumption set) undecidable.

Theorem 3.1. Given a valid assumption set A and an expression e, it is undecidable whether
e is well typed under A.

Proof. We reduce PCP (Post’s Correspondence Problem [HU79]) to WB typability. The
reduction is presented through an example. Recall that an instance of PCP consists of two
listsx;,...,x,and y;,..., y of strings over some alphabet and has a solution if there is a
sequence of integers iy, iz,...,im, for m 21, such that x; x;, **- x;, = y,yi;, "~ Vi,
Suppose that the PCP instance we are given is

x1 =10 y; = 101
x, =011 yo =11
x3 =101 y3 =011

Assume that there are type constants 0, 1, €,and ¢ ,for 1 <i <3, and that — is right
associative. Let A be an assumption set containing all and only the assumptions
pcp i, Va.a
pepi(150-08)5 (1500158 >0
ppi(0ol1olo8)o(1>o1-58) o1,
pepi(150515e)50>o151—¢) o1,
pep i Yo VB . VY. (pep o= B —).
1505051250515 B)>0 >
pcp i Vo . VB. VY. (pepia— B o).
051515051051 5B)>0-Y)

pep i Vo VB . VY. (pepia— B —>Y).
1505150505151 >3-

By the ; components of the types of pcp, the assumptions do not overlap. Therefore, A is
valid. Then the function Ax.pcp x x is well typed with respect to A if and only if
Al pep:t—>1—v forsome Tt and y. But the assumptions for pcp allow it to have only
types of the form T — v/ — Y, where T is obtained by concatenating various x;’sand 17/ by
concatenating the corresponding y;’s (recall that — is right associative). Hence Ax. pcp x x

2 Though the definition is adequate for the purpose of this paper, it is unsatisfactory for typing let [Smi89].
Actually rule PRED should be reformulated, allowing the introduction of only those predicates that are satisfiable.

is well typed with respect to A if and only if the PCP instance has a solution. Q.E.D.
We can also show that the instance relation of system WB is undecidable.

Theorem 3.2 . Given a valid assumption set A and two types ¢ and & , it is undecidable
whether ¢ >4 o .

Proof . Let A be a valid assumption set encoding a PCP instance as in Theorem 3.1. Then

Va.Vy.(pcp:a— o—Y).int 2, int

if and only if the PCP instance has a solution. Q.E.D.

By Theorem 2.1, the instance relation is no longer needed to determine overlap, but the
validity condition still depends on it. All types appearing in the instance assumptions for an
identifier must be instances of the type given in the overload assumption. Thus we have the
following immediate corollary.

Corollary . It is undecidable whether an assumption set is valid.

Proof . Given a valid assumption set A and two types 6 and o, let x be an identificr that
does not appear in A. Then

A x:,0, xu;0
is valid if and only if 0 24, ¢’. Q.E.D.

4. Limiting recursion

In light of Theorem 3.1, we wish to identify a restriction on type assumption sets with which
WB typability becomes decidable. WB typability is decidable for nonrecursive assumption
sets, but banning recursion altogether seems unacceptable since recursive assumption sets,
like the set in Figure 1, arise naturally in practice. So we prefer to restrict it instead. First we
consider a restriction that prohibits mutual recursion.

Definition. (mutually-recursive assumption set). An assumption set is mutually recursive if
and only if it contains a sequence of distinct instance assumptions of the form

h0::i Va1 “'Va%.(hliito).po
hy Yoy« Vo, (A1) .py

hn—l o] Val ce V(x,,‘n_l . (ho b Tn—l) Pr-1

for n > 1 (the h;’s need not be distinct identifiers).

At first glance, it appears that limiting assumption sets to sets that are not mutually
recursive is overly restrictive. The assumptions in Figure 1, for example, would be illegal.
But, surprisingly, enough expressive power has been retained to permit an alternative formu-
lation of them without mutual recursion. In fact, so much has been retained that assumption
sets are still too expressive.

Theorem 4.1 . Given a valid assumption set A that is not mutually recursive and an expres-
sion e, it is undecidable whether e is well typed under A.

Proof . Again we reduce PCP to WB typability. As in the proof of Theorem 3.1, the reduc-
tion is presented through an example. Suppose that the PCP instance we are given is the same
one given in the proof of Theorem 3.1. Assume that there are type constants 0, 1, €, and
t;,for 1 <i <3,andthat — isright associative. Initially, let A be an assumption set con-
taining only the assumptions xy; ::, Voo, for 1 < j < 3. Then add to A the assumptions

15015058 >5(1->50-1-o8->1
250010158501 ->1-¢ -1,
3515051585 0-o151-5¢€)>1;

Foreach j, 1<j<3,addtoA,

i Vo VB.a—-B -

forall k suchthat 1 <k <3 and j # k. Next, add to A the assumptions

append ::, Vo..o

append ::;; Va.€ 5 a4 — O

append :;; VYo VB . VY. V8. (append::a— B > 7).
G->0)->B->0->7)

The effect of append: o —y— n istobind to n, ¥ appended to the right of o .

The idea is to construct an assumption which effectively selects one of the x;’s and
corresponding y;’s for concatenation. To this end, add to A,

pep i, Va. o
pcp VY. Vp . V.
xy1uy—>p—o1).
@0 Yy>p-o0).
s y-op-o1).
Yop—h
pcp i Vo VB. VY. Vp. Vr, . Vn,. V1. Vo.
(pepia—p—oo0).
(append :: 0. > Yo m;).
(append:: > p > m,).
(1Y ->p—o1).
Y>> p—o7).
yszy—>p—1).
T DN, D1,

A is valid, but not mutually recursive, and Ax. pcp x x is well typed with respect to A if and
only if the PCP instance has a solution. Q.E.D.

4.1. Parametric recursion

Fortunately, there is a form of recursion under which WB typability is decidable and that
allows the kind of mutual recursion exhibited in Figure 1. We call it parametric recursion.
Before defining it, we need the definition of parametric overloading.

Definition. (parametric overloading). An identifier 4 is parametrically overloaded in an
assumption set A if and only if it has an overload assumption in A of the form 4 ::, Va. 1, for
some 7T, and for every instance assumption 4 ::; VB, -+ VB,.p.7" inA, where n 20,

@ p=¢ta:tlo=0D,...,¢H:t[a:=P,]),and

® v=1[a:=xPBi,-..,B.], for some type constructor Y .

A desirable property of parametric overloading is its type-constructor property. For
each identifier h overloaded this way in an assumption set A with A ::, Va.1 as its overload
assumption, there is a finite set of type constructors that describes precisely the types 1/ for
which A | h::1[a := v']. For example, eq of Figure 1 is parametrically overloaded as is
mult in assumption set A defined in Section 2.3.

Definition. (parametric recursion). An assumption set is parametrically recursive if and only
if its only source of recursion is that which comes from overloading identifiers parametrically.

The assumptions in Figure 1, for example, form a parametrically-recursive assumption
set. Further, note that any nonrecursive assumption set is trivially parametrically recursive,
for the definition merely states that if there is recursion then it must be the kind that comes
from overloading identifiers parametrically.

WB typability is also decidable under a more flexible form of parametric overloading
where equality in (a) is replaced by containment:

@ (atla=BD,....,¢G:tla:=8,0 cp.

This form corresponds more closely to the parametric overloading notion of Kaes [Kae88]. It
is needed to express certain assumptions, however it does not preserve the type-constructor
property. An assumption for matrix multiplication, for example, has predicates involving the
product and sum of matrix elements where the elements themselves may be matrices:

mult:;;Vo.(@add:a—-a—a).(mult:o—>o0—-o0).
Matrix (o) — Matrix (o) — Matrix (o)

The type-constructor set property can be exploited so that if every identifier with an
overload assumption is parametrically overloaded, then WB typability is, from a complexity
standpoint, as hard as but no harder than conventional ML typability, which is complete for
DEXPTIME [Mai%0]. However, for parametrically-recursive assumption sets, where some
identifiers may not be parametrically overloaded, the problem appears harder than conven-
tional ML typability. Though decidable, it is NEXPTIME hard with respect to polynomial-
time reduction which implies that it requires exponential time, nondeterministically.

Theorem 4.2 . Given a valid, parametrically-recursive assumption set A and an expression
e, deciding whether e is well typed with respect to A is NEXPTIME hard.

Proof . To show that every problem in NEXPTIME is reducible to WB typability, for each
nondeterministic Turing machine (NTM) M that is time bounded by 2°™ | for some polyno-
mial p of the input length n, we give a polynomial-time algorithm that takes as input a string x
and produces a set of type assumptions A, and an expression e such that e is well typed
under A, if and only if M accepts x.

LetMbea 2°™ time-bounded, one-tape NTM. For each input x = a,a, * - a, , the
set A, is constructed as follows.

Based on an encoding of instantaneous descriptions (ID’s), assumptions are generated
for an identifier, move, that describe M’s next-move function &. Suppose the states of M
o> 91> --.),its tape symbols (X, X5, ...), and the special symbol € are type constants.
ThenanID X X, - X;_19X; - X, isencoded as

Xic1> XX o8)og-HoXi—> - oX,>e).

Initially, let A, contain only move ::, Va.. oo, There are two possibilities, left (L) and right

(R), for the direction of the tape head in a single move. If &(¢g, X) contains (¢’, Y, L), for
some states g and ¢’ and tape symbols X and Y, then generate

move :;; Vo..VB.VY. (Yo) 5 g > X -B) > @—>q¢ 5o Y > B).

In addition, if X is B, the blank symbol, then include

move :; Vo VB. VY. (Yo)2 ¢—oe) o (@—>¢q¢ > (Y>Y >e).

Similarly, if 8(q, X) contains (q’, Y, R) , then generate

move :; Va.VB.(a—>g->X -5 B) > > 0)—> g9 > P)

and if X = B, also include

move :; Va.VB. (@ >qg &) > (Y s a) > ¢’ —¢).

Next, assumptions are produced that together describe valid computations of M. For
each j such that 1< j < p(n), generate c;::, Vo..o.. Then generate p(n) + 1 assump-
tions, one for each of the identifers ¢y, ¢2,...,Cp(my+1:

cr; Va. VB. Vy. (move :: o0 — B). (move :: B > 7v). o>y
i VA VB . VY. (o na o B) . (ce-1 2P —=7Y).a—>y Vk.1<k<p(n)
Comy+1: VA VB . (Comy i = P). (final:: B).

For 1 <k <p(n),if T and 7" encode ID’s then c; has type T — 7’ if and only if there is
some sequence of exactly 2¥ moves of M from T to 7. Since M may accept before mak-
ing 22™ moves, it is also necessary to generate

move :;; Va. VB . (@ — g - B) > (@ - ¢, > B)

for each final state g, of M. The effect is to allow all accepting ID’s to repeat so that every
valid computation of M can be regarded as consisting of exactly 2°™ moves. So we see that
if cp(my+1 hastype T,and T encodes an ID, then there is an accepting ID that is reachable
from 7 in exactly 2°™ moves. That the ID is accepting is ensured by the predicate involv-
ing final and its assumptions, which include the overload assumption final::, Va. o, and an
instance assumption of the form

final:;;Va. VB .o —qr— B

for each final state gy of M.
Finally, with g, as M’s start state, add to A, the assumptions

IDgy:i:e >qo—>a; >a,— * a, >E

eq::Vo.o — a— Bool

where ID, corresponds to the initial ID of M on input x. Then eq(c,(ny+1, Do) is well
typed under A, if and only if M accepts x. Moreover, A, is valid, nonrecursive, and can be
generated in time proportional to p (n). Q.E.D.

Notice that the proof of Theorem 4.2 makes no use of recursion, so this complexity
result applies to WB typability under valid, nonrecursive assumption sets as well.

10

5. Conclusion

Programs that use overloaded identifiers may apply to many types of inputs for they inherit
the multiple types of these identifiers, a kind of polymorphism we call bounded polymor-
phism. Predicated types are useful for expressing the principal types of such programs. How-
ever when coupled with overloading in assumption sets they lead to a very powerful form of
expression that must be limited if typability is to be decidable (we have been tempted to
create a small library of useful functions encoded as type assumptions in system WB such as
append in the proof of Theorem 4.1). One approach is to limit recursion in assumption sets to
parametric recursion.

We have independently developed our own extension of the Hindley-Milner system
that incorporates overloading. The extension preserves two important properties of the origi-
nal system, namely decidable typability and principal types. It has a new type called a con-
strained type which corresponds to a predicated type in system WB but the inference rules for
introducing and eliminating them are different as is the instance relation on types. The only
restriction on assumption sets in our system is that they be parametrically recursive. This res-
triction appears reasonable and unobtrusive in practice based on our experience with an
implementation of a type inference algorithm for the system. Other restrictions are considered
in [Smi89].

References

[DM82] Damas, L. and Milner, R., Principal type-schemes for functional programs. Proc.
9th Annual ACM Symp. on Principles of Prog. Lang., pp. 207-212, January 1982.

[HMT88] Harper, R., Milner, R. and Tofte, M., The definition of Standard ML. Version 2,
ECS-LFCS-88-62, University of Edinburgh, August 1988.

[Hin69] Hindley, R., The principal type scheme of an object in combinatory logic. Trans.
Amer. Math. Soc., 146, pp. 29-60, December 1969.

[HU79] Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[HW90] Hudak, P. and Wadler, P., Report on the Programming Language Haskell. Version
1.0, Yale University, April 1990.

[Kae88] Kaes, S., Parametric overloading in polymorphic programming languages. In Lec-
ture Notes in Comp. Sci., Proc. of the 2nd European Symp. on Programming, 300,
pp. 131-144, 1988.

[Mai90] Mairson, H., Deciding ML typability is complete for deterministic exponential time.
Proc. 17th Annual ACM Symp. on Principles of Prog. Lang., pp. 382-401, January
1990.

[Mil78] Milner, R., A theory of type polymorphism in programming. J. Comp. System Sci.,
17, pp. 348-375, 1978.

[MH88] Mitchell, J. and Harper, R., The essence of ML. Proc. 15th Annual ACM Symp. on
Principles of Prog. Lang., pp. 28-46, January 1988.

[Smi89] Smith, G.S., Overloading and bounded polymorphism. TR 89-1054, Department of
Computer Science, Cornell University, November 1989.

[Tur86] Turner, D.A., An overview of Miranda. SIGPLAN Notices, December 1986.

[WB89] Wadler, P. and Blott, S., How to make ad-hoc polymorphism less ad-hoc. Proc.
16th Annual ACM Symp. on Principles of Prog. Lang., pp. 60-76, January 1989.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif

