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This dissertation consists of three essays studying the effects of environmental regulations

and policies in the transportation sector in China.

The first chapter studies the effectiveness, efficiency, and distributional effect of using

trade restrictions on used vehicles to protect the local environment. Leveraging compre-

hensive data on the bilateral trade of vehicles across Chinese prefecture cities and the

staggered rollout of import restrictions on used vehicles implemented by city govern-

ments from 2013 to 2015, this chapter shows empirical evidence that import restrictions

reduce net imports of used vehicles, and cities’ import restrictions are strategic comple-

ments. With a multi-sector multi-region structural trade model, this study shows that uni-

laterally restricting imports of used vehicles leads to welfare trade-offs between economic

losses vs. environmental benefits. Restricting heavy-polluting vehicles makes some cities

better off, especially lower-income cities. However, decentralized restrictions are socially

inefficient due to strategic interactions, and the effectiveness and efficiency of using im-

port restrictions as an environmental instrument are limited compared to emission taxes.

The second chapter, joint with Jie Bai, Danxia Xie, and Shanjun Li, explores the im-

port restrictions on used vehicles in China from the perspective of local protectionism.

Leveraging the universe of new and used vehicle registration/sales data and the stag-

gered removal of the restriction across cities from 2016 to 2018, this analysis shows that

the removal of restriction led to a sharp increase in the cross-city flow of used vehicles but

had no significant impacts on local air quality in the short run. Interestingly, new vehi-

cle market points to a prisoner’s dilemma among city governments: a unilateral removal

of the policy would reduce new vehicle sales in a city but increase new vehicle sales in



other cities. The effect is stronger in cities with a large automobile industry. The find-

ings highlight alternative motives behind local environmental regulations and the need

for coordinated efforts at the national level.

The third chapter, joint with Shanjun Li, Xianglei Zhu, Yiding Ma, and Fan Zhang,

examines the effectiveness of various policy measures that underlie the rapid develop-

ment of the EV market in China, based on detailed data on EV sales, local and central

government incentive programs, and charging stations in 150 cities from 2015 to 2018.

This research finds that consumer subsidies for vehicle purchases accounted for more

than half of EV sales in China. Nevertheless, investments in charging infrastructure were

much more cost-effective than consumer subsidies. An inexpensive policy that merely

provided EVs with a distinctive, green license plate was strikingly effective. These find-

ings demonstrate the varying efficacy of different policy instruments and highlight the

critical role of the government in promoting clean technologies.
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CHAPTER 1

RESTRICTING TRADE FOR THE ENVIRONMENT? EVIDENCE FROM IMPORT

RESTRICTIONS ON USED VEHICLES IN CHINA

1.1 Introduction

Fast-growing transboundary movements of dirty goods, such as used vehicles, hazardous

waste and scrap1 have created increasing environmental concerns (Davis and Kahn, 2010).

To address these concerns, many countries or local jurisdictions have adopted policies

to restrict imports of dirty goods (UNEP, 2020).2 Restricting the trade of dirty goods

for environmental purposes raises important questions about the effectiveness, efficiency,

and distributional effect of such policies. Can restricting imports of dirty goods protect

the local environment? Does it improve social welfare? Are decentralized policies socially

efficient? Who gains and who loses?

Those questions have not yet been fully answered. Theoretically, trade policy can

be used as a second-best environmental policy (Copeland and Taylor, 2004). However,

studies on the trade of dirty goods, especially empirical evidence of the environmental

effect and evaluations of the welfare effect, are limited. Regarding the efficiency question,

the efficiency of decentralized policies could be impaired if local regulations generate

spillovers to other jurisdictions (Shobe, 2020). This could be the case in the trade of dirty

goods, as restricting imports by one government could change general equilibrium prices

and flows of dirty goods through the trade network (Brooks et al., 2018), thus generat-

1From 2015 to 2018, the EU, Japan, and the USA exported a total of nearly 14 million used light-duty
vehicles worldwide, mostly to developing countries (UNEP, 2020). From 2008 to 2012, international trade
in waste and scrap exceeds 1 billion tons, and the growth rate between 1992 and 2012 is more than 500
percent (Kellenberg, 2015).

2For example, some U.S. states imposed higher taxes on hazardous waste imported from other states
(Levinson, 1999a,b). The United Nations Environment Program (UNEP) surveys 146 countries and reports
that 87 have adopted some regulation(s) to restrict used vehicle imports such as age limits, emission-based
restrictions, taxes/subsidies, border inspections, etc. (UNEP, 2020).
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ing economic and environmental spillovers into other locations and leading to strategic

responses. However, these spillovers and strategic interactions in trade restrictions and

their welfare consequences have not been well documented.

This paper examines the effectiveness, efficiency, and distributional effect of using

trade restrictions for environmental purposes in the context of intercity import restrictions

on used vehicles in China. To control vehicle pollution, many cities in China adopted

trade barriers on used vehicles — cities restricted imports of used vehicles from other

cities based on certain tailpipe emission standards they chose while allowing for free trade

of used vehicles regardless of emission standards within the local market. This paper

asks the following questions: Is restricting imports of used vehicles effective and what

is the welfare effect? Are there interjurisdictional spillovers and strategic interactions in

adopting the restrictions? How (in)efficient is the decentralized equilibrium? Which cities

gain from the restriction and which lose?

This paper starts with a 2-country-2-good stylized model that extends the optimal

tariff and retaliation model (Johnson, 1953; Mayer, 1981) to consider the trade of dirty

goods. The model gives four predictions. A unilateral increase in the import barrier of one

country may (1) reduce net imports of dirty goods and increase environmental benefits

under certain conditions, (2) increase welfare when environmental benefits outweigh the

losses from reduced trade, (3) generates spillovers on the other country, which leads to

a strategic response in a “race-to-the-top” manner. (4) The decentralized equilibrium is

inefficient.

To empirically test the first and third predictions, I compile comprehensive data on

bilateral trade flows of used vehicles across cities in China from 2013 to 2015, and the

timing and stringency of import restrictions on used vehicles adopted by city.

First, I use an event study framework to estimate the effect of adopting import restric-

2



tions on net imports of used vehicles. To address the “negative-weighting issue” in the

standard two-way fixed effects estimator (Borusyak and Jaravel, 2017; Goodman-Bacon,

2021; Sun and Abraham, 2021; De Chaisemartin and d’Haultfoeuille, 2020; Callaway and

Sant’Anna, 2021), I apply the doubly-robust DID estimator proposed by Callaway and

Sant’Anna (2021). The result shows that the adoption of import restrictions reduces net

imports of restricted used vehicles, consistent with the theoretical prediction.

Second, I test whether there are strategic interactions in the adoption of import re-

strictions across cities. Following Fredriksson and Millimet (2002b), I regress one city’s

restriction indicator on a lagged weighted average of other cities’ restrictions,3 control-

ling for city fixed effects, time fixed effects, and economic variables. The coefficients for

the lagged index are positive and significant, implying that cities’ import restrictions are

strategic complements.

These empirical results provide supporting evidence on how import restrictions may

generate environmental benefits through reduced net imports, and strategic interactions

between cities. However, they are limited in making further statements about the wel-

fare effect and the efficiency of decentralized policies. Therefore, I develop a multi-sector

multi-region general equilibrium trade model à la Armington (1969) featuring the bilat-

eral trade of vehicles across cities in China.

Then I estimate the key parameters of the model — aggregate demand elasticity,4

aggregate supply elasticity, and elasticity of substitution between sectors, applying a

“model-implied” instrumental variables approach (Allen et al., 2020) with a two-step

procedure (Allen et al., 2020; Eaton and Kortum, 2002). The estimated parameters are

3The weights are the share of used vehicle trade between the adopting city and every other city, over
the total trade of used vehicles of the adopting city in the first quarter of 2013. Higher weights are given to
more important partners in the trade of used vehicles.

4The aggregate demand elasticity governs the relationship between bilateral trade flows and prices (in-
cluding trade costs), which is often referred to as “trade elasticity” in literature. In the Armington model,
this demand elasticity equals the elasticity of substitution between goods from different locations minus
one.

3



consistent with estimates in the trade literature.

I consider four policy counterfactuals: (1) unilaterally optimal restrictions in which

each city chooses an emission-based import restriction5 to maximize its own welfare

(gains from trade net of environmental costs); (2) non-cooperative Nash equilibrium in

which all cities simultaneously choose their unilaterally optimal restriction, taking other

cities’ restrictions as given; (3) nationally optimal import restrictions in which a social

planner decides which cities should restrict imports of used vehicles at what stringency

to maximize the total social welfare; and (4) emission taxes on both imported and locally

traded used vehicles based on lifetime emission damages. I use “exact hat algebra” (Dekle

et al., 2008) to solve for changes in equilibrium outcomes under different counterfactuals

and quantify welfare effects.

I find that unilaterally restricting imports of used vehicles could increase environ-

mental benefits through two channels: reduced net imports and increased scrappage due

to lower vehicle (real) prices; the scrap channel plays a bigger role. Restricting high-

polluting vehicles makes cities better off, especially lower-income cities. However, these

unilateral restrictions generate significant spillovers onto other cities and incentivize

other cities to adopt or tighten restrictions in response. Due to spillovers and strategic

interactions, the decentralized equilibrium is socially inefficient, achieving about 80 per-

cent of welfare gains under the socially optimal restriction. Furthermore, the effectiveness

and efficiency of using import restrictions as an environmental instrument are limited —

the socially optimal restrictions can only achieve 14 percent of emission reductions and

12 percent of welfare gains attainable under emission taxes.

This paper contributes to existing research in several ways. Despite extensive studies

quantifying gains from trade (Caliendo and Parro, 2015; Arkolakis et al., 2012; Grubel,

5An emission-based import restriction restricts the imports of used vehicles based on an emission stan-
dard. Vehicles that do not meet the standard are not allowed to be imported.
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1980; Clerides, 2008), less is known about the welfare trade-offs between gains from trade

and induced environmental costs. Shapiro (2016) is among the first to use a quantitative

trade model to compare environmental costs from CO2 emissions against benefits from

international trade. Thakur (2022) evaluates the welfare effect of international trade in

waste. This paper adds to this nascent literature by quantifying the welfare effect of (re-

stricting) trade in used vehicles, which has important policy implications in regulating

transboundary movements of environmental-damaging goods.

Second, this paper contributes to the literature on environmental federalism. Stud-

ies show that local jurisdictions could interact strategically in environmental regulations

(Oates, 2001; Potoski, 2001; Fredriksson and Millimet, 2002a,b; Millimet, 2003; Brueckner,

2003), but little is known about the welfare consequence of such interactions. This pa-

per adds empirical evidence of strategic interactions in decentralized import restrictions

on used vehicles, and further evaluates the welfare effect from spillovers and strategic

interactions, calling attention to the efficiency loss of using decentralized policies when

interjurisdictional spillovers are present.

Last but not least, this paper contributes to the literature on environmental regula-

tions of vehicle emissions. The existing literature has examined various vehicle regula-

tions, such as vehicle exhaust standards (Jacobsen et al., 2021), fuel economy standards

(Anderson and Sallee, 2011; Klier and Linn, 2012; Ito and Sallee, 2018; Bento et al., 2020;

Reynaert, 2021), the “Cash-for-Clunkers” program (Li et al., 2013, 2022b), driving restric-

tions (Davis, 2008; Barahona et al., 2020), and gasoline taxes (Li et al., 2014; Jacobsen and

Van Benthem, 2015). These studies provide important insights on how to regulate local

vehicle emissions, while this paper adds a spatial and a trade policy dimension to the

analysis. In addition, by comparing the trade channel and the scrap channel in which im-

port restrictions affect the environment, this paper highlights the importance of speeding

up the scrappage of dirty vehicles compared to limiting the inflow of dirty vehicles.
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The rest of this paper is organized as follows. Section 1.2 presents a stylized model

and makes several predictions. Section 1.3 introduces the institutional background and

describes data sources. Section 1.4 empirically tests the effect of import restrictions on

used vehicles in China on trade flows of used vehicles, and tests strategic interactions

between cities. Section 1.5 develops a structural trade model. Section 1.6 estimates the

key parameters of the trade model. Section 1.7 simulates welfare changes under different

counterfactuals. Section 1.8 concludes.

1.2 A Stylized Model

This section extends the optimal tariff and retaliation model developed by Johnson (1953)

and Mayer (1981) to a context of trade in dirty goods. I use this model to show how im-

port restrictions on dirty goods can change trade flows and affect welfare, and generates

spillovers that lead to strategic interactions, and whether decentralized restrictions are

efficient.

Consider a two-country, two-good world. Label the two countries “home” and “for-

eign”, and the two goods 1 and 2. Suppose that the home country has a comparative

advantage in producing good 1, and the foreign country has a comparative advantage in

producing good 2. The home country imports good 2, denoted by M2 > 0, and the foreign

country imports good 1, denoted by M∗1 > 0. Let τ ≥ 1 and τ∗ ≥ 1 denote the iceberg trade

costs of the home country and the foreign country to import, respectively. These iceberg

trade costs include transportation costs and non-tariff barriers. Both goods are clean to

produce, but dirty to consume. Marginal damage depends on where they are consumed.

Assume that one unit of consumption leads to environmental damage of δ > 0 in the

home country, and δ∗ > 0 in the foreign country.
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Let (p1, p2) and (p∗1, p∗2) be the prices of the two goods in the home country and the

foreign country, respectively. Use good 1 as a numeraire. Then

p1 = 1, p2 = p∗2τ and p∗1 = τ
∗

Let π = p∗2/p1 be the price of good 2 relative to good 1, without iceberg trade costs. π

measures the terms of trade for the foreign country. A decrease in π means an improve-

ment in terms of trade for the home country but a worsening for the foreign country.

Write the indirect utility function of the home country from consumption as

V = V(p2,Y) (1.1)

where V is the maximum utility that could be achieved by the home country given the

price p2 and its income Y . V represents welfare from consumption, which is also denoted

as “gains from trade”.

p2 = πτ (1.2)

Y = Q1 (1.3)

where Q1 is the total quantity of good 1 produced in the home country, determined by its

endowment.
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Define the import demand functions for the two countries as follows:

M2 = M2(π, τ) (1.4)

M∗1 = M∗1(π, τ∗) (1.5)

where M2 is the quantity of good 2 imported into the home country from the foreign

country, and M∗1 is the quantity of good 1 imported into the foreign country from the

home country. ∂M2/∂π < 0, ∂M∗1/∂π > 0, and ∂M2/∂τ < 0, ∂M∗1/∂τ
∗ < 0.

Assume that trade is balanced:

τ∗M∗1 = πτM2 (1.6)

Environmental damage in the home country is determined by the number of goods

consumed and the marginal damage from consumption:

D = δ(Q1 + M2 − M∗1) (1.7)

where δ is the marginal damage from one unit of consumption in the home country. M2 −

M∗1 is the net imports into the home country.

Can restricting imports increase environmental benefits? I answer this question by an-

alyzing how a unilateral increase in the import barrier in the home country affects trade

flows. Intuitively, an increase in the import barrier will increase the total costs of im-

porting goods and reduce imports. At the same time, the increase in import barriers will

improve the terms of trade for the home country, making exports more expensive than

before and thus reducing exports. The effect on net imports is ambiguous, depending on
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the relative magnitude of decreases in imports and exports. When the increase in import

barriers reduces net imports of dirty goods, it can increase environmental benefits.

Proposition 1: One country unilaterally increasing its import barrier reduces its imports and

exports. The effect on net imports is ambiguous. Net imports decrease when the ex-ante imports-

exports ratio is greater than ϵ−1
ϵ

, where ϵ is the (negative) price elasticity of imports for the home

country.

Proof: See Appendix A.1.1.

Can restricting imports increase welfare? Denote the welfare of the home country as

the sum of indirect utility from consumption minus environmental costs, which is a func-

tion of the trade frictions of the two countries (τ and τ∗).

W = V − D = W(τ, τ∗)

The marginal effect of increasing import barrier on the welfare of the home country

depends on the marginal effects on gains from trade and on environmental costs:

∂W
∂τ
=
∂V
∂τ
−
∂D
∂τ
=
∂V
∂τ
− δ

∂(M2 − M∗1)
∂τ

(1.8)

I have shown that a unilateral increase in the import barrier can reduce net imports

under certain conditions. However, gains from trade will always decrease due to higher

import prices and reduced imports. The sign of the welfare effect hinges on the sign of

the environmental effect and on δ: When environmental benefits from reduced imports

outweigh the dead weight losses, welfare increases.
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Proposition 2: A unilateral increase in import barriers has two effects on its own welfare. It re-

duces gains from trade but may increase environmental benefits under certain conditions. Welfare

may increase when the environmental benefits outweigh the losses.

Proof: See Appendix A.1.2.

Are there spillovers? To examine the spillover effect, assume that the foreign country

unilaterally increases its import barrier. The marginal effect on the welfare of the home

country is as follows:
∂W
∂τ∗
=
∂V
∂τ∗
−
∂D
∂τ∗
=
∂V
∂τ∗
− δ

∂(M2 − M∗1)
∂τ∗

(1.9)

When the foreign country unilaterally increases its import barrier, it worsens the terms

of trade for the home country and reduces its gains from trade. That is a negative spillover

effect on gains from trade, ∂V
∂τ∗

< 0. On the other hand, the sign of ∂D
∂τ∗

is ambiguous. When

increasing τ∗ reduces the foreign country’s net imports (∂(M∗1−M2)
∂τ∗

< 0), it is equivalent to

increasing the net imports of the home country, i.e., ∂(M2−M∗1)
∂τ∗

> 0, which implies a negative

spillover on the environment of the home country. In this case, a unilateral increase in the

import barrier could generate negative spillovers on the welfare of the other country. If
∂(M2−M∗1)

∂τ∗
< 0 and δ is large, then the total spillover effect could be positive.

Proposition 3: A unilateral increase in the import barrier generates negative spillovers on the

welfare of the other country under certain conditions.

Proof: See Appendix A.1.3.

Do countries interact strategically? Next, I examine how one country’s optimal import

barrier depends on the other country’s import barrier. Figure 1.1 plots the welfare con-

tours of the home country in the (τ, τ∗) space. Each contour describes the combination
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of τ and τ∗ for which the home country obtains the same level of welfare. The vertically

lower curve corresponds to higher welfare. An expression for the slope of the contours

is derived in Appendix A.1.4. For values of τ ≥ 1, their slopes are positive, zero, and

negative. When the slope of the contour is zero, it indicates the best response of the home

country τ to the foreign country’s trade cost τ∗. Therefore, the locus of these points traces

the best response function of the home country.

Proposition 4: Under certain conditions, the best response function of the optimal import bar-

rier is upward sloping, implying that one country may increase its import barrier in response to

the other country’s increase in the import barrier.

Proof: See Appendix A.1.4.

Is the decentralized equilibrium efficient? The intersection of the best response func-

tions for the two countries determines the non-cooperative Nash equilibrium of the game

in which the home country and the foreign country set their import barriers strategi-

cally. Under the Nash equilibrium, both countries choose their optimal import barrier

conditional on the other country’s import barrier to maximize their own welfare without

considering the spillovers on the other country. In contrast, in the problem of centralized

policy-making, the social planner chooses import barriers for both countries to maximize

the sum welfare of the two countries, internalizing the spillovers. Due to spillover effects,

the first-order conditions for these two maximization problems are not identical; thus, the

Nash equilibrium cannot achieve Pareto efficiency.

Proposition 5: The non-cooperative Nash equilibrium of the static game in which the home

country and the foreign country set their import barriers strategically is inefficient.

Proof: See Appendix A.1.5.
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These propositions make testable predictions on how restricting imports of dirty

goods can change trade flows, and how governments may strategically interact with each

other in adopting such restrictions. They also predict welfare gains for the country that

adopts the restriction, the spillover effect on the other country, and the inefficiency of de-

centralized policies. The following sections use data on intercity import restrictions on

used vehicles in China to empirically test predictions on trade flows and strategic inter-

actions and to quantify welfare effects using simulations of a structural trade model.

1.3 Background and Data

1.3.1 Institutional Background

Many countries around the world restrict imports of used vehicles in different ways, such

as completely banning, partially banning based on age or emission standard, using fiscal

instruments like differential customs or registration tariffs, among others (UNEP, 2020).

At the national level, China has imposed a complete ban on imports of used vehicles

from other countries. In addition to that, there have been selective import restrictions

at the subnational level, adopted by cities6 based on tailpipe emission standards. China

introduced the first set of tailpipe emission standards, China 1, in 2001, and has tightened

the standards from China 1 to China 6 over time (see Figure 1.2).7 The emission standards

6There are five levels of administrative divisions in China: provincial (province, autonomous
region, municipality, and special administrative region), prefectural, county, township and village.
Prefectural-level divisions include 293 prefecture-level cities, 7 prefectures, 30 autonomous prefectures,
and 3 leagues. See https://en.wikipedia.org/wiki/Administrative_divisions_of_China#
Prefectural_level_(2nd). In this paper, I use “cities” to refer to prefectural-level divisions and four
municipalities.

7Tailpipe emission standards set the maximum amount of pollutants allowed in exhaust gases released
from an internal combustion engine. Regulated pollutants include carbon monoxide (CO), hydrocarbons
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were established by the Ministry of Ecology and Environment of China and applied to

the manufacturing of new vehicles.8 In 2008, Beijing began to use the emission standard

to restrict imports of used vehicles from other cities. Consumers in Beijing were prohib-

ited from buying used vehicles from other cities that were below an emission standard

but were free to purchase used vehicles regardless of emission standards within the local

market.9 This policy, in essence, an emission-based import restriction, was quickly fol-

lowed by many other cities. At the end of 2015, almost 95 percent of cities had adopted

this policy, most of which used China 4 as the minimum standard for imports.10 Figure

1.3 shows the roll-out of import restrictions in cities over time.

Import restrictions on used vehicles provoked a public backlash and were considered

“an abuse of administrative power to exclude or restrict competition” by the China Na-

tional Development and Reform Commission. On 25 March 2016, the General Office of

the State Council of China published a directive urging local governments, except for

a few key areas, to remove the restriction before 31 May 2016.11 However, cities were

reluctant to comply. Some cities used a loophole in the definition of “clunkers” to try

to bypass the directive.12 The central government continued to push for the removal of

the restriction, but the progress was slow. By June 2018, 40 percent of cities had not yet

complied.

(HC), nitrogen oxides (NOx), and particular matter (PM). The limits set in China 1 to China 5 are similar to
those of the European tailpipe emission standards Euro 1 to Euro 5.

8Vehicle (engine) makers are responsible for complying with tailpipe emission standards. Normally, be-
fore a vehicle (engine) is put on the market, it must pass an emission certification according to the emission
standard in effect.

9This policy was enforced through vehicle registrations. Used vehicles purchased from other cities be-
low the required standard were not able to be registered with the local Department of Motor Vehicles.

10Source: http://www.caam.org.cn/chn/8/cate_83/con_5192590.html
11The directive exempted cities in the designated key areas of air pollution prevention and control of compli-

ance. Key areas of air pollution prevention and control include Beijing, Tianjin, Shanghai, Hebei province,
Jiangsu province, Zhejiang province, Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Zhaoqing,
Huizhou, Dongguan, and Zhongshan. Source: http://www.gov.cn/zhengce/content/2016-03/
25/content_5058006.htm

12In 2014, the Ministry of Environmental Protection of China issued a document to encourage the scrap-
page of “yellow labeled” vehicles and “clunkers”. In this document, “yellow-labeled” vehicles are defined
as those that do not meet the emission standard China 1, and “clunkers” as those that do not meet China 4.
Source: https://www.mee.gov.cn/gkml/hbb/bwj/201409/W020140918616769509794.pdf
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1.3.2 Intercity Trade of Used Vehicles

I compile a new data set on the intercity trade value of used vehicles in China during

the period January 2013 to June 2018 from three components: (1) the volume trade flow

of used vehicles, (2) the transaction price of each used vehicle (excluding transportation

costs), and (3) the transportation costs to transport one vehicle unit from one city to an-

other. This section explains each of these components in more detail.

Trade volume I compile the intercity trade flows of used vehicles in China from the uni-

verse of used vehicle registration data over the period of January 2013 to June 2018. The

raw registration data record 40.05 million used vehicle transactions, with information on

the number of vehicles in each transaction, transaction year and month, the origin reg-

istration city, the destination registration city, the emission standard each vehicle meets,

and a rich set of vehicle attributes (manufacturer, model, engine size, footprint, age, etc.).

The raw data are aggregated by origin×destination×emission intensity category×year-

month. The origin and destination are cities in China. Used vehicles are classified into six

emission intensity categories based on the emission standards they meet, that is, China 1

to China 5 for gasoline vehicles, plus electric vehicles.

Figure 1.4 illustrates the spatial pattern of intercity trade of used vehicles in China

during 2013-2018. Each point represents a city included in our sample. The 45-degree

line represents balanced imports and exports. The size of each point denotes the average

GDP per capita for 2013-2018. Points above the 45-degree line are net importers of used

vehicles, which are mostly from low-income cities. Points below the 45-degree line are net

exporters which are mostly high-income cities. This pattern is consistent with the stylized

fact of international trade that used vehicles mostly flow from high-income countries to

low-income countries (Davis and Kahn, 2010; Clerides, 2008).
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Transaction prices The used vehicle registration data contain only trade volumes, but

not trade values. To impute transaction prices of used vehicles, I scrapped auction prices

from one of the largest online auction platforms for used vehicles in China, Tiantian

Paiche (https://www.ttpai.cn/). Data from 100,875 used vehicle auctions from

November 2018 to February 2021 were scrapped, including auction price, vehicle brand,

model, age, odometer, city of registration, vehicle type, and the number of previous own-

ership transfers. The Appendix Table A.1 summarizes the key statistics of the registra-

tion data and the auction data. The auction data cover a later period (November 2018

to February 2021) than the registration data (January 2013 to June 2018). Auction data

include a similar number of vehicle brands and more models compared to registration

data. However, the auctions were only listed in 54 cities out of a total of 350 cities. The

age distributions of the used vehicles in the two data sets are very similar, as shown in

Appendix Figure A.1.

I use the auction price data to estimate a price hedonic model based on vehicle age

and model fixed effects:

pkm = β0 + θa + αm + ϵkm

where pkm is the auction price of vehicle k for vehicle brand-model m. θa is age fixed effects.

αm is brand-model fixed effects. ϵkm is the idiosyncratic error term.

The estimates for the hedonic model are reported in Appendix Table A.2. The results

show that the prices of used vehicles depreciate with age as expected. The coefficients

remain robust when adding year-month fixed effects in column (2) and city fixed effects

in column (3). The hedonic model could explain 94 percent of price variations. The pre-

dicted prices follow very closely the observed prices, as shown in the Appendix Figure

A.2. Based on the high predictability of the hedonic model, I impute the prices of all

vehicles in the registration data using the results of column (1).
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Transportation costs I calculate the transportation costs of shipping one used vehicle

unit from one city to another by multiplying the unit-distance cost parameter by the dis-

tance between the two cities. The unit-distance cost is made up of highway tolls and

average fuel costs. I choose the value of ¥0.5 per km as the average toll rate on the high-

way, and ¥0.6 per km as the average fuel costs per unit distance.13 The distance between

two cities in China is calculated using Vincenty’s formula based on the longitudes and

latitudes of the city centers.14

With transaction prices and transportation costs, I construct the traded value of each

used vehicle included in the registration data and collapse to the city-pair level to obtain

the bilateral trade data in values.

1.3.3 Environmental Costs of Vehicle Emissions

This section describes the sources of various data sets needed to quantify the environ-

mental costs of vehicle tailpipe emissions and how I construct them.

Marginal damage of pollution It is important to account for the spatial heterogeneity

of environmental damage from emissions (Holland et al., 2016b). I follow three steps

to calibrate the marginal damage of pollution by city by pollutant: (1) determine how

emissions affect the exposure of the population to the pollution, (2) assess how exposure

affects mortality risk, and (3) translate the change in mortality risk in monetary terms

(Parry et al., 2014b). The heterogeneity comes from the first step only.

13Source: https://en.wikipedia.org/wiki/Expressways_of_China
14Vincenty’s formulae calculates the distance between two points on the surface of a spheroid. This

method is more accurate than other methods, such as the great-circle distance, by assuming that the Earth
is an oblate spheroid rather than a spherical one. The distance within a city is assumed to be zero.
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To circumvent the need to use a highly complex air quality model to determine the

relationship between emissions and exposure concentrations (Muller and Mendelsohn,

2007, 2009), I use the intake fractions method, which has been widely adopted in the

literature to estimate the damage from emissions (Parry et al., 2014b; Humbert et al., 2011;

Apte et al., 2012). The intake fraction is defined as the ratio of the inhaled pollution by

the exposed population to the total amount of pollution emitted from a specific source.

The intake fraction depends on the size of the exposed population and the meteorological

conditions. The steady-state intake fraction can be approximated by a simple equation.

iF j = Q
LPD j

DR j
(1.10)

where j denotes the location. iF is the intake fraction. Q is the average breathing rate

(m3s−1person−1). LPD j = P j/
√

A j is the linear population density (persons m−1), in which

P j is the population and A j the area of urbanized land. DR j = 1/u jH j
−1

is the normalized

dilution rate (m2s−1), also known as the “ventilation coefficient” (Singh and Pandya, 2013),

which multiplies the wind speed (u j) by the atmospheric mixing height (H j).15

The next step is to determine how exposure to pollution affects the risk of mortality.

The large health literature has shown that pollution will increase the mortality risk of

pollution-related diseases and has established the dose-response relationship. Following

Parry et al. (2014b), I choose the baseline annual mortality rate to be 4 persons per 1,000

population. Influential epidemiological studies find that a 10 µg/m3 increase in PM con-

centrations increases total mortality by 4-10 percent (Künzli et al., 2000; Pope Ill et al.,

2002; Burnett et al., 2014). I take the value of 10 percent in this paper, following Künzli

et al. (2000). This indicates that an increase of 1 µg/m3 in PM concentrations increases the
15I aggregate the wind speed data to the city level by taking an average of the 2-minute average wind

speed data at the weather monitoring stations within a city. For the atmospheric mixing height, I refer to
Zhu et al. (2018) and use a uniform value of 500 m for all cities, as comprehensive estimates of the mixing
height for all cities in China are not available.
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annual population mortality rate by 40 per 1 million.

The last step is to evaluate the change in mortality rate in monetary terms using the

value of a statistical life (VSL). The value of VSL varies greatly. Using a hedonic wage

model, Qin et al. (2013) estimate that the VSL in China is 1.81 million Chinese Yuan,

approximately 0.22 million US dollars. This is similar to the estimate of 0.21 million US

dollars obtained in Barwick et al. (2018), but significantly lower than the estimate of more

than 1 million US dollars in Parry et al. (2014b). For the following analysis, I use 0.21

million 2015 US dollars for all exposed populations in China, not adjusted according to

population age or per capita income of each city.

The marginal damage of a additional ton of pollution emission is then computed as

MD jk =
iF j

Q
mkVSL (1.11)

where iFc is the intake fraction defined before. Q is the average breathing rate. iFc
Q is

the exposure to pollution. mk is the change in mortality rate due to one unit change of

pollution concentration. VSL is the value of a statistical life.

The values of the city-specific marginal damage, intake fractions, and other intermedi-

ate variables are summarized in Table 1.1. From 2013 to 2015, the calculated values of the

intake fraction vary from 4 ppm to 569 ppm, indicating significant heterogeneity between

cities, driven by the density of the city population, the urbanized area, and the meteoro-

logical conditions. The nonweighted mean of the city intake fraction is 83.4 ppm, greater

than the value obtained in Apte et al. (2012) for China (44 ppm). The marginal damage

from an additional ton of PM2.5 emission ranges from $5, 611 to $903, 469, and the mean

is $132, 302. The mean of my calculation is consistent with the existing values obtained in

China, $124, 441 from Parry et al. (2014b), and based on US data, $94, 000 from Goodkind

et al. (2019), and $88, 000 − $130, 000 from Heo et al. (2016). The heat map of the marginal
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damage of PM2.5 emissions in China by city is shown in Figure 1.5. I obtain the marginal

damage of NOx by scaling the marginal damage of PM2.5 by a factor of 13000/94000, for

which $13, 000 and $94, 000 are the estimates for the marginal damage of NOx and PM2.5

in Goodkind et al. (2019).

Emission factors An emission factor for vehicles is the representative amount of the

pollutant emitted into the atmosphere per vehicle per unit distance traveled. Vehicle

emission factors vary according to the emission standard that the vehicle meets and the

age of the vehicle. Vehicles produced at different times were subjected to different tailpipe

emission standards, which determine their baseline emission factors. I classify vehicles

according to the emission standards they meet, namely China 1 to China 5, and use the

emission limits specified by each standard as baseline emission factors for vehicles in

that category. Furthermore, for vehicles within the same emission standard category,

emissions increase as they age (Jacobsen et al., 2021). Following Jacobsen et al. (2021),

I choose the emission deterioration factor by emission standard based on the average age

of used vehicles in that category. The final emission factor is the multiplication of the

baseline emission factor and the deterioration factor. These values are reported in Table

1.2.

Lifetime vehicle kilometers traveled I draw the value of the mean annual vehicle kilo-

meters traveled, 18000 km per year, from Technical Guidelines for the Compilation of Air

Pollutant Emission Inventory of Road Motor Vehicles.16. However, the Guidelines does not

report the annual VKT by vehicle age. Thus, I scaled the 2009 NHTS average annual ve-

hicle miles of travel per vehicle by vehicle age and type17 to obtain the annual VKT by

16The document was issued by the Ministry of Ecology and Environment to provide guidelines for build-
ing up motor vehicle emissions inventory at the local level. https://www.mee.gov.cn/gkml/hbb/
bgg/201501/W020150107594587831090.pdf

17Source: https://nhts.ornl.gov/tables09/fatcat/2009/best_VEHAGE_VEHTYPE.html
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age in China adjusted by their annual means. From the registration data of used vehicles,

I calculate the mean ages of vehicles by emission standard (see Figure A.3 of the age dis-

tributions by emission standard). Assuming that a vehicle’s life is 20 years, I compute the

vehicle kilometers traveled for the remaining lifetime for vehicles in different emission

standard categories.

Vehicle stock and scrappage rate I obtain the total number of vehicle stocks by city by

year from the CEIC database and draw the composition of the national fleet by emission

standard category from China Vehicle Emission Control Annual Report for the years 2013

to 2015. However, detailed information about the composition of the fleet per city is

not available. Therefore, I use the national fleet composition to impute vehicle stock by

emission standard for each city. Data on the scrappage rate per city in China are also not

available. Therefore, I used data on vehicle exit rates by vehicle age in the U.S. from Davis

and Kahn (2010), and scaled them to match the mean scrappage rate in China. The price

elasticity of scrappage by vehicle age is obtained from Jacobsen and Van Benthem (2015).

1.3.4 Ambient Air Quality and Weather

Ambient air quality I obtain ambient air quality measures from the aerosol optical

depth (AOD) using the Moderate Resolution Imaging Spectroradiometer (MODIS) algo-

rithm operated by NASA. MODIS records the degree of sunlight diffusion or adsorption

in the entire atmospheric column corresponding to the section overpassed under cloud-

less conditions. Therefore, AOD captures the concentration of particles and is strongly

correlated with PM2.5, and could be used as a proxy for ambient particulate matter pollu-

tion (Barwick et al., 2019). I average the raw grid data to the city-quarter level from 2013

to 2015.
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Meteorology I retrieve the meteorological data from 2013 to 2015 from the China Na-

tional Meteorological Information Center. The Information Center has monthly meteoro-

logical data for 613 basic reference surface meteorological observation stations in China.

The data include a rich set of meteorological measures in wind speed, temperature, at-

mospheric pressure, relative humidity, precipitation, and wind direction. Using the lon-

gitude and latitude of each meteorological station, I calculate the Vincenty distance be-

tween each station-city pair and match each city with the closest station. Then I average

the city-monthly data to the city-quarter level.

The summary statistics of the data used in this paper are reported in Table 1.1.

1.4 Empirical Evidence

The theoretical model in Section 1.2 makes two predictions: (1) under certain conditions,

increasing the import barrier can reduce net imports of restricted goods, and (2) one coun-

try can increase its import barrier in response to an increase in the import barrier of the

other country. This section uses the roll-out of intercity import restrictions on used vehi-

cles in China to empirically test these predictions. The sample is a panel of 312 cities by

quarter between 2013 and 2015.18

1.4.1 The Effect of Import Restrictions on Used Vehicle Flows

A two-way fixed effects model seems a natural starting point to estimate the effect of

import restrictions on used vehicle flows. I use the following specification:

18Cities whose annual used vehicle imports are less than 10 units, or with missing values for GDP per
capita and population from 2013 to 2015 are dropped.
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yit = β1Dit + β2

∑
j,i

wi jD j,t−1 + αi + δt + γXi,yr−1 + εit (1.12)

where the dependent variable yit represents imports, exports, and net imports of restricted

used vehicles in city i, year-quarter t. Dit is an indicator that equals 1 if city i has restricted

imports of used vehicles based on emission standard China 4 at time t. αi and δt are city

and time fixed effects. Xi,yr−1 is GDP per capita lagged one year.

In addition, one city’s trade flows could also be affected if other cities impose import

restrictions, that is, the spillover effect. To capture this effect, I construct an index of

restriction exposure,
∑

j,i wi jD j,t−1, which is the weighted average of restriction indicators

in cities other than i at time t − 1 (Millimet and Roy, 2016). The weights are defined

as wi j =
tradei j∑N

j=1, j,i tradei j
, which is the share of bilateral trade in used vehicles (imports plus

exports) between city i and city j in the first quarter of 2013 (baseline), over the total trade

in used vehicles (imports plus exports) of city i in the baseline. Thus, higher weights are

given to larger trading partners of city i.

In the regression, the weighted average is lagged for one period. This is because in-

cluding the contemporaneous term (
∑

j,i w jiD j,t) can lead to a “bad control” issue (Angrist

and Pischke, 2008), if Dit and D jt are interdependent. Including a lagged term will circum-

vent this issue under the assumption that strategic interactions (if any) occur with a time

lag (Hayashi and Boadway, 2001), which I show below.

The results of the two-way fixed effects model are reported in columns (1) to (3) of

Table 1.3. In columns (1) and (2), the coefficients for the restriction adoption dummy Dit

are positive, and the coefficients for exposure to other restrictions
∑

j,i wi jD j,t are negative.

These signs are not expected with the theoretical prediction. In column (3), the coefficient

for Dit is negative, and the coefficient for
∑

j,i wi jD j,t is positive, both of which are consis-

tent with the prediction that a unilateral import restriction could reduce net imports of
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the home city, and other cities’ restrictions could increase net imports of the home city.

The inconsistency of the estimates in columns (1) and (2) could be driven by the “nega-

tive weighting issue” of the two-way fixed effects estimator with multiple treatment times

when treatment effects are heterogeneous over time and (or) between groups, explored by

a growing literature (Borusyak and Jaravel, 2017; Goodman-Bacon, 2021; Sun and Abra-

ham, 2021; De Chaisemartin and d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021).19

I apply the CSDID method proposed by (Callaway and Sant’Anna, 2021) to overcome this

problem. This method is composed of two steps: the first step is to estimate the average

treatment effect on the treated by treatment group and time,20 only comparing treated

units with never-treated units or later treated units; the second step then aggregates the

average treatment effects between groups and time according to the study context.

In my sample, because most of the cities adopted the restriction at the end of the

sample period, the size of the never-treated group is small. Therefore, in the first step es-

timation, I choose later-treated units as the comparison group and use the doubly robust

DID estimand to recover the average treatment effect by treatment group and time.21 The

second step aggregates the average treatment effects estimated from the first step.22

To gain evidence to support the parallel trends assumption, I use this method to esti-
19The standard two-way fixed effects estimator compares treated units versus never-treated units, treated

units versus not-yet-treated units, and later-treated units versus earlier-treated units. The third type of
comparison is problematic when treatment effects are heterogeneous.

20Treatment groups are defined based on the time when they first get treated. Units treated at the same
time are categorized into one treatment group.

21The doubly-robust estimand for the average treatment effect by treatment group and time is:

ATTg,t = E

 Gi,g

E[Gi,g] −

pi,g,t (X)(1−Di,t )(1−Gi,g )
1−pi,g,t (X)

E[
pi,g,t (X)(1−Di,t )(1−Gi,g )

1−pi,g,t (X) ]

 (Yi,t − Yi,g−1 − mg,t(X))

, where Gi,g is a dummy that equals one if unit i

first gets treated at time g. Di,t is a dummy that equals one if unit i is treated in time t. pi,g,t(X) = Pr(Gi,g =

1|X,Gi,g+(1−Di,t)(1−Gi,g) = 1) is the probability of unit i being first treated at time g, conditional on covariates
X and on either being a member of group g (that is, Gi,g = 1) or a member of not-yet-treated group by time
t (that is, (1 − Di,t)(1 − Gi,g) = 1). Yi,t and Yi,g−1 are the outcomes of unit i at time t and at time g − 1 — one
period before treated. mg,t(X) = E[Yi,t − Yi,g−1|X,Di,t = 0,Gi,g = 0] is the population outcome regressions for
the “not-yet-treated” group by time t (Callaway and Sant’Anna, 2021).

22The aggregated treatment effect at event time e is: θ(e) =
∑

g∈G 1(g + e ≤ T )Pr(G = g|G + e ≤ T )ATTg,g+e,
where T is the last period of calendar time, G is the set of all treatment groups (Callaway and Sant’Anna,
2021).
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mate the dynamic effects by event time. The coefficients are shown in Figure 1.6. For pan-

els (a) to (c) the dependent variables are imports, exports, and net imports of restricted

used vehicles (used vehicles that do not meet the standard China 4). All panels do not

show significant pre-trends before restriction adoption, and imports, exports, and net

imports decrease significantly after the restriction was adopted. The post-treatment co-

efficients are further aggregated to obtain an average treatment effect. The results are

reported in columns (4) to (6) of Table 1.3. The coefficients for restriction adoption Dit are

all negative and significant, which implies that imports, exports, and net imports decrease

after restriction adoption, consistent with the theoretical prediction. These results provide

empirical evidence that the import restriction could reduce net imports of restricted used

vehicles and therefore could increase environmental benefits.23

1.4.2 The Effect of Import Restrictions on Ambient Air Quality

Does the adoption of import restrictions on used vehicles lead to an immediate improve-

ment in local air quality? I use the aerosol optical depth (AOD) data with both the two-

way fixed effects model and the CSDID method to explore this question. The specifi-

cation for the two-way fixed effects model is similar to Equation (2.1), only adding two

additional sets of controls. One set is meteorological variables; the other is the average

air pollution in the upwind direction to account for the cross boundary transmission of

pollution.

ln(AOD)it = β1Dit + β2

∑
j,i

wi jD j,t−1 +W′
itθ + U′itξ + αi + δt + γXi,yr−1 + εit (1.13)

23I don’t interpret the values of these results as the causal effect because of the remaining endogeneity
of restriction adoptions, after controlling for (lagged) restriction exposure, city- and time- fixed effects, and
economic variables.
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where the dependent variable is the log of AOD reading at city i at year-quarter t. Wit is

a set of meteorological variables, including maximum wind speed, average temperature,

average atmospheric pressure, average water vapor pressure, relative humidity, number

of rainy days, and precipitation. Uit includes the inverse-distance-weighted average of air

pollution (AOD) in the upwind direction.24

The results are reported in Table 1.4. Columns (1) to (3) are the estimates using the two-

way fixed effects model, controlling for different sets of control variables. The coefficients

for the restriction dummy are not significantly different from 0. Columns (4) and (6) are

the estimates using the CSDID method. The estimated coefficients are negative, but not

statistically significant. Figure A.4 shows the dynamic effects estimated with the full set

of controls (weather and upwind pollution) using the CSDID method, which does not

show significant pre-trends.

The null result suggests that the improvement in air quality induced by import re-

strictions on used vehicles could be limited in the short run. The import restriction affects

air quality by changing the composition and size of the vehicle fleet. The vehicle fleet

becomes cleaner as net imports of dirty used vehicles decrease and vehicle scrappage in-

creases (which I will show in Section 1.5 below). However, this process takes time. On

average, one city’s net imports of restricted used vehicles decrease by 409 units in the next

year, which is about 0.1 percent of the mean motor vehicle stock by city. In addition, the

restriction on used vehicles may increase sales of new vehicles, which adds to the vehicle

fleet and could partially offset the effect. Therefore, this paper focuses on the long-term

cumulative environmental benefits generated from the reduction in lifetime vehicle emis-

24I use the following procedures to construct air pollution in the upwind direction. First, I calculate
the bearings between any two city pairs (Bearing is a geographical terminology that indicates the angle
between the direction of two points on Earth and that of the true north). Then convert the bearings into
16 directions, i.e., N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW. Upwind
directions of city i at time t are the ones that lie in the same and two neighboring directions of the wind
direction of city i at time t. Then calculate the average pollution levels of the cities in the upwind direction
weighted by the inverse of the distance between the upwind city and the home city.
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sions.

1.4.3 Strategic Interaction across Cities

The specification used to test strategic interactions between cities in the adoption of im-

port restrictions draws on the literature on strategic interactions in environmental regu-

lations, such as Fredriksson and Millimet (2002a,b). The specification is as follows:

Dit = η
∑
j,i

wi jD j,t−τ + αi + δt + γXi,yr−1 + εit (1.14)

where Dit is an indicator that equals 1 if city i has adopted the import restriction in period

t.
∑

j,i wi jD j,t−τ is defined in the same way described in section 1.4.1 , lagged for τ = 1, 2, 3, 4

quarters. Xi,yr−1 is GDP per capita in city i lagged one year. αi and δt are city and year-

quarter fixed effects. εit is the error term.

The results are reported in Table 1.5. Columns (1) to (4) show estimated coefficients for

the weighted average of other cities’ restrictions lagged one to four quarters, respectively.

The coefficients are positive and significant through all columns, showing that one city is

more likely to restrict in response to other cities’ (past) restrictions. The magnitude of the

coefficients decreases with longer lags, implying that the more recent restrictions have a

larger effect. Again, these results are consistent with the theoretical prediction that cities’

import restrictions could be strategic complements.
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1.5 A Structural Trade Model

Section 1.4 provides empirical evidence of how import restrictions on used vehicles affect

net imports of used vehicles and how cities interact with each other when adopting the

restrictions. However, empirical analysis is limited in dealing with spatial spillovers and

cannot speak about the welfare effects of different policy counterfactuals. Therefore, in

this section, I develop a quantitative trade model to fully incorporate the general equi-

librium effect of the import restriction and to quantify the welfare effect under different

counterfactuals. I choose the structural trade model as the workhorse for simulations,

as trade models can nicely characterize trade flows across locations, which is the main

feature of the data and the focus of the analysis.

The model is built around Armington (1969). There are N locations and S sectors.

There are five used vehicle sectors differentiated by the emission standards they comply

with (China 1 to China 5), and a new vehicle sector that complies with China 5. Vehicles

supplied by different locations within the same sector are regarded as differentiated. Ve-

hicles are traded between locations subject to an iceberg trade cost τi js ≥ 1 and an ad

valorem tariff t̃i js ≥ 0. Define ti js ≡ 1 + t̃i js.

1.5.1 Preferences

I assume that a representative consumer at location j has a nested CD-CES utility pref-

erence. At the top level, the representative consumer maximizes a Cobb-Douglas utility

function by choosing the mix between (the composite) vehicle consumption and an out-

side good (numéraire):

max
Cv j,Co j

U j = Cα j

v j C
(1−α j)
o j (1.15)
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subject to the budget constraint:

Pv jCv j +Co j = E j (1.16)

where α j is the expenditure share that the representative consumer in location j spends

on vehicles. Cv j is the aggregate consumption of vehicles in location j. Co j is the con-

sumption of the outside good. Pv j is the aggregate price of vehicles in location j, which

I will elaborate below. The price for the outside good is normalized to be one. E j is the

total expenditure in location j.

The composite vehicle consumption Cv j that aggregates vehicle consumption across

sectors is:

Cv j =

∑
s

γ
1
ε
s C

ε−1
ε

js


ε
ε−1

(1.17)

where Cv j is the aggregate consumption of vehicles in region j. γs is the taste parameter

for vehicles in sector s. ε is the elasticity of substitution between vehicle sectors. C js is the

aggregate consumption of vehicles purchased from different locations, defined as:

C js =

 N∑
i=1

qi js
σ−1
σ


σ
σ−1

(1.18)

where σ is the elasticity of substitution between locations (varieties).

By maximizing utility, the demand for vehicles in sector s from location i to location j

can be written as:

Ei js = πi jse jsα jE j (1.19)

where E j is the total expenditure at location j. α j is the share of vehicles out of total

expenditure in location j. Out of the total vehicle expenditure in location j, a share of e js

is spent on vehicles of sector s. Within sector s, a share πi js is spent to import from location

28



i to location j.

The within-sector import share is defined as:

πi js =

(
pisτi jsti js

P js

)1−σ

(1.20)

where pis is the price of vehicles of sector s at location i net of trade costs. P js is the sectoral

price index in j, which aggregates prices to import a vehicle unit in sector s from different

origins to j:

P js ≡

 N∑
k=1

(pksτk jstk js)1−σ


1

1−σ

(1.21)

The sector share is:

e js =

(
γs

P js

Pv j

)1−ε

(1.22)

where Pv j is the price index of vehicles aggregating across sectors at location j:

Pv j =

∑
s

γsP js
1−ε


1

1−ε

(1.23)

1.5.2 Supply

Assume that the supply of vehicles in each location and each sector can be character-

ized by a Cobb-Douglas production function, combining labor and an intermediate in-

put.25 Then the quantity supplied could be written as the following equation (Allen et al.,

25It is standard in the trade literature to describe the supply of (new) goods by a production function. For
used vehicles, we can think of the supply as a “production” process in which vehicle dealers purchase used
vehicles from individual owners across all locations as an intermediate input, refurbish them, and supply
them to the market.
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2020):26

Qis = c̄is

(
pis

Pis

)ψ
(1.24)

where c̄is is a supply shifter determined by factor endowment and productivity in loca-

tion i, pis
Pis

is the real output price (output price scaled by the price index), and ψ is the

aggregate supply elasticity. The supply elasticity is a function of the share of intermedi-

ate input in the Cobb-Douglas production function. If production only uses local inputs

(such as labor whose supply is assumed to be perfectly inelastic), the supply elasticity

ψ would be zero, and the quantity supplied in location i would be exogenously deter-

mined by the endowment of the input and the productivity in location i. If production

uses an intermediate input, a composite that aggregates the goods produced at all loca-

tions (Caliendo and Parro, 2015), the supply elasticity would be greater than zero and the

quantity supplied would increase with the real output price. I will estimate the supply

elasticity below.

Hence, the revenue from vehicle sales of sector s in location i is:

Ris ≡ pisQis = pisc̄is

(
pis

Pis

)ψ
(1.25)

1.5.3 Equilibrium

The model is closed by market clearing conditions and balanced trade conditions. Market

clearing requires that the gross revenue of sector s in location i equals the total demand

26Allen et al. (2020) shows that this equation of quantity supplied is universal to many variants of trade
models with different micro-foundations, such as the Armington model (Armington, 1969), the Recardian
model (Eaton and Kortum, 2002), the Melitz model (Melitz, 2003), and to spatial models.
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for sector s from all markets j net of tariffs:

Ris =

N∑
j=1

Ei js (1.26)

Assume that trade is balanced in each location, that is, total expenditure equals total

income:27

E j = R j + T j (1.27)

where R j is the total revenue in location j, which is the sum of vehicle revenue and rev-

enue from the outside good sector, R j =
∑

s R js + R jo. T j is the tax revenue from import

tariffs, T j =
∑

i,s
ti js−1

ti js
Ei js.

The general equilibrium system is composed of equations (1.19)-(1.27). For a given

set of parameters, including the elasticity of substitution between locations (varieties)

(σ), the elasticity of substitution between sectors (ε), the aggregate supply elasticity (ψ),

bilateral trade frictions (τi js), bilateral tariff rates (t̃i js), and supply shifters (c̄is), the general

equilibrium real prices for used and new vehicles in each location (pis/Pis) can be solved.28

Once the general equilibrium prices are determined, other endogenous outcomes, such

as the trade flows of used and new vehicles (Ei js), expenditures on vehicles (E js), and own

expenditure shares (π j js) will also be determined.

27This assumption does allow vehicle trade to be unbalanced, but the deficit needs to be offset by the
trade of the outside good.

28Note that the system of equations is homogeneous of degree 0 in {pis, Pis}. Therefore, the levels of the
output prices pis and the aggregate price index Pis can not be pinned down separately (Allen et al., 2020).
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1.5.4 Welfare

Define the welfare in location j as the sum of indirect utility from consumption (gains

from trade) and disutility (environmental costs) from vehicles’ local pollutant emissions:

W j = V j − D j

The indirect utility from consumption is the total expenditure scaled by the price in-

dex:

V j =
E j

P j
(1.28)

where E j is the total expenditure in location j. P j = Pα j

v j is the aggregate price index in

location j.

Environmental costs from vehicle emissions are determined by the amount of pollu-

tion emissions and the marginal damage of the emission:

D j =
∑

k

MDk jZk j (1.29)

where subscript k represents the pollutant, j represents the location where the pollution

is emitted. MDk j is the marginal damage from emissions of pollutant k in location j. Zk j is

the amount of pollutant k emitted at location j.

1.5.5 Solving the Model under Shocks

I apply the “exact hat algebra” developed by Dekle et al. (2008) which cancels out time-

invariant unobservables to solve for proportional changes in equilibrium outcomes under
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a shock.

Let x̂ ≡ x′/x denote the proportional change in any variable x between the counterfac-

tual and the initial equilibria. Let τ̂i js represent a shock in trade costs, and t̂i js a shock in

tariffs. The proportional change in vehicle prices is determined by the following system

of equations:

P̂1−σ
is =

N∑
j=1

τ̂1−σ
jis t̂1−σ

jis p̂(1−σ)
js π jis (1.30)

P̂1−ε
vi =

∑
s

P̂1−ε
is eis (1.31)

π̂i js = (
p̂isτ̂i jst̂i js

P̂ js
)1−σ (1.32)

ê js = (
P̂ js

P̂v j
)1−ε (1.33)

R̂ jv =
∑

s

p̂1+ψ
js P̂−ψjs

R js

R jv
(1.34)

p̂1+ψ
is P̂−ψis =

N∑
j=1

π̂i jsπi jsê jse jst̂i jsti js
α j(R̂ jvR jv + R jo)

Ris

1

1 −
∑

k,m
t̂k jmtk jm−1

t̂k jmtk jm
π̂k jmπk jmê jme jmα j

(1.35)

Solving the Model For shocks τ̂i js and t̂i js, the system of equations could be solved in

the following steps:

(1) Give an initial guess of price changes { p̂0
is}, calculate the change of sectoral price indices

{P̂is} and the vehicle price index {P̂vi} using equations (1.30)-(1.31);

(2) Calculate the change of the import share {π̂i js}, sector share {ê js}, and the income change

{R̂ jv} using equations (1.32)-(1.34);

(3) Substitutes { p̂0
is}, {P̂vi}, {π̂i js}, {ê js}, and {R̂ jv} into equation (1.35) to obtain an updated

{ p̂1
is}. Let { p̂0

is} = { p̂
1
is}, and iterate steps (1)-(3) until {p̂1

is} is extremely close to { p̂0
is}.
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1.5.6 Welfare Effects

For policy shocks that change trade costs and (or) tariffs, equilibrium prices and trade

flows would change, which affects welfare.

Effect on gains from trade The change in gains from trade in location j could be mea-

sured by the equivalent variation:

∆V j =
E j

P j
(
Ê j

P̂ j
− 1) (1.36)

where Ê j and P̂ j are the proportional changes of the total expenditure and price index in

city j, which could be solved using the exact hat algebra described above.

Effect on the environment There are two channels through which policy shocks in trade

costs and tariffs could affect vehicle emissions: (1) the trade channel — policy shocks

change trade flows and thus net imports of vehicles;29 (2) the scrap channel — policy

shocks change prices of used vehicles, leading to changes in scrappage of the existing

vehicle stock (Gruenspecht, 1982).

The change in environmental costs in location j can be written as:

∆D j =
∑

k

∑
s

MDk j(∆Ns j − S s j∆rs j) · EF sk · VKT s (1.37)

where ∆Ns j is the change in net imports of vehicles. S s j is the vehicle stock of sector s at

location j. ∆rs j is the change in the vehicle scrap rate of sector s at location j. Therefore,

∆Ns j − S s j∆rs j represents the change in the number of vehicles in sector s at location j,

29Net imports of new vehicles are just sales of new vehicles.
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which can be obtained by solving the exact hat algebra. EF sk represents emission factors

for the vehicle sector s, pollutant k (g/km). VKT s is the lifetime kilometers traveled for

vehicles in sector s (km). MDk j is the marginal damage caused by emissions of pollutant

k at location j.

Gruenspecht (1982) shows that the scrappage rate is inversely related to the used ve-

hicle price ratio (the used vehicle price divided by the maintenance and repair costs).30 In

this paper, I assume that the scrappage rate is a decreasing function of real prices of used

vehicles:

rs j = κ j(
ps j

Ps j
)ξs (ξs < 0) (1.38)

where κ j is a scalar that calibrates baseline scrap rates. ξs is the price elasticity of scrappage

for vehicles in sector s.

1.6 Estimation of the Parameters

The key parameters to quantify the welfare impact of trade are the elasticity of substi-

tution between varieties (σ), the elasticity of substitution between sectors (ε), and the

supply elasticity (ψ) (Arkolakis et al., 2012; Costinot and Rodrı́guez-Clare, 2014). For the

following analysis, I denote ϕ = σ − 1, and call ϕ and ψ the aggregate demand elasticity

and supply elasticity, or gravity constants, following Allen et al. (2020). This section in-

troduces how I estimate ϕ, ψ, and ε, using bilateral trade data of vehicles across cities in

China. Since tariffs were not relevant in this context, I assume away tariffs (ti js = 1 for all

i, j, s) throughout this section.

30Assume a vehicle is scrapped when its market value in operable condition, p, minus its scrap value,
S V , is less than the cost of maintenance and repairs needed to keep it in operable condition, PR × R, where
PR and R are the repair price and repair quantity, respectively. If the repair quantity follows a distribution
f (R), then the scrappage rate r, is one minus the integral of the repair incidence distribution over the range
where repair is rational: r = 1 −

∫ (p−S V)/PR
0 f (R) dR, in which r is inversely related to the used vehicle price

ratio (the used vehicle price divided by the maintenance and repair costs) (Gruenspecht, 1982).
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1.6.1 The Demand Elasticity and Supply Elasticity

Methodology The demand elasticity, which governs how bilateral trade flows change

with prices and trade costs, is often referred to as trade elasticity in the literature. Trade

elasticity plays a key role in understanding the welfare impact of trade. A large litera-

ture has estimated this parameter by exploiting variations in trade shares and variations

that reflect (part of) trade costs, for example, the overall price indices (Feenstra, 1994),

retail price differences of individual goods across countries (Eaton and Kortum, 2002; Si-

monovska and Waugh, 2014), tariffs (Caliendo and Parro, 2015), etc. On the other hand,

there have not been many estimates for supply elasticity. Instead, most literature cali-

brates the parameter of labor share in production, which is related to the supply elasticity.

In this section, I use a two-step procedure to estimate ϕ and ψ simultaneously, follow-

ing Allen et al. (2020) and Eaton and Kortum (2002).

Combining the gravity equation of Ei j and the gravity equation of the own expendi-

ture E j j yields:
Ei j

E j j
=

(
τi j pi

τ j j p j

)−ϕ
(1.39)

Take log of equation (1.39),

ln
Ei j

E j j
= −ϕ ln

τi j

τ j j
− ϕ ln pi + ϕ ln p j (1.40)

This equation shows that imports from i to j relative to expenditure on local goods in j

decrease as the trade friction between i and j increases, or the goods in the origin i become

more expensive, or the goods in the destination j become cheaper.
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The revenue in location i is Ri ≡ piQi. Therefore,

pi =
Ri

Qi
=

Ri

c̄i(pi/Pi)ψ
(1.41)

where c̄i is the supply shifter.

Define πii =
Eii
Ei

to be the own expenditure share, i.e., the share of the expenditure on

locally produced goods out of the total expenditure. From equation (1.20), we know that:

πii = [τii(pi/Pi)]−ϕ (1.42)

Combining equations (1.41) and (1.42) yields the following result:

pi =
Ri

c̄iπ
−ψ/ϕ
ii τ

−ψ
ii

(1.43)

Substituting the output price (1.43) into Equation (1.40), the relative trade flow could

be written as:

ln
Ei j

E j j
= −ϕ ln

τi j

τ j j
− ln µi + ln µ j (1.44)

where ln µi = ϕ ln Ri − ϕ ln c̄i + ψ ln πii + ϕψ ln τii. The fixed effects, ln µi and ln µ j, which

are output prices to a scale, measure the “competitiveness” of products in city i and j,

respectively (Eaton and Kortum, 2002).

The first step to estimate ϕ and ψ is to proxy the relative trade frictions scaled by the

demand elasticity:

−ϕ ln
τi j

τ j j
= βl

cd + ϵi j (1.45)

where βl
cd includes dummies of 10 distance deciles between i and j, and region-pair dum-
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mies.31 ϵi j is the idiosyncratic shocks that affect trade frictions between i and j. Substitut-

ing equation (1.45) into (1.40) gives the following first-step regression equation:

ln
Ei j

E j j
= βl

cd − ln µi + ln µ j + ϵi j (1.46)

The second step then regresses the following equation:

ln µ̂i = ϕ ln Ri + ψ ln πii + νi (1.47)

where ln µ̂i is the origin fixed effects estimated from the first step. Ri is the revenue in

city i. πii is the own expenditure share in city i. The error term νi = −ϕ ln c̄i + ϕψ ln τii + ν̂i

is composed of three elements — the supply shifter (c̄i), the within city trade costs (τii)

which are normalized to be one, and the estimation residual from the first step.

However, using OLS to estimate the second-step equation (1.47) will result in biased

estimates of ϕ and ψ. As Equation (1.47) shows, the error term is correlated with the

revenue and the own expenditure share through the supply shifter, as the revenue and the

own expenditure share are endogenously determined in the general equilibrium system

for any given supply shifters. The OLS estimates will be biased downward, since the

supply shifter is positively correlated with revenue but negatively correlated with the

output price, i.e., the estimated origin fixed effects.

I use a model-based instrumental variable strategy to overcome this identification

challenge (Allen et al., 2020). The idea of this strategy is to construct instruments from

the model using plausible exogenous shocks. For example, to estimate the impact of in-

ternational trade on economic growth, Frankel and Romer (1999) construct an instrument

31China has seven geographic regions: North China, Northeast China, East China, South China, Cen-
tral China, Southwest China, and Northwest China. See: https://www.chinacheckup.com/blog/
regions-of-china.
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by predicting trade flows from the gravity model based on geographic characteristics. In

this paper, as shown in Section 1.5.3, equilibrium revenues and own expenditure shares

are determined for any given set of elasticity parameters, bilateral trade costs, and sup-

ply shifters. Therefore, feeding the model with bilateral trade frictions and supply shifters

that depend only on exogenous observables, I can predict hypothetical revenues and own

expenditure shares, and use them as instruments for the observed revenues and own ex-

penditure shares in equation (1.47).

In this hypothetical world, bilateral trade frictions are generated on the basis of the

estimated coefficients of distance deciles and region-pair dummies obtained in the first-

step estimation. I used two ways to construct the cost shifter. The first way is to use the

average revenue as a cost shifter for each individual city. The second way is to allow

the supply shifter to depend on the lagged motor vehicle stock in the city. Using these

trade frictions and cost shifters, I solve two sets of hypothetical revenues and own expen-

diture shares. Then I estimate Equation (1.47) instrumenting for the observed revenues

and own expenditure shares by the hypothetical revenues and expenditure shares while

controlling for the observable (lagged motor vehicle stock).

Whether these model-based instruments are valid hinges on whether they are uncor-

related with the error term νi in equation (1.47). The identification variation of the in-

struments, i.e., hypothetical revenues and own expenditure shares, is generated through

the general equilibrium structure of the model. Intuitively, differences in geography and

lagged stock of motor vehicles in neighboring cities generate variations in the demand

for vehicles from one city and variations in the price index it faces, conditional on its own

lagged stock of motor vehicles. Therefore, the exclusion restriction is valid if the geogra-

phy and lagged vehicle stock in neighboring cities do not correlate with the unobserved

shock of the supply shifter in one city, after controlling for the observable of that city

(lagged vehicle stock).
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Estimation Results I use the aggregate intercity trade flows of used vehicles in China

from 2013 to 2015 to estimate ϕ and ψ. The estimation results are reported in Table 1.6.

Column (1) is the OLS estimates. The estimated (negative) demand elasticity (ϕ) and sup-

ply elasticity (ψ) are both negative. This is in line with the explanation in the previous

section that the OLS estimates will be biased downward. Column (2) reports the results

from using the first set of instruments, which are hypothetical revenues and home expen-

diture shares predicted from geographic trade frictions and the average revenue being the

supply shifter. The demand elasticity becomes positive, but the supply elasticity is still

negative. Column (3) reports the results for using the second set of instruments, which

are constructed from geographic trade frictions and the supply shifter dependent on the

lagged motor vehicle stock. The demand elasticity is estimated to be 2.468 and significant

at the 1 percent level. The supply elasticity is estimated to be 1.830 but is not significant.

My estimate of the demand elasticity of used vehicles is slightly smaller but quali-

tatively consistent with the estimates of the trade elasticity of the transport equipment

sector in recent studies. Shapiro (2016) estimates the trade elasticity with panel data on

transportation costs and trade values for all US and Australian imports over 1991-2010,

using fixed effects to address the issue of reverse causality or omitted variable bias, and

instrumental variables to address measurement error. Their estimated trade elasticity for

the Transport Equipment sector is 4.51 using the fixed-effects model and 6.87 using IV,

which are larger than my estimates (2.343). Using interstate trade data in the US with a

CES framework, Yilmazkuday (2012) estimates that the elasticity of substitution between

varieties in the Transport Equipment sector is 2.98, which translates to a demand elasticity

of 3.98. Head and Mayer (2014) reviews 32 papers that estimate the elasticity of the trade,

and reports that the median estimates for all the papers included are 3.19, for papers that

use a structural gravity model (as mine) is 3.78, for papers that control fixed effects of

origin/destination are 3.5, and for papers that use ratio-type estimation is 4.82. However,

some studies obtain much lower estimates. For example, Caliendo and Parro (2015) esti-
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mate the trade elasticity of the automobile sector to be 1.01, and not significantly different

from zero. Boehm et al. (2020) estimate that the short-term elasticity in the year following

a tariff shock is about 0.76, and it takes between 7 to 10 years to converge to the long-term

value of 1.75-2.25.

My estimate of the supply elasticity of used vehicles is 1.830 but is not precise. Supply

elasticity is not commonly estimated in the trade literature, but I can compare the implied

labor share of my estimate with the existing literature. The supply elasticity of 1.830 im-

plies that the labor share in the production functions is 0.35.32 This is between the average

labor share in the manufacturing industry used in Eaton and Kortum (2002) (0.21), and

the labor share of the transportation and warehousing sector in the U.S. during the 2010s

(0.56-0.58).33

1.6.2 The Elasticity of Substitution between Sectors

Methodology Taking log on both sides of the sector expenditure equation (1.22) yields

the following:

ln E js = (1 − ε) ln P js − (1 − ε) ln Pv j + ln E j + ln γs (1.48)

Thus, the elasticity of substitution between sectors can be estimated by regressing the

expenditure on the price index, sector fixed effects, and city fixed effects as follows:

ln E js = (1 − ε) ln P js + δ j + γs + µ js (1.49)

where E js is the expenditure in sector s in city j. P js is the aggregated price index for sector

32From the supply elasticity ψ = (1 − β)/β, labor share can be derived as β = 1/(1 + ψ).
33Source: https://www.bls.gov/opub/mlr/2017/article/estimating-the-us-labor-share.

htm
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s in city j.34 δ j is the city fixed effects. γs is the sector fixed effects. µ js is the idiosyncratic

shock of spending in sector s in city j.

Estimation Results The estimation results of the elasticity of substitution between sec-

tors are reported in Table 1.7. The coefficient of ln P js is the estimated value of 1 − ε. Col-

umn (1) includes city fixed effects which absorb the total expenditure on vehicles and the

aggregated price index across sectors. Column (2) adds sector fixed effects, which control

for consumers’ taste preferences for vehicles of different sectors (new vehicles and five

used vehicle sectors by emission standard). Column (3) adds year- fixed effects to control

for common shocks on vehicle consumption for each year. Column (3) is my preferred

specification. The estimated coefficient for ln P js is -1.417, statistically significant at the 1

percent level. This estimate implies that the elasticity of substitution across vehicle sectors

is 2.4, greater than the estimate from Yilmazkuday (2012), which is 1.09, using interstate

trade data in the United States.

1.7 Counterfactual Analysis

In this section, I use the exact hat algebra (Dekle et al., 2008) to solve for changes in gains

from trade and environmental costs under different counterfactuals. Based on the esti-

mates from the previous section, I set ϕ = 2.5, ψ = 1.8, and ε = 2.4 for the following

simulations. The baseline of all simulations is the first year of my sample, 2013.

I consider two policies. The first is an emission-based import restriction that restricts

imports of used vehicles according to an emission standard. Cities can choose between

34The aggregate price index for each vehicle sector is constructed in the following way: First, as I observe
the quantity of bilateral trade qi js, I can calculate the aggregate consumption of varieties in sector s and city
j (C js) using equation (1.18) with the estimated elasticity of substitution between varieties (σ̂s = ϕ̂s+1) from
the first step. After obtaining C js, I calculate the aggregate sector price index by P js = E js/C js for all three
sectors.
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China 1 to China 5 as the minimum standard for imports. Restricting used vehicles of

China 1 is the least stringent, and restricting all used vehicles from China 1 to China 5 is

the most stringent. The second policy is an emission tax that charges an ad valorem tax

at the rate of marginal damage of emissions over vehicle values.

I consider four counterfactuals. The first three counterfactuals consider implementing

the import restriction policy unilaterally, strategically, or collaboratively while keeping

the local trade in used vehicles unrestricted. The last counterfactual considers impos-

ing an emission tax on used vehicles, regardless of whether they are imported or locally

traded. The first scenario considers a unilaterally optimal import restriction, or myopic re-

striction, in which each city unilaterally chooses a level of import restriction to maximize

its own welfare. The second scenario is the non-cooperative Nash equilibrium, which

considers a static game where non-cooperative cities simultaneously choose their unilat-

erally optimal import restriction, taking other cities’ restriction choices as given. This

scenario allows strategic interactions between cities. The third scenario considers a na-

tionally optimal import restriction, in which a social planner chooses the restriction level

for each city to optimize the total social welfare of the country. The last counterfactual is

an ad valorem emission tax levied on all used vehicles, locally traded and imported, at

the rate of local (lifetime) emission damages over vehicle values.

1.7.1 Unilaterally Optimal Import Restriction

In this scenario, each city unilaterally chooses a level of import restriction to maximize its

welfare, assuming that all other cities do not restrict. I run 5×312 simulations in total. For

each city, there are five counterfactuals in which that city unilaterally restricts imports of

used vehicles based on the emission standard from China 1 to China 5.

The simulation results are shown in Figure 1.7. Panel (a) shows welfare changes for the
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city that adopts the restriction. From left to right, each panel corresponds to a restriction

stringency that each city could unilaterally set, from the least stringent of restricting only

China 1, to the most stringent of restricting all used vehicles from China 1 to China 5. Each

plot shows the distribution of the simulated changes in gains from trade, environmental

benefits (negative environmental costs), and social welfare relative to the baseline under

the corresponding scenario.

Several patterns are shown in panel (a) of Figure 1.7. First, regardless of the strin-

gency of the restriction, restricting imports of used vehicles, in general, could lead to

dead weight losses and environmental benefits. As the restriction becomes more strin-

gent, both the dead weight losses and the environmental benefits increase. Second, less

stringent policies that only restrict dirtier used vehicles such as China 1 and China 2 could

improve the social welfare of more cities. However, adopting more stringent policies

would decrease social welfare for many cities, as restricting comparatively cleaner vehi-

cles has limited environmental gains but larger deadweight losses.

As the marginal damage of pollution and the pre-restriction imports/exports vary

across cities, the optimal restriction stringency that maximizes the social welfare change

differs across cities. Simulations predict that out of 312 cities in our sample, it is unilat-

erally optimal for 55 to choose not to restrict, 142 to choose to restrict only China 1 used

vehicles, 98 to choose to restrict used vehicles of China 2 and below, and 17 to choose to

restrict China 3 and below.

Next, I examine the spillover effect of these unilateral restrictions. Under the same

counterfactuals as in panel (a), panel (b) shows changes in aggregate welfare for cities

that do not adopt the restriction. The plots show that, in general, one city’s unilateral

restriction reduces other cities’ gains from trade. The more stringent the restriction, the

larger the negative spillovers. The spillover effect on environmental benefits could be

decomposed into two channels. One channel is through the trade in used vehicles. As
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shown before, a unilateral restriction could reduce its own net imports, i.e., reduce other

cities’ net exports, thus adding environmental costs to other cities. The other channel is

through the change in the real output price. A unilateral import restriction reduces the

demand for used vehicles in other cities, which drives down the real output price in other

cities. This will increase scrappage and thus lead to a positive environmental spillover.

The sign of environmental spillovers, therefore, depends on which channel is stronger.

Overall, the more stringent the unilateral restriction is, the larger the negative spillover

effect it could generate on the social welfare of other non-restricting cities.

Panel A of Table 1.8 reports the welfare effects if every city chooses its unilaterally

optimal import restriction relative to the status quo as of 2013. Unilateral restrictions

reduce gains from trade by 2,542 million RMB but lead to environmental benefits through

the trade channel by 1,450 million RMB, and environmental benefits through the scrap

channel by 4,479 million RMB. The total social welfare would increase by 3,387 million

RMB.

1.7.2 Non-cooperative Nash Equilibrium

Next, I allow for strategic interactions between cities and consider the counterfactual of

a non-cooperative Nash equilibrium. The non-cooperative Nash equilibrium is solved

in sequential simulations. The first round of simulations finds the unilaterally optimal

restriction for each city conditional on all other cities not adopting the restriction. In the

next round, each city simultaneously updates its restriction choice conditional on other

cities’ choices in the first round. This process continues until all cities don’t want to devi-

ate from their restriction choices given other cities’ choices, that is, converging to a Nash

equilibrium.

Figure 1.8 compares the results for unilaterally optimal restriction and Nash equilib-
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rium. Panel (a) summarizes the number of cities by their optimal restriction choices. In

the unilaterally optimal scenario, 55 cities choose not to restrict, 142 cities choose to re-

strict China 1, 98 cities choose to restrict China 2 and below, 17 choose to restrict China 3

and below. However, in the Nash equilibrium, the number of cities that choose not to

restrict decreases from 55 to 25, and the number of cities that choose to restrict China 1

and China 2 increases to 159 and 109, respectively. The results suggest that after strate-

gically interacting with the decisions of other cities, 30 cities change from no restriction

to restricting China 1, 13 cities increase their stringency from China 1 to China 2, and two

cities increase their stringency from China 2 to China 3. This is consistent with the upward-

sloping best-response curve that the theoretical model predicts and is consistent with the

empirical evidence of strategic interactions in restriction adoption in China.

Panel (b) of Figure 1.8 shows the welfare effects on gains of trade, environmental bene-

fits, and social welfare under unilaterally optimal restriction and Nash equilibrium. Envi-

ronmental benefits are further decomposed into the trade channel and the scrap channel.

Under both scenarios, the gains from trade decrease, the environmental benefits increase,

and the social welfare increases. However, social welfare gains are smaller under the

Nash equilibrium compared to gains under unilaterally optimal restriction, suggesting

that strategic interactions between cities reduce welfare gains.

Panel B of Table 1.8 reports the welfare effects under the Nash equilibrium. Gains

from trade decreased by 2,808 million RMB, but environmental benefits increased by 1,427

million RMB through the trade channel, and by 4,479 million RMB through the scrap

channel. The total social welfare increased by 3,214 million RMB, which is 5 percent less

than the welfare gains under the unilaterally optimal restriction scenario.
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1.7.3 Nationally Optimal Import Restriction

This sector considers the counterfactual that a social planner decides the optimal restric-

tion for each city to maximize the national social welfare. I use a greedy algorithm to

search for the optimal restriction.35

Figure 1.9 contrasts the results between the Nash equilibrium and the nationally op-

timal restriction. Panel (a) shows the number of cities according to the restriction strin-

gency they choose. Under the nationally optimal restriction, 112 cities do not restrict, 154,

38, and 8 cities restrict based on China 1, China 2, and China 3, respectively. Under the na-

tionally optimal restriction, the number of non-restricting cities is much larger (112) than

that under the Nash equilibrium (25), and much fewer cities choose to restrict China 2 and

China 3 compared to the Nash equilibrium scenario. This implies that cities over-restrict

under the Nash equilibrium compared to the socially optimal level. This is not surprising,

as cities do not internalize the negative spillovers they generate on society when choosing

their unilaterally optimal restriction to maximize their individual social welfare.

Panel (b) of Figure 1.9 shows welfare effects in gains from trade, environmental ben-

efits, and social welfare. Non-cooperative Nash equilibrium increases social welfare by

about 3.2 billion RMB. However, this is only about 80 percent of the welfare gains attain-

able under the nationally optimal restriction. The result clearly suggests that the non-

cooperative Nash equilibrium is inefficient.

Panel C of Table 1.8 reports the welfare effects under the nationally optimal import

restriction scenario. Gains from trade decrease by 1,115 million RMB, but environmental

benefits increase by 1,105 million RMB through the trade channel and by 4,075 million

35Greedy algorithm is a heuristic method to search for local optimal solutions by selecting the best choice
at each step. At each step, I simulate and compare the additional welfare gain that each city unilaterally
restricts can generate and choose the optimal restriction of the city that adds the largest welfare gain to the
society. This process iterates until no additional gains could be obtained by adopting restrictions in more
cities.
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RMB through the scrap channel. The total social welfare increased by 4,065 million RMB.

Compared to the welfare effects under the decentralized Nash equilibrium, centralized

optimal restriction results in fewer dead weight losses (1,693 million RMB) and fewer en-

vironmental benefits (842 million RMB). Social welfare gains are 851 million RMB higher,

which is a 26 percent increase.

Distributional effect In addition to the aggregate effect, it is also important to know

how the effect varies between cities. The welfare changes are heterogeneous, as shown in

Figure 1.10. I group cities into tertiles by GDP per capita and report the welfare effects by

tertile in Table 1.8. There is a common pattern across three counterfactuals: the poorest

third cities gain the most, the middle third gain modestly, and the richest third lose.

In general, import restrictions result in larger dead weight losses and larger environ-

mental benefits to low-income cities. This is mainly driven by the pattern of used ve-

hicle trade — most used vehicles flow from higher-income cities to lower-income cities.

On one hand, import restrictions have a larger effect on the price index in lower-income

cities which are more reliant on imports (lower home expenditure share), which leads to

a larger decrease in gains from trade. On the other hand, import restrictions reduce the

net inflow of used vehicles from higher-income cities to lower-income cities, thus gen-

erating environmental benefits to lower-income cities but environmental costs to higher-

income cities through the trade channel. Import restrictions generate environmental ben-

efits through the scrap channel for cities of all income levels, larger for lower-income cities

because of the larger price effect.
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1.7.4 Emission Tax

Instead of restricting imports of used vehicles, each city could alternatively allow free

trade and implement an emission tax on all vehicles, both locally traded and imported.

In this subsection, I consider a counterfactual in which every city levies an ad valorem tax

set at the rate of the environmental damage of vehicle lifetime emissions over the vehicle

value. This emission tax varies between cities and between vehicle sectors. The emission

tax is higher for dirtier vehicles and in cities where the marginal damage of pollution is

greater.

Panel D of Table 1.8 reports the welfare effects when all cities levy an emission tax on

China 1 vehicles. The tax leads to a decrease in gains from trade by 2,553 million RMB,

and a small increase in environmental benefits through the trade channel (115 million

RMB). However, the environmental benefits from the scrap channel are 37,716 million

RMB, more than 10 times the dead weight loss. Social welfare increases by 35 billion

RMB, which is almost nine times the welfare gains under the nationally optimal import

restriction.

Columns (2) and (3) of Table 1.8 show that across alternative counterfactuals, the en-

vironmental benefits generated by increasing vehicle scrappage are greater than those

generated by reducing vehicle trade. The prominence of the scrap channel implies that

speeding up scrappage and making the fleet cleaner is the key to regulating vehicle emis-

sions.
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1.8 Conclusion

To address the ever-increasing environmental concerns created by the fast-growing trade

of dirty goods, many countries and regions have adopted various restrictions on imports

of dirty goods. This paper investigates the effectiveness, efficiency, and distributional ef-

fect of decentralized import restrictions, taking into account interjurisdictional spillovers

and strategic interactions in the context of used vehicle trading in China. Using com-

prehensive data on the intercity trade of used vehicles, I find that the import restric-

tion could reduce net imports of used vehicles, thus increasing environmental benefits.

Then, I build a structural trade model to quantify welfare trade-offs between environ-

mental benefits and losses from reduced trade. Simulation results show that unilaterally

restricting imports of used vehicles could increase environmental benefits through two

channels: reduced net imports and increased scrappage due to lower vehicle prices. The

scrap channel plays a bigger role. Restricting high-polluting vehicles makes cities better

off, especially lower-income cities. However, these unilateral restrictions generate signif-

icant spillovers into other cities and incentivize more cities to adopt or tighten existing

restrictions. The decentralized decision leads to over-restrictions that are socially ineffi-

cient, achieving 80 percent of the welfare gains attainable under the nationally optimal

import restriction. Lastly, to put import restrictions into perspective, I find that their ef-

fectiveness is modest compared to emission taxes. Nationally optimal import restrictions

can achieve 14 percent of emission reductions and 12 percent of welfare gains attainable

under emission taxes. These findings highlight the importance of coordination in using

trade restrictions as the second-best policy to regulate transboundary pollution problems.

One limitation of this paper is the lack of empirical evidence on the effect of import

restrictions on vehicle scrappage, due to data limitations. A related limitation is that I do

not develop a full model to rationalize vehicle owners’ choices between replacing, keep-

ing, and scrapping their vehicles. Instead, I use the price elasticity of scrappage estimated
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from Jacobsen and Van Benthem (2015) to simulate changes in scrappage of used vehicles

under counterfactuals. Future work could extend a discrete choice model that determines

the general equilibrium prices of used and new vehicles, such as Gillingham et al. (2022),

to a multi-market setting. Lastly, when calculating the marginal damage of pollution,

I assume a linear relationship between pollutant emissions and environmental damage,

not taking into account the baseline of air quality. Recent literature, Gong et al. (2023),

for example, finds evidence of a concave dose-response function in the long-run effect of

fine particulate matter (PM2.5) pollution on mortality in China. Incorporating this concave

dose-response function indicates higher marginal damage from pollution in low-income

cities, where the baseline pollution is lower, thus reinforcing the distributional effect that

low-income cities benefit more than high-income cities from the import restriction policy.
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Figures and Tables

Figure 1.1. Welfare Contours and Best Response
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Notes: This figure illustrates three contours of the welfare of the home country. W1 > W2 > W3. D1, D2, and
D3 are points where the slope of the contours is zero. RR is the locus of these maxima points that describes
the optimal response of the home country.

Figure 1.2. China Tailpipe Emission Standards

Notes: The figure shows the limits of tailpipe emissions for different pollutants set by emission standards
from China 1 to China 5.
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Figure 1.3. Rollout of Used Vehicle Import Restrictions by City

(a) 2012 (b) 2013

(c) 2014 (d) 2015

Notes: This figure shows the rollout of restricting cross-city imports of used vehicles in China from 2012 to
2015.
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Figure 1.4. Imports and Exports of Used Vehicles, 2013.1-2018.6

0.5
Density

7
8

9
10

11
12

ln
(Im

po
rt)

6 8 10 12 14
ln(Export)

25000
50000
75000
100000

200000

GDP Per Capita (RMB)

0
.5D

en
si

ty

Notes: This figure shows the total imports and exports of used vehicles from January 2013 to June 2018 by
city. Each point represents a city included in our sample. The size of the point denotes the average GDP
per capita over 2013-2018. The 45-degree line represents balanced import and export. Points above the
45-degree line are net importers of used vehicles while points below are net exporters.
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Figure 1.5. Marginal Damage of PM2.5 Emissions

Notes: This figure shows the marginal damage of PM2.5 emissions by prefecture city in China. The
marginal damages are calculated using the intake fraction method following Parry et al. (2014b); Humbert
et al. (2011); Apte et al. (2012).
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Figure 1.6. Estimated Effects of Restrictions on Vehicle Flows

(a) Imports

(b) Exports

(c) Net imports

Notes: This figure shows the dynamic effects of restricting the (intercity) imports of used vehicles
according to emission standard China 4 on imports, exports, and net imports of restricted used vehicles.
The average treatment effects are estimated using the CSDID method proposed by Callaway and
Sant’Anna (2021). The data are at the city-year quarter level from 2013 to 2015.
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Figure 1.7. Welfare Changes under Unilateral Restriction

(a) Own Effect

(b) Spillover Effect

Notes: Panel (a) shows the distribution of own welfare effect by city in China when each one of them
unilaterally restricts imports of used vehicles based on different emission standards. Panel (b) shows the
distribution of the spillover effect of one city’s restriction on all the other cities together. The subplots 1 to
5 represent different restriction stringency, from left to right, restricting used vehicles of only China 1, to
restricting all used vehicles from China 1 to China 5.
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Figure 1.8. Optimal Choices and Welfare Effects under Decentralized Restrictions

(a) Optimal Choices by City

(b) Welfare Effect

Notes: This figure compares optimal restriction choices of the unilaterally optimal restriction and the
non-cooperative Nash equilibrium. Panel (a) shows the optimal restriction choices by city. Labels for the
x-axis mean the stringency of restriction based on tailpipe emission standards. China 1 means restricting
used vehicles of China 1, and China 3 means restricting used vehicles from China 1 to China 3. Panel (b)
shows the effect of restriction on gains from trade, environmental benefits, and social welfare.

58



Figure 1.9. Optimal Choices and Welfare Effects: Decentralized vs. Centralized

(a) Optimal Choices

(b) Welfare Effect

Notes: Panel (a) compares optimal restriction choices by city between the non-cooperative Nash
equilibrium with the optimal choices under the nationally optimal restriction. Panel (b) compares the
welfare effects, including gains from trade, environmental benefits, and social welfare between the
non-cooperative Nash equilibrium with nationally optimal restriction.
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Figure 1.10. Welfare Changes Under Nationally Optimal Restriction

Notes: This figure shows the social welfare change under the nationally optimal restriction for 312 cities.
All values are in million RMB.
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Table 1.1. Summary statistics

Variable Mean Std. Dev. Min. Max. N
Used vehicle trade (city×year-quarter)
Imports of used vehicles 809.7 829.6 24 8851 3744
Net imports of used vehicles -43.4 2968.8 -55333 8254 3744
Local sales of used vehicle 3694.8 5135.2 9 45258 3744

New vehicle sales (city×year-quarter)
New vehicle sales 8941.9 12193.9 9 103450 3744

Social economic status and vehicle stock (city×year)
GDP per capita (RMB) 46162.3 28081.0 7134.5 207163.0 936
Population (1,000) 4248.0 3145.4 192.9 33752.0 922
Number of motor vehicles (1,000) 511.6 631.0 7.6 5350.0 936

Marginal damage of pollution
Intake fraction (ppm) 83.4 65.9 4 569 936
Linear population density (persons m−1) 444.2 265.4 24 1664 936
Normalized dilution rate (m2s−1) 1042.1 371.4 246 3321 936
Marginal damage of PM2.5 (2015$/t) 132302.3 104618.6 5611 903469 936
Marginal damage of NOx (2015$/t) 18297.1 14468.5 776 124948 936

Notes: This table reports the summary statistics of used vehicle trade, new vehicle sales, GDP per capita,
motor vehicle stock, intake fraction, and marginal damage of PM2.5 and NOx emissions for 312 cities
over 2013 to 2015. Intake fractions are calculated using equation (1.10). Linear population density
is calculated by dividing city population over urbanized land area. Normalized dilution rate is the
multiplication of wind speed and atmospheric mixing height. Marginal damage is calculated using
equation (1.11).
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Table 1.2. Emission Factors

Vehicle type China 1 China 2 China 3 China 4 China 5 New

Emission Limit (g/km)
CO 3.16 2.2 2.3 1.0 1.0 1.0
HC+NOx 1.13 0.5 0.15 0.08 0.06 0.06
PM 0.18 0.08 0.05 0.025 0.0045 0.0045

Average age 13 10 7 4 2 0
Deterioration factor 2.0 1.6 1.3 1.0 1.0 1.0

Notes: Emission limits are set by tailpipe emission standards China 1 to China 5. Assume that all new
vehicles satisfy China 5. The average age of vehicles by emission standard are calculated from the used
vehicle registration data. The emission deterioration factors are obtained from Jacobsen et al. (2021).
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Table 1.3. Effect of Import Restrictions on Used Vehicle Trade

TW fixed effects CSDID

Dependent variable Imports Exports Net Imports Imports Exports Net Imports
(1) (2) (3) (4) (5) (6)

Dit 24.3 111.0** -86.7 -258.7*** -40.5* -218.2***
(47.8) (48.9) (67.2) (60.5) (18.9) (61.8)∑

j,i w jiD j,t−1 -52.0 -279.6*** 227.6*
(108.1) (86.1) (135.1)

City FE Y Y Y N N N
Year-quarter FE Y Y Y N N N
Observations 3432 3432 3432 1109 1109 1109

Notes: This table reports the impact of restricting imports of used vehicles below China 4 on imports,
exports, and net imports of restricted used vehicles. The unit of observation is city-by-year-quarter. The
sample covers 312 cities from 2013 to 2015. Columns (1) to (3) report results from two-way fixed effects
models, controlling for city fixed effects, year-quarter fixed effects, and GDP per capita lagged one year.
Columns (4) to (6) report results using the CSDID method proposed by Callaway and Sant’Anna (2021),
controlling for the index of restriction exposure and GDP per capita. Standard errors are clustered at
the city level. * p < 0.10, ** p < 0.05, *** p < 0.01.

63



Table 1.4. Effect of Import Restrictions on Ambient Air Quality

Dependent variable ln(AOD)

TW fixed effects CSDID

(1) (2) (3) (4) (5) (6)

Dit -0.002 -0.002 0.004 -0.024 -0.054 -0.052
(0.022) (0.022) (0.021) (0.041) (0.041) (0.044)

City FE Y Y Y N N N
Year-quarter FE Y Y Y N N N
Weather Controls N Y Y N Y Y
Upwind pollution N N Y N N Y
Observations 2982 2982 2982 806 675 675

Notes: This table reports the impact of restricting imports of used vehicles below China 4 on local aerosol
optical depth(AOD) reading. The unit of observation is city-by-year-quarter. The sample covers 312
cities from 2013 to 2015. Columns (1) to (3) report results from two-way fixed effects models, controlling
for city fixed effects, year-quarter fixed effects, GDP per capita lagged one year, weather controls, and
upwind pollution controls. Columns (4) to (6) report results using the CSDID method proposed by
Callaway and Sant’Anna (2021), controlling for the index of restriction exposure, GDP per capita lagged
one year, weather controls, and upwind pollution controls. Standard errors are clustered at the city
level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 1.5. Strategic Interaction over Restriction Policy across Cities

Dependent variable Restriction dummy

(1) (2) (3) (4)

Lagged Weighted Restriction 0.966*** 0.754*** 0.499*** 0.244***
(0.086) (0.072) (0.059) (0.052)

Observations 3384 3080 2776 2472
Adjusted R2 0.863 0.864 0.869 0.893
Lag length 1 quarter 2 quarters 3 quarters 4 quarters

Notes: This table reports strategic interactions between 312 cites in restriction adoptions. The dependent
variable is a dummy variable indicating whether a city has restricted the imports of used vehicles below
China 4. The dependent variables for columns (1) to (4) are the weighted average of the restriction
dummy of all other cities weighted by bilateral trade of used vehicles between city pairs in the baseline,
lagged one to four quarters, respectively. All regressions control for city FEs, year-quarter FEs, and GDP
per capita lagged one year. Standard errors are clustered at the city level. * p < 0.10, ** p < 0.05, ***
p < 0.01.
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Table 1.6. Estimates of the Demand Elasticity and Supply Elasticity

OLS IV IV
(1) (2) (3)

Demand Elasticity (ϕ) -0.229*** 1.519*** 2.468***
(0.041) (0.552) (0.563)

Supply Elasticity (ψ) -0.981*** -5.088 1.830
(0.194) (4.211) (2.851)

Vehicle stock control N N Y
Year FE Y Y Y

First stage Sanderson-Windmeijer F-test
Income 7.212 23.341
(p-value) 0.008 0.000
Own expenditure share 6.908 7.449
(p-value) 0.009 0.007
Observations 936 936 936

Elas. of sub. across locations (σ) 3.5

Notes: This table shows the regression results of equation (1.47) based on used vehicle trade of 2013-
2015. The dependent variable is the estimated destination fixed effects obtained from regressing bilat-
eral trade flows relative to the destination’s own expenditure on a set of geographic dummies, origin
and destination fixed effects. The independent variables is the destination revenue. Instruments are
constructed by predicting hypothetical revenue from the general equilibrium model specified in section
1.5.3, for exogenous trade frictions and supply shifters. Trade frictions are generated only from geo-
graphic variables. IV regressions use lagged-three-year motor vehicle stock to predict the supply shifter
per city. Standard errors clustered at the city level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 1.7. Estimates of the Elasticity of Substitution between Sectors

Dependent var. ln E js

(1) (2) (3)

ln P js -0.092** -1.541*** -1.417***
(0.043) (0.066) (0.065)

City FE Y Y Y
Sector FE N Y Y
Year FE N N Y
Observations 5583 5583 5583

Elas. of sub. across sectors (ε) 2.4

Notes: This table shows the regression results of equation (1.49). The dependent variable is the log of
expenditure, and the independent variable is the log of price index. The observations are at the city-
sector-year level. The sample period is 2013-2015. Standard errors clustered at the city level. * p < 0.10,
** p < 0.05, *** p < 0.01.
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Table 1.8. Welfare Effects under Different Counterfactuals

(million RMB) Economics gains Environmental benefits Social welfare

(from trade) (from scrap)

(1) (2) (3) (4)

Panel A: Unilaterally optimal restriction
Countrywide -2,542 1,450 4,479 3,387

Poorest third -1,119 1,393 2,613 2,888
Middle third -1,272 1,090 1,416 1,234
Richest third -152 -1,033 449 -735

Panel B: Non-cooperative Nash equilibrium
Countrywide -2,808 1,427 4,595 3,214

Poorest third -1,246 1,450 2,649 2,853
Middle third -1,386 1,115 1,453 1,183
Richest third -176 -1,139 493 -823

Panel C: Nationally optimal restriction
Countrywide -1,115 1,105 4,075 4,065

Poorest third -645 1,044 2,420 2,818
Middle third -414 475 1,252 1,313
Richest third -56 -414 403 -67

Panel D: Emission tax
Countrywide -2,552 115 37,716 35,280

Poorest third -346 105 11,687 11,446
Middle third -675 92 12,505 11,922
Richest third -1,530 -82 13,525 11,912

Notes: This table reports the aggregate and heterogeneous welfare effects under four different counter-
factuals. Panels A to C are scenarios of emission-based import restrictions on used vehicles. Panel D
is the scenario in which each city levies a city- and vehicle sector-specific ad valorem emission tax on
both locally traded and imported vehicles. The tax rate equals damages of vehicle life-cycle emissions
divided by vehicle values. All values are 2015 RMB in millions.

68



CHAPTER 2

ENVIRONMENTAL PROTECTION OR LOCAL PROTECTIONISM? EVIDENCE

FROM TAILPIPE EMISSION STANDARDS IN CHINA

A shorter version of this chapter was published in AEA Papers and Proceedings (Bai et al.,

2021). Copyright Notice: Copyright American Economic Association; reproduced with

permission.

2.1 Introduction

Despite the promise of trade liberalization in promoting economic growth and increase

social welfare (Rivera-Batiz and Romer, 1991; Edwards, 1993; Krueger, 1998), nations and

local jurisdictions have incentives to protect particular industries that are deemed to be

important to the national or local economy but vulnerable to outside competition. As

tariffs are usually limited or prohibited by trade agreements, non-tariff barriers are often

used to protect local interests and industries. Technical barriers to trade (TBT) alone im-

pacts more than 30 percent of product lines and almost 70 percent of the world trade in

2018 (UN, 2019). Many alleged non-tariff barriers are implemented under the stated goal

of environmental protection.1 To address this issue, Article XX of the General Agreement

on Tariff and Trade (GATT) allows WTO members to adopt environmental measures on

their own jurisdiction, but not in a manner of “a disguised restriction on international

trade” (UN, 2003). However, this type of “environmental protectionism” is often hard to

detect and prove for the purpose of trade litigation.

The incentives to protect the local environment and local tax base could co-exist and

interact with each other at the sub-national level, manifesting in environmental protec-
1See Runge (1990); Copeland and Taylor (2004); Ederington (2001); Ederington and Minier (2003) for

examples.
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tionism. This paper studies this issue in the context of used vehicle trading in China.

Under the stated goal of protecting local air quality, many Chinese cities used tailpipe

emission standards to restrict the import of used vehicles below local standards. In recent

years, the central government speculated the restriction as a form of local protectionism

and required the local governments to lift the restriction. The adoption and removal of

the restriction provide a unique setting to study environmental protectionism for several

reasons. First, China has a deep political root of within-country trade barriers. As pointed

out by Montinola et al. (1995), “China lacks an adequate mechanism for policing the in-

ternal common market. This absence explains in part why many local governments have

focused on trade barriers and aggressive anti-market policies within their jurisdiction.”

Second, the auto industry is regarded as a typical industry with practices of local protec-

tionism due to its potentially large contribution to local GDP and employment (Wan et

al., 2015; Barwick et al., 2021).2 As a matter of fact, the auto industry was reported as the

third most protected industry in China according to a survey administered by the Devel-

opment Research Center of the State Council (Li et al., 2004). Third, trade liberalization

of the used vehicle market could induce large potential gains (Grubel, 1980), but in real-

ity, cities were very slow in removing the restriction. This further points to an important

question of coordination in environmental regulation.

In this study, we first show a cross-sectional positive correlation between restriction

adoption and the share of the auto industry in local tax revenue. Although not causal, it

provides suggestive evidence that cities with a large automobile industry are more likely

to impose the restriction, which is in line with the local protectionism speculation. We

then focus on the removal of the restriction. We look at the direct impact on the imports,

local sales, and total sales of dirty used vehicles. Then we examine the explicit goal of

environmental protection to see whether removing the restriction had a negative impact

2Automobile production in China is spatially dispersed and exists in 22 out of 31 provinces. During
China’s 11th Five-Year Plan from 2005 to 2010, all of these provinces designated the automobile industry as
a strategic industry that enjoys tax benefits and various other government supports.
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on air quality. Finally, we examine the implicit goal of protecting the local auto industry,

by looking at how restriction removal impacts new vehicle sales.

We use the following identification strategies to address the concern that restriction

removal could be endogenous. We first restrict our sample to cities that removed the

restriction at the provincial level, thus mitigating the problem of self-selection. In addition

to including city, time, and province-by-year fixed effects, we add a rich set of controls

including economic status, political leader demographics, and flexible initial conditions

interacted with linear time trends. To alleviate the potential over-fitting problem that may

arise by adding many controls, we further use the post-double-selection (PDS) method

(Belloni et al., 2012) to select the “right” set of controls in our specification.

We start by estimating the dynamic effects on the imports of dirty used vehicles us-

ing an event study framework. Dirty used vehicles are vehicles with emission standards

below national standard China 4 3 and were subject to the import restriction in our study.

It is shown that the import of dirty used vehicles increased sharply over time after the

restriction was lifted. At the same time, local sales of dirty used vehicles decreased, sug-

gesting that consumers shifted away from the local market when markets in other cities

became accessible. Total sales of dirty used vehicles increased but were not statistically

significant.

We then ask whether the increase in the import of dirty used vehicles led to the dete-

rioration of local air quality. We did not find evidence that removing the restriction had

any significant impact on ambient PM2.5, CO, NO2, but some minor effect on O3. Thus the

stated goal of continuing to enact the restriction is not strongly supported, at least in the

short run.
3China established the first tailpipe emission standards, China 1, in 2001. Since then, the emission stan-

dards were tightened every several years from China 1 to China 6. China 4 was established and released by
the Ministry of Environment Protection (MEP) and Standardization of Administration of China (SAC) in
2005 and was in effect from July 2011 to Dec 2016.
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Our last set of analyses focuses on the new vehicle market. We find that a unilateral

removal of the restriction would reduce new vehicle sales in the home city but increase

new vehicle sales in other cities. The effect is stronger in cities with a large automobile in-

dustry. This represents a “prisoners’ dilemma”: cities were reluctant to lift the restriction

on their own for it could hurt new vehicle sales and the local automobile industry, but if

all cities cooperated and lifted the restriction together, new vehicle sales would increase.

A failure of cooperation could make cities stuck in an inefficient equilibrium.

This study contributes to the literature in the following dimensions. First, while there

is much literature studying the impact of environmental regulation on air quality (Davis,

2008; Auffhammer and Kellogg, 2011; Ellison et al., 2013; Wolff, 2014; Viard and Fu, 2015;

Zhang et al., 2017; Salvo and Wang, 2017), little attention has been put on used vehicle

trade. To the best of our knowledge, our paper is the first to evaluate the impact of used

vehicle trade on air quality. A closely related study is Davis and Kahn (2010) which doc-

uments the change of emissions in the U.S. and Mexico due to increased bilateral trade of

used vehicles after NAFTA. What’s different is that we estimate the impact of the intra-

national trade of used vehicles in China on the ambient pollution levels.

Second, although a lot of work has been done to understand the impact of environ-

mental regulations on the vehicle market, especially how automakers and consumers re-

spond to fuel economy standards (Anderson and Sallee, 2011; Klier and Linn, 2012; Bento

et al., 2020; Reynaert, 2019; Klier and Linn, 2016; Dou and Linn, 2020), there are not many

studies considering the interconnection between used vehicle market and new vehicle

market. Existing studies show that the used vehicle market could respond to tightening

standards in the new vehicle market by delaying the scrappage of used cars (Gruenspecht,

1982; Jacobsen and Van Benthem, 2015). Our study, on the contrary, documents that trade

liberalization in the used car market could result in increased sales in the new vehicle

market.
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Third, our study adds to the literature of “environmental protectionism”, a disguised

way to protect local industry using environmental regulations. Two recent examples are

the differentiated CAFE standards favoring U.S. automakers (Levinson, 2017) and the

fuel tax and emission standards in the EU favoring diesel vehicles largely produced by

EU automakers (Miravete et al., 2018). Our analysis provides suggestive evidence that

local governments with large auto industries are more likely to adopt the restriction, and

show that the removal of restriction would hurt new vehicle sales, supporting the theory

of protection for sales (Grossman and Helpman, 1994). This finding also speaks to the lit-

erature on local protectionism, manifested in forms of decreasing regional specialization

(Young, 2000; Bai et al., 2004), home bias in vehicle market (Barwick et al., 2021), subsidy

in favor of local EV producers (Wan et al., 2015), etc.

Lastly, our study relates to the literature on environmental federalism. Whether de-

centralized authority results in efficient outcomes is a big question that attracts many

researchers. In theory, inter-jurisdictional competition could lead to Pareto-efficient out-

comes only under a long list of assumptions that are hard to hold in practice (Levinson,

2003).4 A commonplace in environmental regulation, “Conjoint federalism”, where the

central government sets a standard and the local governments then implement policies to

meet, could be least efficient (Lin, 2010). A lot of studies try to look for evidence of “race

to the bottom” or “race to the top” in environmental regulation (Oates, 2001; Potoski,

2001; Millimet, 2003) and whether local governments strategically interact with each other

(Fredriksson and Millimet, 2002a; Brueckner, 2003), but less attention has been placed on

the outcome of lack of coordination. We provide empirical evidence that unilateral behav-

ior leads to an inefficient equilibrium, a prisoner’s dilemma, while coordination would

improve overall benefits.

4These assumptions include: “no cross-border externalities, many jurisdictions, all economic rents
earned locally by the competing jurisdictions, welfare-maximizing local regulators, no constraints on avail-
able policy instruments and no redistributive policies (all taxes are benefits taxes)”
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The rest of this paper is organized as follows: Section 2.2 reviews the institutional

background and describes data sources. Section 2.3 describes the empirical framework.

Section 2.4 presents the estimated impact of removing the restriction on the used vehicle

market, air pollution, and new vehicle sales. Section 2.5 concludes.

2.2 Institutional Background and Data

2.2.1 Institutional Background

Growth of Chinese Vehicle Market China’s vehicle market has experienced remark-

able growth over the past twenty years. Annual sales of new vehicles increased from 2.1

million in 2000 to 28.9 million in 2017, at an average annual growth rate of 16.7 percent

(see Figure 2.1). The total number of vehicles has reached 310 million in 2017 (MEE, 2018),

which is 14 percent more than the total number of vehicles in the U.S. as of 2017.5

During the same period of time, the used vehicle market in China has also been grow-

ing, from a trading volume of 0.25 million in 2000 to 10.3 million in 2017. However,

compared to the booming new vehicle market, the used vehicle market is much smaller

and less active. Sales of used vehicles accounted for about 1/10 of new vehicle sales in

2000 and increased to about 1/3 in 2017. This used-to-new sales ratio is much smaller

than that in countries like the U.S., where used vehicle sales are approximately 3 times

new vehicle sales.6

The small size of the used vehicle market in China is partly due to its relatively young

vehicle stock. Another important impediment is transaction costs (Gavazza et al., 2014).

5US total number of motor vehicles was 272.5 million in 2017. Data source: https://www.statista.
com/statistics/183505/number-of-vehicles-in-the-united-states-since-1990/

6Source: https://www.statista.com/statistics/183713/value-of-us-passenger-cas-sales-and-leases-since-1990/
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In China, government intervention adds to the transaction costs by imposing an import

restriction that prevents the free flow of used vehicles between cities. We will explain this

restriction in more detail in the following section.

Adoption of Import Restriction on Used Vehicles Import restriction is a policy adopted

by local governments that restricts the import of used vehicles from other cities that are

below the local vehicle emission standards in effect. For example, many cities used China

4 as the bar for imports, and used vehicles purchased from other cities that were below

China 4 were prevented from being registered in the local DMV. In essence, the import re-

striction on used vehicles is an example of using trade policy to address an environmental

problem.

From the perspective of political economy, trade policies are shaped by politics to pro-

tect specific interests (Grossman and Helpman, 1994; Mitra, 1999). The equilibrium level

of protection is determined by the demand for protection from interests group and supply

from politicians maximizing self-interested objective (Trefler, 1993). In general, countries

often provide more protection to industries that are at comparative disadvantage (Ray,

1981), in decline, politically important, or threatened by import competition (Lee and

Swagel, 1997).

Import restriction on used vehicles has been pervasive in many countries and in dif-

ferent forms such as complete bans, banning imports of older vehicles, higher tariffs, and

import licenses (Coffin et al., 2016). The key incentive is to protect domestic production

and sales of new vehicles (Grubel, 1980). Data in Latin America shows that countries with

the capacity to produce automobiles have much higher levels of import restrictions on

used vehicles (Pelletiere and Reinart, 2002). Pelletiere and Reinert (2004) also finds strong

evidence that automobile production, either domestic- or foreign-owned, contributes to

more restrictions on imports of used vehicles. Other reasons, including environment,
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safety, and fraud concerns could also play a role (Pelletiere and Reinart, 2002).

Based on the theory and empirical evidence in the political economy of trade policy,

we speculate that in addition to the stated goal of protecting the environment, there might

be another incentive that drives local governments to adopt the import restriction, i.e., to

protect the local automotive industry. We use the AOD concentration to measure air

pollution and the share of the auto industry in local tax revenue as an index to capture

the importance of the auto industry. We then regress the dummy of adopting restriction

in 2013 on AOD, the tax share of the auto industry, and economic and political leader

variables as of 2012.

Table B.1 shows the correlation between the adoption decision in 2013 and the vari-

ables we include in the regression. The restriction adoption is positively correlated with

the AOD level as of 2012. This implies that cities with a more serious pollution prob-

lem are more likely to adopt an import restriction on used vehicles. This result supports

the stated goal of the local government that the policy was intended to control the air

pollution problem.

The result also shows that cities with a larger tax share of the auto industry as of 2012

are more likely to adopt the restriction. In cities with large auto industries, vehicles pro-

duced by local auto firms account for a large proportion of new vehicle sales (Barwick et

al., 2021). Therefore, they have more incentive to impose the restriction to protect new ve-

hicle sales and thus the local auto industry from import competition. This result supports

our speculation that the local governments may want to use the trade barrier to protect

local interests but under the disguise of environmental protection.

In a word, the adoption of import restriction could be viewed as a practice by local

governments trying to use a trade intervention to achieve an explicit goal of environ-

mental quality improvement and possibly an implicit goal of protecting the local auto
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industry and the new car market.

Removal of Import Restriction on Used Vehicles The import restriction of used vehi-

cles was recognized as “abusing of administrative power to exclude or restrict compe-

tition” in a document Guidelines of Anti Monopoly in Automotive Industry drafted by the

National Development and Reform Commission. On March 25, 2016, the General Office

of the State Council made an announcement Several Opinions about Promoting Convenient

Transactions of the Used Vehicles, urging local governments to lift the restriction before May

31, 2016, while excluding some key areas of air pollution prevention including Beijing,

Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, and 9 cities in the Pearl River Delta.

However, by the deadline of May 31, 2016, only 3 cities lifted the restriction as re-

quired. On December 29, 2016, the Ministry of Environmental Protection and the Min-

istry of Commerce together made another announcement, clarifying that every used ve-

hicle that was allowed to run on the road locally should not be restricted from import.

In March 2017, the Ministry of Commerce, the Ministry of Public Security, and the Min-

istry of Environmental Protection together issued another announcement requiring local

governments to report whether they have lifted the import restriction on used vehicles.

The reports would be submitted to the State Council and non-compliant cities could be

subject to on-site inspection from the State Council. In March 2018, Prime Minister Li

Keqiang emphasized the goal of national removal of the restriction in his annual govern-

ment working report. However, after all these pushes, there is still about 40 percent of

the cities that have not lifted the restriction by June 2018. Figure 2.2 panel (a) depicts the

timeline for adopting and removing the import restriction.

For the following analysis, we focus on the removal of the import restriction rather

than the adoption for two reasons. First, the import restriction and the emission stan-
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dards were simultaneously adopted before the central government mandated the re-

moval. Therefore, the effect of restriction adoption could be confounded by the effect of

tightening emission standards. Second, we have highly unbalanced data on air pollution

during the period of restriction adoption. As explained in more detail in the data section,

China expanded the air pollution monitoring network in three waves during 2013-2014,

thus the observations of air quality monitoring in 2013 are much fewer than the observa-

tions in 2014 and 2015.

As improving environmental quality and protecting the local auto industry could be

two driving forces that make local governments adopt the import restriction, it is highly

likely that local governments were reluctant to remove the restriction due to the same

concerns. Based on this logic, we unfold our empirical analysis in the following line. We

first look at the direct impact of restriction removal on the used vehicle market. Then

we examine the explicit goal of environmental protection, to see whether removing the

restriction would lead to a worsening of air quality. Finally, we examine the implicit goal

of protecting the local auto industry, by looking at how restriction removal impacts new

vehicle sales.

Tailpipe Emission Standards The fast growth of the vehicle population triggered great

concerns about worsening air quality. Vehicle emissions could be an important source of

air pollution in some cities. As estimated by Hao et al. (2000), vehicles contributed to 74

percent of CO concentration and 67 percent of NOx concentration in Beijing, before sub-

stantial emission control policies were adopted. Therefore, China started to take various

measures in the late 1990s to control vehicle emissions, including setting tailpipe emission

standards, improving fuel quality, controlling traffic, promoting electric vehicles, etc. (Wu

et al., 2017).

Being adopted in China, the U.S., European Union, Japan, etc., vehicle tailpipe emis-
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sion standards set limits for specific air pollutants that are allowed to be released into

the air by new vehicles. The standards push the manufacturers to adopt more advanced

emission control technologies in their new vehicle productions (Reynaert, 2019). Once a

new set of emission standards has been announced, vehicle manufacturers need to up-

grade their vehicle models and apply for certification for the models that meet the new

standard. When the new emission standard is adopted, new vehicles are not allowed to

be sold and registered if they fail to meet the new standard. However, the trade of used

vehicles is not subject to new standards.

In China, vehicle emission standards are established and released by the Ministry

of Environment Protection (MEP) and the Standardization of Administration of China

(SAC). In 2001, China released the first emission standard China 1, which put caps on CO,

HC+NOx, and PM from vehicle exhaust. Over time the standard has been tightened. The

first five sets of emission standards, i.e., China 1 to China 5, are as stringent as the corre-

sponding EU standards, Euro 1 to Euro 5. The most recent and the most stringent one,

China 6, sets the limits on CO, HC, NOx, and PM at the level of 40-50 percent lower than

the limits of Euro 6, and adds additional limits on N2O and PN. The emission standards

vary for different categories of vehicles, including gasoline- and diesel-powered light-

duty passenger vehicles and heavy-duty vehicles (commercial trucks and buses), etc. In

our study, we focus on the emission standards for gasoline-powered light-duty vehicles.

It is the central government that establishes the emission standards. Once new and

tighter emission standards have been released, local governments can choose when to

adopt them using their own discretion. For example, China 4 was released on July 1, 2007.

Beijing was the first to adopt it on March 1, 2008. Adoption in other cities rolled out

afterward until 2016.
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Potential Confounding Policies We choose the period of 2016-2018 for our analysis,

during which there was a staggered roll-out of restriction removal. As most cities adopted

the restriction before 2016, this period is not confounded by the adoption decision.

However, during 2016-2017, there was a tightening of emission standards from China

4 to China 5. Different from China 4, the timeline of adopting China 5 was planned by the

central government. In January 2016, the Ministry of Ecology and Environment (MEE)

announced that the adoption of China 5 would be in two waves: in the first wave, 11

provinces in eastern China would adopt China 5 on April 1, 2016; and on January 1, 2017,

all the remaining provinces were required to adopt China 5.7 Since the adoption of China 5

were at the provincial level in two different years, in our specification, we add province-

year fixed effects to absorb this confounding effect.

Two other policies have been effective during our sample period that could impact the

new vehicle sales. One is a cut on vehicle acquisition tax. The tax rate for vehicles with

displacement no larger than 1.6L was temporarily lowered from 10 percent to 5 percent

from October 1, 2015, to December 31, 2016, and then adjusted to 7.5 percent from January

1, 2017, to December 31, 2017.8 Since this policy applies to the entire country, its impact

could be absorbed by the time fixed effects and thus not confound our estimates on new

vehicle sales.

The other is the subsidy program for purchasing new energy vehicles (NEVs) during

2016-2020. Subsidies were offered both from the central and local governments.9 Some

cities implemented other policies that aimed at stimulating the sales of NEVs (Li et al.,

2022a).10 In order to alleviate the confounding effect, we exclude sales data of NEVs from

7Source: http://zfs.mee.gov.cn/hjjj/hjjjzcywxz/201606/20160623_355175.shtml
8Source: http://www.shanghai.gov.cn/nw2/nw2314/nw2315/nw17239/nw17243/

u21aw1183289.html
9Source: http://fgk.mof.gov.cn/law/getOneLawInfoAction.do?law_id=83837

10For example, in Shanghai and Shenzhen, plug-in electric vehicles were exempted from new vehicle
registration lotteries and fees (Sheldon and Dua, 2020).
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our analysis of new vehicle sales.

2.2.2 Data

For this analysis, we compile comprehensive city-level panel data on the timing of policy

roll-out, used and new vehicle sales, air pollution concentrations, and weather condi-

tions from various sources. This section describes each data source and shows some data

patterns. Table 2.1 reports summary statistics of the data within our sample window,

2016-2018.

Timing of Policy Roll-out We manually collect the timing of adoption and removal

of the import restriction in each prefecture-level city in China.11 Most of the data are

obtained from the official announcement of the policy on the local government’s website.

For those cities that do not publicize the policy on the government’s website, we try to

find the data from news media or directly contact the local DMV for information.

Our study focuses on the removal of the import restriction. Figure 2.2 panel (b) shows

the staggered roll-out of restriction removal across cities. One thing worth noting is that

there were 12 provincial jurisdictions (provinces and autonomous regions) that lifted the

restriction at the provincial level.12 For these provincial jurisdictions, it was the provincial

government that made a decision and announced the removal of the restriction, rather

than the city governments.

There is no official explanation why some provincial jurisdictions removed the restric-

11There are five levels of administrative divisions in China: the provincial (province, autonomous region,
municipality, and special administrative region), prefecture-level cities, county, township and village. A
prefecture-level city typically contains a central urban area and some surrounding counties and towns.

12Provincial jurisdictions that lifted the restriction at the provincial level are Yunnan, Inner Mongolia,
Jilin, Sichuan, Ningxia, Anhui, Guangdong, Guangxi, Jiangsu, Jiangxi, Hainan, and Guizhou.
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tion at the provincial level while others allowed the lower-level city governments to make

the decision. However, we think it is very possible that the former has a more centralized

administrative structure within its jurisdiction than the latter. Research on the determi-

nation of fiscal centralization, an extensively studied form of centralization and a predic-

tor of governance structure, shows that fiscal centralization is negatively correlated with

GDP per capita and population (Panizza, 1999; Bodman and Hodge, 2010). We see that

out of the 12 provincial jurisdictions that removed the restriction at the provincial level, 9

have GDP per capita below the national mean, and 10 have population below the national

mean. If those provinces tend to govern in a more centralized way, their decisions are less

likely to respond to variations in a particular city within its jurisdiction.

Used Vehicle Registration Data We have the universe of all used vehicle registration

data in China from January 2013 to June 2018. There are 40.05 million observations in

this data set. Each observation is a record of used car transactions including transaction

quantity, transaction year and month, the original registration city, the destination regis-

tration city, and rich car attributes such as manufacturer, model, engine size, footprint,

age, and emission standards each car meets. The data provide a complete picture of the

intra-national trade of used cars, which is rarely observed in existing studies.

Figure 2.3 shows the pattern of used vehicle sales over time. Panel (a) are the aggre-

gate imports and local sales of used vehicles across cities from January 2013 to June 2018.

The dashed line represents May 2016 when local governments started to lift the restric-

tion according to the central government’s mandate. Imports of used vehicles started

to rise faster after May 2016, from a mean of 1354 cars/month before to a mean of 4706

cars/month after.13

Next, we zoom in and look at the trends in the import of used vehicles by different
13These two numbers are calculated by fitting the import to a linear trend, before and after May 2016

respectively.
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emission standards. For simplicity, we divide used vehicles into two types: clean and

dirty, according to the emission standard China 4. Dirty vehicles do not meet standard

China 4 and are subject to the import restriction based on China 4, while clean vehicles

that meet China 4 or China 5 are not restricted. As shown in panel (b) Figure 2.3, the

import of dirty vehicles decreased sharply before May 2016, but the trend was reversed

after May 2016 when cities started to lift the restriction. In contrast, the import of clean

vehicles does not show a break in its increasing trend in May 2016.

New Vehicle Sales Data We obtain the universe of new vehicle sales data from China

Automotive Technology and Research Center. The data report monthly sales of new vehi-

cles by brand-model in 341 cities from 2015 to 2018. The sales include traditional gasoline

vehicles and NEVs such as hybrid plug-in vehicles, electric vehicles, cell battery vehicles,

etc. For our analysis, we drop the data on NEVs because they could be confounded by

concurrent policies of NEV subsidies across cities. The total sales of NEVs account for 0.9

percent, 1.6 percent, 2.9 percent, and 5.3 percent in 2015-2018, respectively. New vehicle

sales (gasoline vehicles only) increased from 21.1 million to 24.2 million from 2015 to 2016,

but stagnated at 23.8 million in 2017 and declined to 21.3 million in 2018.

There is rich heterogeneity of new vehicle sales across cities. Mega-cities, such as

Shanghai, Beijing, Chengdu, Chongqing, Zhengzhou, Guangzhou, etc., have much larger

new vehicle sales than small and low-income cities. The top ten cities together account

for 21 percent of the national sales over 2015-2018.

Air Pollution Data Before 2012, China monitored PM10, NO2, SO2, CO, NO2, and re-

leased daily Air Pollution Index (API) calculated based on the ambient concentration of

PM10, NO2, and SO2 for a limited number of cities (Chen et al., 2013). Since 2011, the U.S.

Embassy in Beijing tweeted their roof-top monitored PM2.5 data and caused a dramatic
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increase of public attention on PM2.5. In 2012, the Ministry of Environmental Protection

(MEP) of China released a new national standard, Ambient Air Quality Standards (GB3095-

2012), adding PM2.5 to the monitored pollutants. During 2013-2014, MEP rolled out a na-

tionwide program expanding air pollution monitoring stations and disclosing real-time

pollution information. On January 1, 2013, 74 cities started to make public the hourly data

of six pollutants, PM2.5, PM10, NO2, SO2, CO, NO2. 116 cities were added by October 31,

2013. By November 20, 2014, 367 cities have publicized real-time pollution data (Barwick

et al., 2019). The number of air pollution monitoring stations has increased from 922 in

2013 to 1605 in 2018.

In our analysis, we focus on four pollutants PM2.5, CO, NO2, and O3. We obtain the

hourly data of all monitoring stations in China from 2013 to 2018 from the Data Center of

the Ministry of Ecology and Environment (MEE), formerly MEP. For our analysis, we col-

lapse the station-hourly data to the city-month level by simply averaging across stations

and times within a city month.

Meteorology Data We retrieve the meteorological data from the National Meteorolog-

ical Information Center of China. The Information Center has monthly meteorological

data for 613 basic reference surface meteorological observation stations across China. The

data includes a rich set of meteorological measures in wind speed, temperature, atmo-

spheric pressure, relative humidity, precipitation, and wind direction. Using the longi-

tude and latitude of each meteorological station, we calculate the Vincenty distance be-

tween each station-city pair and match each city with the closest station.

City Social Economic Variables We compile a panel of city social economic variables

during 20015-2018 from the CEIC database. There are 286 prefecture-level cities included.

The panel includes variables of GDP per capita, population, secondary industry share,
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tertiary industry share, government revenue, government expenditure, total import, total

export, FDI, property price, unemployment, number of motor vehicles, and industry SO2

emissions.

Mayors and Party Secretaries We obtain the data of political leaders in China at the

city and provincial level from the China Research Data Service Platform (CNRDS). The

data set contains demographic information, such as age, educational background, home-

town, etc., and work experiences of all mayors(governors) and party secretaries for each

city(province). We then construct a panel matching each city month by a mayor and a

party secretary, including their age, education degree, and tenure length at the current

position.

Firms’ Tax Data We have the universe of firms’ tax data during 2010-2015. The data

set contains information on each firm’s taxpayer id, industry id, administrative division

codes of the firm’s location, inputs, revenue, total output, value-added tax (VAT), con-

sumption tax, income tax, etc. by year. We keep the data in the automotive industry and

then collapse the data to the city-year level using the administrative division codes of the

firms’ locations. We merge the data set with the city’s social economic data set. Lastly, we

calculate the share of the auto industry in local tax revenue, by summing up 25 percent of

the VAT and 40 percent of the income tax from the auto industries, divided by the total tax

revenue of the city.14 This ratio measures the share of local tax revenue contributed by the

auto industry. The average share is 0.5 percent across all cities with the maximum share

being 31.2 percent in Changchun, where China’s first automotive manufacturer (FAW) is

located (see Table 2.1). Other cities with a share of greater than 5 percent include Baoding,

Shiyan, Guangzhou, Liuzhou, Wuhan, and Shenyang.

14Tax revenue of automotive industry are split between the central government and local governments, in
a way that 25 percent of the value-added tax (VAT) and 40 percent of the income tax from the auto industry
go to the local governments (Liu et al., 2016).
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2.3 Empirical Strategy

In order to estimate the effects of restriction removal on used vehicle sales, air pollution,

and new vehicle sales, a natural starting point is the Difference-in-Differences strategy

ln(yct) = β · Li f tedct + αc + δt + εct (2.1)

where c denotes a city and t denotes time. yct are outcome variables including used vehicle

imports, exports and total sales, ambient air pollution concentrations, and new vehicle

sales. We collapse the used vehicle and new vehicle sales data to the city×year-quarter

level and the pollution data to the city×year-month level. Li f tedct is the policy indicator

that equals 1 if the restriction has been lifted in city c at time t. αc is the city fixed effects

that capture the difference in mean outcome across cities. δt is the time fixed effects that

absorb common shocks to all cities in different time periods.

The key concern about identification is the endogenous timing of restriction removal

due to omitted variable bias and (or) reverse causality. As mentioned in section 2.2.1,

local governments did not follow the instruction of the central government to lift the

restriction on May 31, 2016, but rather did it later at their own discretion. If the timing of

restriction removal is correlated with some time-varying shocks that impact the outcome,

say local governments removed the restriction at a time when they also strengthened the

enforcement of environmental regulation, then the estimated effect on air pollution would

be downward biased. Or if the local governments removed the restriction at a time when

their new vehicle sales increase, then the estimated effect on new vehicle sales would also

be downward biased.

We use several strategies to address this concern. First, we restrict our sample to a sub-

sample of cities where the decision of restriction removal was made at the provincial level,
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rather than at the city level. As mentioned in Section 2.2.2, 12 provincial jurisdictions re-

moved the restriction at the provincial level. For this subsample, the timing of restriction

removal is less likely to be correlated to a time-varying unobservable in a specific city. We

also add province×year fixed effects to control for other potential confounding policies at

the provincial level.

The endogeneity issue is not fully addressed if the provincial decision still correlates

with some city characteristics. Hence, we add a rich set of controls at the city level. We

control for social economic variables of the city including a log of GDP per capita, second

industry share and tertiary industry share, log of imports and exports, log of FDI, log of

fixed asset investment, log of the property price, log of the number of motor vehicles, and

log of industry SO2 emissions. We also control for demographic information of the mayor

and the party secretary of the city, including whether younger than 57,15 whether having

a master’s degree, whether having a Ph.D. degree and their tenure length. In addition,

we control for linear time trends interacted with initial conditions in 2015, where the

initial conditions include the outcome variable, the share of the auto industry in local tax

revenue, and the log of GDP per capita.

When the outcome variable is air pollution, we also control for meteorological vari-

ables including maximum wind speed, average temperature, average atmospheric pres-

sure, average water pressure, average relative humidity, number of rainy days, and aver-

age precipitation.

Another potential confounder is air pollution in neighboring cities when pollution

in neighboring cities spills over to the home city and correlates with the removal tim-

ing of the home city. Since pollutants travel to other cities by wind, we construct an

inverse-distance-weighted average of air pollution by pollutant in upwind direction at

15If a mayor or a party secretary is older than 57, he or she would not be considered for further political
promotion.
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the city×year-month level.16 We then control for the upwind average pollution in our

specification.

However, as we put so many controls in the model, the issue of over-fitting arises.

We face a trade-off between controlling not enough versus controlling too many. In or-

der to find a balance, we use the “post-double-selection” (PDS) methodology proposed

by Belloni et al. (2012) to select the “right” set of controls from what we include in our

model.17

Therefore, the specification becomes:

ln(yct) = β · Li f tedct + X′ctγ + αc + δt + ηprov,year + εct (2.2)

where Xct is the set of controls selected from the ”post-double-selection” method.

Another challenge of the identification is the spillover effect — the outcome of one city

is not only impacted by restriction removal in its own city, but also impacted by restriction

removal in other cities.18 In order to capture the spillover effect, we construct an index

measuring the proportion of restriction removal in other cities:

16We use the following procedures to construct air pollution in the upwind direction. First, we calculate
the bearings between any two city pairs (Bearing is a geographical terminology that indicates the angle
between the direction of two points on Earth and that of the true north). Then convert the bearings into 16
directions, i.e., N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW. The upwind
direction of city c at time t is the one that lies in the same and two neighboring directions of the wind
direction of city c at time t (See Figure B.1 for an illustration). Then calculate the average pollution levels of
the cities in the upwind direction weighted by the inverse of the distance between the upwind city and the
home city.

17The PDS approach uses the lasso estimator in the process of selecting controls. There are two steps: first,
the outcome variable is regressed on all the controls using a lasso regression; second, the policy indicator is
regressed on the same set of full controls using a lasso regression. In both steps, some control variables are
chosen with non-zero lasso coefficients. The final choice of the controls is the union of the variables selected
in the first and second steps. Notice that we partial out time fixed effects and city fixed effects before post-
double-selection to absorb the mean difference in the outcome variable across cities and common shocks at
different times.

18For example, the import of used vehicles in one city could be diverted to other cities if other cities lifted
the restriction, or new vehicle sales could increase when other cities lifted the restriction so that more used
vehicle owners could trade in their old ones for new vehicles.
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OtherLi f tedct =

N∑
i=1,i,c

wicLi f tedi,t (2.3)

where OtherLi f tedct is a weighted sum of the policy indicator in cities other than c at time t.

The weights are defined as wic =
Yic∑N

i=1,i,c Yic
, which is the share of used vehicle trade between

city c and city i in the baseline year 2015, over the total trade of used vehicles of city c as

of 2015. The index gives more weight to larger trading partners of city c in baseline used

vehicle trade.

A potential issue arises when we add OtherLi f tedct into the model. If there exist

strategic interactions among governments, i.e., the policy decision of one city depends

on the policy decision of its neighboring cities, then OtherLi f tedct could be impacted by

HomeLi f tedct, which makes OtherLi f tedct an outcome of HomeLi f tedct and thus a “bad con-

trol” (Angrist and Pischke, 2008). We circumvent this issue by including a lagged term

of OtherLi f tedc,t−1 in our model under the assumption that the policy interaction (if any)

occurs with a time lag (Hayashi and Boadway, 2001).

Therefore, our preferred specification that accounts for the spillover effect is the fol-

lowing

ln(yct) = β · HomeLi f tedct + θ ·OtherLi f tedc,t−1 + X′ctγ +OX′c,t−1µ + αc + δt + ηprov,year + εct (2.4)

where HomeLi f tedct is the policy indicator that is turned on if city c has removed the re-

striction at time t. OtherLi f tedct is defined as in Equation (2.3). Xct is a set of controls

described in Equation (2.2). Following Millimet and Roy (2016), we add an additional set

of controls, OXc,t−1 =
∑N

i=1,i,c wicXc,t−1, which is the weighted average of economic and polit-

ical variables in other cities. We use the same weights as used in constructing OtherLi f ted.
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The identification is based on two assumptions. The first assumption is parallel trends

for the treated group and the untreated group. This means that for cities that have re-

moved the restriction, their counterfactual outcomes had they not removed the restriction

would be parallel with the outcome of the cities that have not yet removed the restriction.

We use an event study framework to test the parallel trends assumption. The event

study specification is:

ln(yct) =
τ=4∑

τ=−4,τ,−1

βτ · Dcτ + θ · OtherLi f tedc,t−1 + X′ctγ + OX′c,t−1µ + αc + δt + ηprov,year + εct (2.5)

where Dcτ are separate indicators for each quarter τ relative to the time of removal at city

c. For cities that have never removed the restriction during our sample period, Dcτ = 0.

The second assumption is that the timing of restriction removal in our subsample

is as random conditional on city fixed effects, year-month (year-quarter) fixed effects,

province×year fixed effects, and a set of control variables selected by the PDS method.

This assumption should hold since the provincial decision is unlikely to correlate with

shocks at the city level, conditional on the economic and political status of the city.

2.4 Results

We present our results in the following order. First, we look at the direct impact of re-

moving restrictions on the used vehicle market. Then we look at the explicit goal of en-

vironmental protection, i.e., whether removal would lead to an increase in air pollution.

Finally, we examine the implicit goal of protecting local interest by looking at the impact

on new vehicle sales.
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2.4.1 Used Vehicle Sales

We divide used vehicles into two types based on their emission standards: dirty and

clean. Dirty vehicles refer to those whose emission standards are below China 4 so that

they are restricted from importing from other cities under the restriction. Clean vehicles,

otherwise, refer to those whose emission standards are China 4 or above, so that their

imports are free of restriction.

Figure 2.4 shows the event study graphs for the import of used vehicles. The coeffi-

cients of -1 quarter are normalized to 0. The graph shows clearly that before restriction re-

moval, the coefficients are not significantly different from 0, which implies no pre-trends.

After the restriction was lifted, the import of dirty vehicles increases dramatically over

time.

The event study graph in Figure 2.4 shows that the treatment effects increase over

time. Recent literature in staggered DID and two-way fixed effects model find that the

two-way fixed effects estimator are biased when treatment effects vary across time or

units (Goodman-Bacon, 2021; Sun and Abraham, 2020; Imai and Kim, 2019; de Chaise-

martin and d’Haultfoeuille, 2019). Therefore, we report separate coefficients for each

quarter after restriction removal estimated from the event study model which is robust in

estimating the dynamic treatment effects (Borusyak and Jaravel, 2017).

Table 2.2 reports the dynamic effects of lifting the restriction on different margins of

dirty vehicle sales: imports, local sales, exports, and total sales of dirty used vehicles,

using specification (2.5).

Column (1) shows the estimated effect on the import of dirty used vehicles after the

restriction removal. The coefficients for one quarter, two quarters, and three quarters after

the restriction removal are 1.075, 1.723, and 2.164, respectively, meaning a 193 percent,
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460 percent, and 770 percent increase, respectively. On average, after three quarters of

removing the restriction, the imports of dirty used vehicles increased by 360 percent. To

put our estimates into context, if we take the total number of intranational trade of dirty

used vehicles in 2016, 0.16 million, as the baseline, then lifting the restriction increased the

dirty used vehicle trade by about 0.58 million in three quarters. This is the direct effect

and exactly what we expect to see — the removal of the import restriction significantly

boosted the import of dirty used vehicles. On the other hand, the coefficient for “Other

Lifted”, i.e., the weighted average of other cities’ removal status, is not significant, which

implies not much spillover in the import of dirty vehicles.

Column (2) reports the dynamic effects of the restriction removal for local sales of dirty

vehicles. The estimated coefficients for one quarter, two quarters, and three quarters after

the restriction removal are 0.004, -0.074, and -0.045. The estimates suggest that lifting

the restriction led to a decrease of about 3 percent in local sales of dirty used vehicles

on average. This effect could be mainly driven by the substitution between imported cars

and local cars. When the import restriction was lifted, consumers had more opportunities

to purchase a used vehicle from other cities for a lower price, thus their purchases from

the local market declined. Further, the estimate for “Other Lifte” is -0.071 and significant,

showing that other cities’ restriction removal reduced local sales of dirty used vehicles

by about 7 percent. As we see in column (3), when other cities opened their markets, the

export of used vehicles increased dramatically, which left fewer vehicle owners willing

to sell in the local market. Thus other cities’ restriction removal had a negative effect on

local sales of dirty vehicles.

Column (3) reports the effects of exports of dirty vehicles. The coefficient for “Other

Lifted” is 0.904 and significant at the 1 percent level. This result is intuitive as more

neighboring cities lifted their import restrictions, exports of dirty vehicles in the home

city would increase. The magnitude is large, that exports of dirty used vehicles increased
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by 147 percent when all other cities lifted the restriction. Besides, the coefficients for

“Home Lifted” are also positive and increased over time. Why did lifting the import

restriction in the home city have a positive impact on its exports? As we see in column

(2), the restriction removal reduced local sales of dirty used vehicles. Although we do not

observe the data on used vehicle transaction prices, it is expected that the price for the

local market also declined. The reduced price could make local vehicles more competitive

in other markets and thus increase the exports of dirty vehicles from the home city.

Column (4) reports the effects on total sales of dirty vehicles, which is the sum of im-

ports and local sales. We see that the imports of dirty vehicles increased after the restric-

tion removal while the local sales decreased. These two effects are opposite in directions,

making the effect on total sales undetermined ex-ante. The results show that for the first

2 quarters, the effect is negligible. In the third quarter after removal, the positive effect on

the import over-weighs the negative effect on local sales which leads to an increase in the

total sales of dirty vehicles, although not significant. The spillover effect from other cities

is positive but also not significant.

2.4.2 Robustness Checks

Our main specification uses the subsample and PDS method to select the set of controls.

For robustness checks, we try different specifications using different samples and models.

Figure B.2 plots the estimated impact of removing restrictions on imports, local sales,

exports, and total sales of dirty used vehicles for different combinations of full sample vs.

subsample, and PDS vs. fixed effects model. The estimates across different specifications

are similar in sign and magnitude, showing that the main results are robust.

In constructing the variable “OtherLifted”, our baseline weights are bilateral trade of

used vehicles as of 2015. We also try using baseline exports and imports of used vehicles
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as weights. The results are shown in Figure B.3. Most of the estimates using different

weights are qualitatively similar, except that the coefficient for “OtherLifted” in imports

and total sales is significantly positive when using exports as weights while not significant

using the other two weights. This could be driven by the fact that we use the subsample

of cities that lifted the restriction at the provincial level so that restriction removal within

provinces is correlated with “HomeLifted”. Then “OtherLifted” actually captures part of

the effect that the province lifted the restriction.

We also examine the impacts of lifting restrictions on clean used vehicles. As shown

in Table B.2, after the restriction was lifted in the home city, imports of clean used vehicles

did not change significantly. Since imports of clean used vehicles were not banned by the

restriction policy, this result can be seen as a falsification test. On the margin of local sales,

there was a negative impact over time. This might be driven by the fact that consumers

were shifted away from the local market when the import restriction was lifted. There is

no significant spillover effect for all margins of clean used vehicle sales.

2.4.3 Pollution

Figure 2.5 shows event study graphs for coefficients before and after the restriction was

lifted. For all four pollutants PM2.5, CO, NO2 and O3, no significant pre-trends are de-

tected.

Table 2.3 summarizes the effect of lifting the restriction on air pollution using specifi-

cation (2.4). We find that the restriction removal in own city does not have a significant

impact on PM2.5, CO, and NO2, but has led to a 3.7 percent increase in O3.

On the other hand, restriction removal in other cities does not impact PM2.5 and CO

significantly but has a positive impact on NO2 and a negative impact on O3. As we show

94



in the following section that restriction removal in other cities has led to a large increase

in local new vehicle sales, this might contribute to the increase of NO2. The decrease

of O3 could be attributed to the change of ambient NO2. O3 is a secondary pollutant

produced from the chemical reaction of NO2 and volatile organic compounds (VOC),

in which the product can be divided into “VOC-saturated (NOx-limited)” regime and

“VOC-limited” regime. Under the “VOC-saturated” regime, NOx reductions lead to a

decrease of O3, while under the “VOC-limited” regime, NOx reductions induce more O3

production (Salvo and Wang, 2017). Our result suggests a negative relationship between

NO2 and O3, which is consistent with the impact of ethanol-blended gasoline policy in

Sao Paulo (Salvo and Wang, 2017) and the COVID-19 lockdown in China (He et al., 2020).

The null effect could be driven by the small scale of the change in the import of dirty

used vehicles compared to the local vehicle stock in the short run. Over our sample pe-

riod from January 2016 to June 2018, the import of dirty used vehicles accounted for 0.66

percent of the local motor vehicle stock, on average. As shown in Figure B.4, the import

share of dirty vehicles was less than 1 percent for the majority of cities, while only a hand-

ful exceed 5 percent. Thus, the increase in the import of dirty used vehicles induced by

trade liberalization only added to a small fraction of the existing vehicle stock per city in

the short run, rendering the null effect on air pollution.

2.4.4 New Vehicle Sales

Figure 2.6 shows the event study graph for new vehicle sales. We don’t observe signif-

icant pre-trends before restriction removal. Table 2.4 reports the estimated results using

specification (2.4). In line with what we see in the event study figures, there is no sig-

nificant effect on new vehicle sales when the home city lifted its restriction. However,

restriction removal in other cities has a large significant positive effect on new vehicle
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sales in the home city. If all the other cities lifted their import restriction altogether, new

vehicle sales in the home city would increase by about 10 percent.

The large spillover effect could be driven by the connection between the used vehicle

market and the new vehicle market. The used vehicle market provides an important ser-

vice to low-valuation consumers and allows high-valuation consumers to trade in their

used vehicle for a new one so as to maintain the level of quality they prefer (Porter and

Sattler, 1999). As more cities opened their markets and allow imports of dirty used vehi-

cles, the owners of dirty used vehicles get a better chance to trade in their used vehicles

for a better price and then purchase a new vehicle. This is supported by the sharp in-

crease in exports of dirty vehicles as other cities lifted their restrictions, shown in Table

2.2 column (3).

We further look at heterogeneous effects on new vehicle sales. We flag cities as large

importers or large exporters if their import or export of used vehicles as of 2015 are in the

top quartile. In column (2) of Table 2.4, it is shown that the positive effect of restriction re-

moval in other cities is 9.8 percent larger for large exporters. This result is consistent with

our hypothesis that used vehicle exports could be the channel that leads to the increase

of new vehicle sales when other cities removed their restrictions.

Out of 100 cities in our subsample, there are 18 cities that have automotive manufac-

turing plant(s). Table 2.4 column (3) shows that new vehicle sales in cities without auto

plants do not change significantly after restriction removal, but new vehicle sales in cities

with auto plants decrease by about 7.8 percent. Also, other cities’ restriction removal has

a positive impact on new vehicle sales in the home city, and the impact is significantly

larger for cities with auto plants.

The above results point to a prisoner’s dilemma: cities have no incentive to lift the

restriction unilaterally since it could hurt their new vehicle sales and the local auto in-
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dustry, but if all cities coordinate and lift the restrictions altogether, every city would be

better off. This finding highlights the importance of coordinated efforts to knock down

trade barriers and build an integrated market.

2.4.5 Counterfactual on new vehicle sales

The results in the new vehicle market highlight a prisoner’s dilemma that self-interest

behavior leads to overall benefit loss. In this section, we present the gains in the new

vehicle market under a counterfactual scenario if all cities lifted the restriction on May 31,

2016, as urged by the central government.

Based on our estimated coefficients, we calculate the predicted change of new vehicle

sales under the counterfactual scenario.19 The maps of counterfactual cumulative impact

on new vehicle sales by city are shown in Figure 2.7. If all cities had lifted the restriction

at the end of May 2016, then all cities would have had an increase in new vehicle sales

from 1 percent-19 percent during 2016-2018, with large used vehicle exporters increasing

more. This amounts to a cumulative total of 7.4 million more new vehicle sales for the

whole country during 2016-2018.

19First, we calculate the counterfactual sales if all cities lifted the restriction in May 2016. Then we cal-
culate the ratio between the counterfactual sales and the baseline sales (observed sales) using the formula
qc/qb = exp{(β1+β2×1(LargeImporter))× (AllLi f ted−HomeLi f ted)+ (β3+β4×1(LargeExporter))× (AllLi f ted−
OtherLi f ted)} , where qc represents new vehicle sales under the counterfactual scenario, qb represents the
baseline sales (observed sales). β1, β2, β3, β4 are coefficients for HomeLifted, HomeLifted×1(LargeImporter),
Other Lifted, and OtherLifted×1(LargeExporter) in column (2) of Table 2.4. Lastly, we calculate the percent-
age change and change in level as ∆% = ( qc

qb
− 1) × 100% and ∆q = ∆% × qb.
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2.5 Conclusion

Using detailed data on used vehicle trade, local air pollution, and new vehicle sales, this

paper examines the impacts of lifting the import restriction on the used vehicle market,

air pollution, and new vehicle market. Restriction removal directly boosted imports of

dirty used vehicles but did not lead to a significant impact on local air quality in the short

run. What’s more, restriction removal has a positive spillover effect on new vehicle sales

in other markets. New vehicle sales would increase by 7.4 million if the restriction was

removed nationally by May 2016 as the central government required. Our result in new

vehicle sales reflects a prisoner’s dilemma that unilateral removal of the restriction is not

in the interest of cities, yet universal removal would benefit all.

Our study documents a concrete example where local governments engage in prac-

tices of local protectionism under the disguise of environmental protection. These types

of policies not only hinder the development of the used vehicle market and limit the

gains from trade but also distract attention from effective environmental regulations that

are much needed to combat pressing environmental challenges. The mandate by the cen-

tral government to lift the import restrictions on used vehicles should help to overcome

the coordination failure and enhance social welfare.
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Figures and Tables

Figure 2.1. Total Sales of Vehicles in China, 2000-2017
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Notes: This figure shows the annual total sales of new vehicles and used vehicles in China during
2000-2017. Data on new vehicle sales are from the CEIC China Premium database. Used vehicle sales data
in years 2000-2011 are from http://auto.163.com/special/observation50/, used vehicle sales
data in 2013-2017 are based on own calculation.

99

http://auto.163.com/special/observation50/


Figure 2.2. Policy Timeline and Roll-Out of Restriction Removal

(a) Policy Timeline

(b) Rollout of Restriction Removal

Notes: Panel (a) shows the timeline of adoption and removal of the import restriction on used vehicles
below local emission standards. Panel (b) shows the year in which each city removed its import restriction
on used vehicles.
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Figure 2.3. Used Vehicle Sales, 2013.1-2018.6

(a) Total Sales

(b) Imports

Notes: Panel (a) shows the imports and local sales of used vehicles. Panel (b) shows the import of dirty vs.
clean used vehicles, where dirty vehicles are those below national emission standard 4, clean vehicles
otherwise. Dashed lines are the monthly data and solid lines are yearly averages. Short dashed line
indicates May 2016 when cities started to lift the import restriction on dirty used vehicles.
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Figure 2.4. Event Study for Import of Dirty Used Vehicles
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Notes: This graph shows the coefficients obtained from the event study regressions that estimate the effect
on import of used vehicles in each quarter before and after policy removal. The dependent variable is log
of the used vehicle import aggregated at the city×year-quarter level. Dirty vehicles refer to the vehicles
whose emission standard is below Level 4. The regression controls for city FEs, year-month FEs,
province×year FEs and uses PDS (Post Double Selection) method to select controls from a rich set of
variables described in the main text (Belloni et al., 2012). Shaded area shows the 95 percent confidence
interval. Standard errors are clustered at the city level.
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Figure 2.5. Event Study for Air Pollution
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Notes: This graph shows the coefficients obtained from the event study regressions that estimate the effect
on each pollutant in each quarter before and after policy removal. The dependent variable is log of the
pollutant concentration. The regression controls for city FEs, year-month FEs, province×quarter FEs,
weather conditions, upwind pollution, and uses PDS (Post Double Selection) method to select controls
from a rich set of variables described in the main text (Belloni et al., 2012). The shaded area shows the 95
percent confidence interval. Standard errors are clustered at the city level.
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Figure 2.6. Event Study for New Vehicle Sales
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Notes: This graph shows the coefficients obtained from the event study regressions that estimate the effect
on new car sales in each quarter before and after policy removal. The dependent variable is log of the new
car sales. The regression controls for city FEs, year-month FEs, province×year FEs and use PDS (Post
Double Selection) method to select controls from a rich set of variables described in the main text (Belloni
et al., 2012). The shaded area shows the 95 percent confidence interval. Standard errors are clustered at the
city level.
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Figure 2.7. Counterfactual Impact on New Vehicles Sales, 2016.1-2018.12

(a) Level Change

(b) Percentage Change

Notes: This map shows the counterfactual impact of the nationwide removal of the restriction on new
vehicle sales by city from January 2016 to December 2018. Based on the estimated impacts of lifting
restrictions on new vehicle sales (Table 2.4, column (2)), we calculate the counterfactual sales if all cities
lifted the restriction in May 2016. Then we calculate the ratio between the counterfactual sales and the
baseline sales (observed sales) 20. The percentage change is this ratio minus 1. The level change is the
percentage change multiplied by the baseline sales.

105



Table 2.1. Summary statistics

Variable Mean Std. Dev. Min. Max. N
Used vehicle sales (city×year-quarter)
Import of dirty used cars 233.4 642.3 0 8650 3340
Local sales of dirty used cars 2346.9 2963.0 0 22875 3340
Import of clean used cars 1376.3 1419.7 0 11838 3340
Local sales of clean used cars 3305.0 4247.8 0 38695 3340

New vehicle sales (city×year-quarter)
New car sales 17077.1 24378.3 2 230603 4044

Air pollution (city×year-month)
PM2.5 (µg/m3) 42.9 25.8 4.5 510.5 12060
PM10 (µg/m3) 79.0 50.3 7.6 1455.1 12060
CO (mg/m3) 0.9 0.4 0.2 5.7 12060
NO2(µg/m3) 28.9 13.5 3.1 100.4 12060
O3(µg/m3) 62.2 23.8 3.9 174.4 12060

Weather (city×year-month)
Max wind speed(m/s) 8.7 2.9 1.7 36.4 12131
Average temperature(◦C) 14.4 10.8 -29.1 37.3 12120
Average air pressure(hPa) 951.7 88.0 582.0 1033.3 12120
Average water air pressure(hPa) 13.8 9.0 0.5 36.7 12120
Average relative humidity(%) 67.5 15.1 11.7 96.9 12120
Number of days with precipitation>=0.1mm 9.6 5.9 0.0 30.0 12128
Precipitation(mm) 84.3 99.1 0.0 817.2 12124

City Economy (city×year)
GDP per capita (RMB) 57462.5 32997.4 11693.0 215488.0 858
Population(1,000) 4508.8 3216.7 205.3 34036.4 855
Government revenue (million RMB) 27374.7 61597.7 1404.5 710815.0 858
Number of motor vehicles (1,000) 715.9 823.9 42.0 6317.2 849
Share of auto industry in local tax revenue (%) 0.5 2.0 -0.1 31.2 1144

Notes: This table reports the summary statistics of variables in used vehicle sales, new vehicle sales, air
pollution, weather conditions and city economic variables from January 2016 to December 2018 (the
share of auto industry in local tax revenue is from 2012 to 2015). Dirty and clean used vehicles are
classified based on whether below or above emissions standard level 4.
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Table 2.2. Dynamic Effects on Used Vehicle Sales

Dep. var. log(Imports) log(Local Sales) log(Exports) log(Total)

(1) (2) (3) (4)

Home Lifted
Event time=0 0.195∗ -0.003 0.058 -0.025

(0.107) (0.016) (0.071) (0.020)

Event time=1 1.075∗∗∗ 0.004 0.132 -0.012
(0.182) (0.018) (0.142) (0.032)

Event time=2 1.723∗∗∗ -0.074∗∗∗ 0.269 0.000
(0.264) (0.022) (0.181) (0.047)

Event time=3 2.164∗∗∗ -0.045 0.509∗∗ 0.045
(0.331) (0.034) (0.225) (0.057)

Other Lifted 0.224 -0.071∗∗ 0.904∗∗∗ 0.030
(0.325) (0.032) (0.340) (0.067)

Year FE Y Y Y Y
City FE Y Y Y Y
Province-Year FE Y Y Y Y

Observations 928 929 929 929

Notes: This table reports the dynamic impacts of lifting restriction on dirty used vehicle sales from
event study models with the sub sample and LASSO method. The event time refers to the time when
restriction was lifted in the home city. “Event time=1” means 1 quarter after restriction lifted. Dirty
vehicles refer to vehicles below emission standard China 4. The regression controls for city FEs, year-
month FEs, province×year FEs and uses PDS (Post Double Selection) method to select controls from a
rich set of variables described in the main text (Belloni et al., 2012). Robust standard errors are clustered
at the city level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2.3. Effect on Air Pollution

Dependent variable log(PM2.5) log(CO) log(NO2) log(O3)

(1) (2) (3) (4)

Home Lifted 0.022 0.001 0.006 0.037∗∗

(0.020) (0.022) (0.019) (0.017)

Other Lifted -0.019 0.068 0.083∗∗ -0.103∗∗

(0.049) (0.062) (0.039) (0.052)

City FE Y Y Y Y
Year-Month FE Y Y Y Y
Province-Quarter FE Y Y Y Y

Observations 3149 3149 3149 3149

Notes: This table reports the effects of lifting the import restriction on air pollution. “Lifted” is the pol-
icy indicator that equals 1 if a city has lifted the restriction. “Other Lifted” is the lag of the weighted
average of policy dummies in other cities. The regression controls for city FEs, year-month FEs,
province×quarter FEs, weather conditions, upwind pollution, and uses PDS (Post Double Selection)
method to select controls from a rich set of variables described in the main text (Belloni et al., 2012).
Robust standard errors are clustered at the city level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 2.4. Effect on New Vehicle Sales

Dependent variable log(Sales)

(1) (2) (3)

Home Lifted 0.006 0.013 0.014
(0.020) (0.021) (0.022)

Other Lifted 0.103∗∗ 0.077∗ 0.081∗

(0.042) (0.043) (0.042)

Home Lifted ×1(Large Importer) -0.007
(0.032)

Other Lifted ×1(Large Exporter) 0.098∗

(0.050)

Home Lifted ×1(Home w/ Auto Plant) -0.078∗∗

(0.036)

Other Lifted ×1(Home w/ Auto Plant) 0.184∗∗∗

(0.061)

City FE Y Y Y
Year-quarter FE Y Y Y
Province-Year FE Y Y Y

Observations 1155 1155 1155

Notes: This table reports the effects of lifting the restriction on new vehicle sales. The sample period
is 2016.1-2018.12. “Home Lifted” is the policy indicator that equals 1 if a city has lifted the restriction.
“Other Lifted” is the lag of the weighted average of policy dummies in other cities. “1(Home w/ Auto
plant)” is a dummy that is turned on if the home city has auto plant(s). “1(Large Importer)” is a dummy
that equals 1 if the city’s import of used vehicles as of 2015 is among the top 25 percentile. “1(Large
Exporter)” is a dummy that equals 1 if the city’s export of used vehicles as of 2015 is among the top
25 percentile. The regression controls for city FEs, year-month FEs, province×year FEs, and uses PDS
(Post Double Selection) method to select controls from a rich set of variables described in the main text
(Belloni et al., 2012). Robust standard errors are clustered at the city level, in parentheses. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01.
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CHAPTER 3

THE ROLE OF GOVERNMENT IN THE MARKET FOR ELECTRIC VEHICLES:

EVIDENCE FROM CHINA

This chapter was published in Journal of Policy Analysis and Management (Li et al.,

2022a). Copyright Notice: Copyright Journal of Policy Analysis and Management; repro-

duced with permission.

3.1 Introduction

Many countries are seeking to reduce local emissions, greenhouse gas (GHGs) emissions,

and fossil fuel use by transforming the transportation sector into an electrified system

(Holland et al., 2020).1 The pursuit of this pathway requires a shift away from vehicles

powered by internal combustion engines (ICEVs) and toward vehicles powered by elec-

tricity. Plug-in electric vehicles (EVs) run on electricity generated from power plants and

stored in rechargeable batteries. When operated in all-electric mode, EVs consume no

gasoline and produce zero tailpipe emissions. The electricity that powers the vehicles

may be generated from fossil fuels or from renewable sources. Fossil-fuel power plants

produce air pollution, but they tend to have better fuel efficiency than the internal com-

bustion engines in vehicles; moreover, renewable sources of electricity are becoming more

prevalent, which would enhance the environmental benefit of EVs.

The transition from ICEVs to EVs faces challenging economic and technological barri-

ers, including the high upfront EV purchase cost, limited driving range of EVs, the need

for charging infrastructure, and the inherent and perceived uncertainty about the net ben-

1For example, Norway and Netherlands set the target of reaching full electric among new passenger
vehicles by 2025 and 2030, respectively. Electric vehicles accounted for 74 percent and 25 percent of new
passenger vehicle sales in these two countries in 2020. China aims to reach 20 percent by 2025 and 40
percent by 2030 in the share of EVs among new vehicle sales. Governor Newsom of California issued an
executive order in 2020 requiring sales of all new passenger vehicles to be zero emission by 2035.
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efit and quality of this new technology (Carley et al., 2013; Krutilla and Graham, 2012).

Socially inefficient adoption of EVs could occur as the result of multiple market failures

that may exist in the EV market. These market failures include consumer misperceptions

or imperfect information on product attributes (e.g., quality or fuel-cost savings); inade-

quate pricing of externalities (local air pollution and greenhouse gases) from automobile

gasoline usage; and spillovers, such as indirect network effects on the demand side, and

technology spillovers among automakers.

To address the market failures, and to achieve the targets of EV penetration, central

and local governments in major countries and regions have implemented various policies

to promote the technology. What are the impacts of these various policy levers on EV

adoption? What is the relative cost-effectiveness of these policies? Understanding the

answers to these questions is critical in designing policies to promote wider uptake of the

technology. This study provides a comprehensive analysis on various policy and market

drivers of the rapid development of China’s EV market. A study of these issues in the

context of China is important for at least two reasons. First, China is by far the world’s

largest energy consumer and automobile market with sales of nearly 26 million vehicles

in 2019, compared to 17 million vehicles sold in the United States the same year. Due to

the unprecedented growth of vehicle ownership, China accounted for nearly 50 percent

of the increase in the world’s oil consumption that occurred over the past two decades.

Therefore, China’s transition from relying on ICEVs to EVs has important implications

for the world’s oil and energy markets, and for global greenhouse gas emissions. Second,

all the major international automakers have production facilities in China. Joint ventures,

and partnerships between domestic and foreign manufacturers, produce about two-thirds

of the vehicles for the Chinese market, dominating the luxury segment; imports account

for only about 5 percent of the market.2 Thus, due to its sheer market size, China could

2The joint-venture requirement for foreign automakers is part of the long-term “technology-for-market”
strategy by the Chinese government. Amid the recent trade war between China and the United States, the
Chinese government has promised to end the joint-venture requirement for the auto industry in 2021. Tesla
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prove to be a fertile trial ground for new technologies for automakers. The market growth

in China could also help cultivate economies of scale in batteries, a key cost component

that is critical to the technology transition — thus, potentially benefiting the electrification

of the transportation system worldwide.

To quantify and compare the impacts and the cost-effectiveness of different policies

addressing consumer demand for EVs, we have compiled what we believe to be the

most comprehensive data on China’s EV market. Our data include information regarding

quarterly EV sales by vehicle trim (a unique combination of brand, model, fuel type, and

driving range); vehicle attributes by trim; battery suppliers; public charging stations; con-

sumer subsidies and other policies aimed at promoting consumer adoption of EVs from

both central and local governments; and relevant social and economic variables at the city

level. These data cover 150 cities in China over a period from 2015 to 2018. We use a linear

regression framework to estimate EV demand among individual (i.e., non-institutional)

buyers with a focus on price and subsidy response, non-financial policies, and charging

infrastructure availability.3

To establish the causal effects of various policy and market drivers of EV demand, we

face the following three empirical challenges: First, the vehicle-price variable could be

endogenous due to unobserved product attributes, i.e., attributes that consumers value

but are unobserved in the data (e.g., product quality and safety performance). Due to the

likely positive correlation between prices and unobserved product attributes, the OLS es-

timates of the price coefficient would be biased toward zero, as has been well documented

in the literature (Berry et al., 1995), leading to under-estimation of consumer response to

prices. The second challenge is unobserved demand shocks that could be correlated with

received special permission to build its fully owned gigafactory, with a capacity of 250,000 units per year,
in Shanghai. It began producing its Model 3 in December 2019.

3Individual buyers account for about 65 percent of total EV sales during our data period. Institutional
buyers (e.g., government agencies, companies, and taxi fleets) are subject to different subsidy policies, and
their decision-making process could be subject to different considerations.
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government policies (subsidies and other policies) and, at the same time, could affect con-

sumer EV demand. For example, if central and/or local governments design policies as

a response to negative demand shocks, we would underestimate the effectiveness of the

policies. The third challenge is due to the simultaneity between consumer EV demand

and charging-station investment, which could render the charging infrastructure vari-

able endogenous. The simultaneity arises because the EV market can be characterized as

a two-sided market (requiring EVs and charging stations) with indirect network effects.

The decision of consumer adoption depends to a degree on the availability and coverage

of the charging infrastructure, while the decision to invest in charging stations hinges to

a degree on the number of EVs that will use them.

We address these identification challenges by using two strategies: an instrumental

variable (IV) method and a city-border-regression design. Our preferred specification

implements both strategies in the same linear regression framework. First, we instru-

ment for the vehicle-price variable using battery capacity (kWh) interacted with battery-

supplier dummies. Battery capacity should affect vehicle prices, both because the battery

is an important cost component, and because the cost of the battery largely depends on its

capacity. Recognizing that battery capacity could also affect the vehicle’s driving range

and driving performance — characteristics that consumers are likely to care about — we

control for driving range and driving performance (using a power-weight ratio) in our

regressions. The identification assumption is that battery capacity is not correlated with

unobserved product attributes; it recognizes that the choice of battery capacity is likely

dictated by considerations about driving range and driving performance, rather than by

unobserved product attributes. Our results are robust to using battery density as an al-

ternative instrumental variable.

Second, we instrument for the charging-infrastructure variable by using the installed

EV base by institutional buyers (lagged one period). The institutional EV stock likely
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affects investors’ decision to build charging stations. The identification assumption is

that the lagged institutional EV stock is unlikely to be correlated with concurrent demand

shocks to individual buyers.

Lastly, we use a city-border-regression design to address potential endogeneity in pol-

icy variables due to unobserved local demand shocks. The design exploits the fact that

local policies change sharply across city borders, but unobserved demand shocks such

as changes in transportation costs, access to dealer stores, and consumer preferences are

likely to be similar among neighboring cities. In practice, we group neighboring cities

into clusters and then include cluster-time fixed effects to control for time-varying local

unobservables common in the same cluster, as well as cluster-brand-year fixed effects to

control for demand shocks that are specific to each brand in a cluster.

Based on the regression results, we conduct simulations to examine the effects of each

policy and non-policy drivers, and we compare the cost-effectiveness of different poli-

cies. Our analysis provides the following three key findings that are robust across vari-

ous specifications and sample cuts. First, generous consumer subsidies from central and

local governments (about 26 percent of pre-subsidy vehicle prices) played a crucial role

in the rapid growth of the market. We estimate that these subsidies explain over half of

the EVs sold during our data period. The impact is similar in magnitude to that of the

subsidy programs in the U.S. and Norway (Li et al., 2017; Springel, 2019). Second, there

are significant, indirect network effects from charging infrastructure on EV demand. In-

vestment in charging infrastructure is about four times as cost effective as consumer sub-

sidies in promoting EV sales. The advantage of charging-infrastructure investment in

cost-effectiveness is twice as strong in China as the levels found by Li et al. (2017) in the

United States and by Springel (2019) in Norway. Third and perhaps most striking, a pol-

icy that merely grants EVs a distinctive-looking license plate in green is very effective,

increasing EV sales by 37 percent. This large impact could be the result of “conspicuous
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conservation”, whereby consumers seek status by signaling their environmental bona

fides (Sexton and Sexton, 2014). It could also be due to the increased salience of EVs as

consumer choices or perceived endorsement of product quality brought about this policy

change (Chetty et al., 2009; Busse et al., 2015).

There is a large body of literature examining the efficacy of policy incentives on EV

adoption. Existing studies have provided evidence that financial incentives such as con-

sumer subsidies, tax credits, and rebates are positively related to EV adoption (Jenn et al.,

2018; Li et al., 2017; Springel, 2019; Wee et al., 2018; Zambrano-Gutierrez et al., 2018). The

literature has also shown EV adoption could be helped by non-financial privileges such

as parking, access to bus lanes (Langbroek et al., 2016), driving or purchase restriction

exemptions (Ma et al., 2019; Wang et al., 2017b). Studies have gone beyond examining

individual policies, to compare the relative effectiveness of different incentive measures.

The findings show that measures granting EV users special privileges (e.g., vehicle regis-

tration priority, road access, and charging facility access) could have a greater impact than

financial incentives for the adoption of EVs (Li et al., 2019; Mersky et al., 2016; Sierzchula

et al., 2014; Wang et al., 2017a).

While existing studies have revealed important relationship between governmental

incentives and EV adoption, there are important gaps in the literature. Our study con-

tributes to the literature by addressing these gaps. First, to inform policy design, there is

a strong need to credibly establish the causal impacts of various policies by recognizing

potential policy endogeneity. For example, local policies including subsidies for EV pur-

chases or charging-station investment could be correlated with unobserved local demand

shocks, leading to omitted variable bias. By carefully addressing the endogeneity of vehi-

cle prices, charging infrastructure, and other EV policies using the instrumental variable

method and the city-border design, our analysis identifies the causal effects of consumer

subsidies and other policies on EV adoption.
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Second, existing studies often use survey data that are based on hypothetical experi-

ments or actual sales data that are coarse in frequency and confined to small geographic

regions. Granular data based on revealed preferences could allow researchers to better

leverage the spatial and temporal variation in policies and market conditions to identify

their impacts. We leverage to our knowledge the most comprehensive and granular data

sets on EV sales, subsidies, charging facilities, driving restriction exemptions, and green

license plates to examine the effect of various policies targeted to promote EV adoption.

Third, although there have been estimates on the effect of different policy instruments,

relatively less is known about the relative cost-effectiveness of different policies. To the

best of our knowledge, no research attention has been placed on one of the unique in-

struments utilized in China — the green license plate policy. Our study compares the

effects of a full sweep of policy options, including subsidies, charging facilities, and green

license plates. Our results show that charging facilities are more cost-effective than sub-

sidies, and that green plates are strikingly effective in stimulating EV adoption. These

findings have important policy implications for not only China but also other countries

to design effective policies to move the industry forward.

We organize the rest of the paper as follows: Section 3.2 discusses the industry back-

ground, policies, and data. Section 3.3 presents the empirical model and identification

challenges. Section 3.4 discusses the estimation results and robustness checks. Section

3.5 presents the counterfactual simulations to evaluate the role of different drivers of con-

sumer demand. Section 3.6 concludes.
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3.2 Industry Background and Data Description

3.2.1 Industry Background

Electric vehicles are capable of running on electricity generated from outside sources.

There are two types of EVs on the market: battery electric vehicles (BEVs) which run

exclusively on high-capacity batteries (e.g., Nissan LEAF), and plug-in hybrid electric ve-

hicles (PHEVs) which use batteries to power an electric motor, and use another fuel (gaso-

line) to power an internal combustion engine (e.g., Chevrolet Volt). EVs have the poten-

tial to reduce energy usage and emissions because of the efficiency gains from switching

from ICEVs to large power plants. The estimated fuel efficiency (of converting the power

source to usable energy) for internal combustion engines ranges from 12 percent to 30

percent. Such efficiency could reach levels exceeding 50 percent for coal power plants, or

even 90 percent for hydro plants, which are associated with less emission than coal plants,

according to the U.S. Department of Energy and Environmental Protection Agency.4

Since the introduction of Chevrolet Volt and Nissan Leaf as the first mass-market mod-

els into the U.S. in late 2010, worldwide EV sales have grown to about 4.2 percent (or 3.2

million units) of the new vehicle market in 2020. Figure 3.1 shows EV sales and the num-

ber of charging ports/outlets in China, the United States, and Europe. China is by far

the largest EV market with the most charging ports. European countries collectively sur-

passed China in EV sales in 2020 due to the generous stimulus plans in the second half

of the year. Figure 3.2 shows the number of EV automakers and EV models in China and

the United States. There are 66 EV automakers and 195 models in 2019 in China, com-
4Sources: https://www.fueleconomy.gov/feg/evtech.shtml and https://www.eia.gov/

totalenergy/data/annual/index.php. Apart from environmental impacts, the question of whether
EV adoption could lead to unintended consequences on other externalities such as congestion and safety
remains to be studied. Some evidence suggests that EV adoption could increase pedestrian traffic safety
risk (Karaaslan et al., 2018).
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pared to about 23 automakers and 45 models in the United States. As shown in Appendix

Figure C.1, the U.S. EV market is quite concentrated; in 2018, the top five firms accounted

for over 80 percent of the EV market, and with Tesla alone taking up half the market. In

China, the top five firms accounted for less than 60 percent of the market in 2018; at that

time, the largest EV producer in China, BYD, had a market share of about 20 percent,

followed closely by the Beijing Automotive Group.

China’s central government has developed ambitious short- and long-term goals to

develop the EV industry, and to improve overall fleet fuel economy, as shown in Ap-

pendix Figure C.2. The explicit goal is to reach annual sales of 2 million EVs by 2020

(about 8 percent of new vehicle sales), 7 million (or 20 percent) by 2025, and 15 mil-

lion (or 40 percent) by 2030. The fuel economy standards require automakers to reach 5

liter/100km (or 47 miles per gallon) among their new vehicle fleet by 2020, 4 liter/100 (or

59 miles per gallon) by 2025, and 3.2 liter/100km (or 74 miles per gallon) by 2030.5 These

ambitious fuel economy targets necessitate a dramatic increase of EVs in the vehicle fleet.

Figure C.3 depicts patterns of vehicle production across firms and cities in China from

2015 to 2018. Panel (a) shows that EV production in 2015 was highly concentrated among

several large EV manufacturers, most of whom do not have a strong presence in the gaso-

line vehicle market. This pattern is consistent with the incumbent-entrant innovation gap

in that the incumbents are less likely to make drastic innovations compared to new en-

trants (Christensen, 2013; Igami, 2017).6 However, the pattern changed in 2018, as shown

5The the U.S. fuel economy standard was previously set to reach 55 miles per gallon under the rules
promulgated under the Obama administration. As a major departure, the Trump administration rolled
back the standard to a rule that would require automakers to achieve an average fuel economy of 40 miles
per gallon by 2026. In April 2021, the Biden administration’s EPA released that it is proposing a more
stringent fuel efficiency rule, which is set to be announced in July 2021. This update will overturn the pre-
vious standard set by the Trump administration. Sources: https://www.cnet.com/roadshow/news/
biden-administration-fuel-economy-emissions-epa-regulations/

6The literature has examined three competing forces that could determine the timing of innovation:
cannibalization, preemption, and the cost difference. On one hand, incumbents may delay introducing a
new technology because it may “cannibalize” their profit from current products. On the other hand, they
have the incentive to accelerate innovation to preempt competition in the market. In addition, they may
also have a cost advantage based on their accumulated R&D capital.
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in Panel (b), when conventional automakers such as Geely, Chana, and GM-Shanghai-

Wuling dramatically increased their EV production. Panels (c) and (d) show similar dy-

namics in the spatial pattern of EV production. While there was a weak spatial correlation

between gasoline vehicle production and EV production in 2015, by 2018 the correlation

becomes stronger, and the production becomes more diversified across cities.

3.2.2 Government Policies

The auto industry has long been considered as a strategic, pillar industry by central,

provincial, and local governments. Governments at various levels have implemented

many policies to promote the development of the industry (Barwick et al., forthcoming;

Bai et al., 2020).

Policy Rationales

First, the environmental consequences from gasoline consumption by ICEVs such as

greenhouse gas emissions are not adequately reflected in gasoline taxes (Parry and Small,

2005; Parry et al., 2014a). The adoption of EVs will help alleviate the environmental is-

sues associated with gasoline vehicles, especially when renewable electricity generation

becomes more prevalent. Second, there may not be efficient information provision for

the cost of both production and consumption of new technologies, such as EVs. On the

demand side, for example, consumers could misestimate the product quality and the op-

erating costs associated with EVs (Allcott, 2013; Dumortier et al., 2015). Failure to recon-

cile the high up-front adoption costs and the future savings in operating costs could lead

to suboptimal adoption of new technologies such as EVs (Jaffe and Stavins, 1999). On

the supply side, firms may face under-provision of information in manufacturing activi-
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ties; this could hinder the efficiency in production (Stigler, 1961; Hirshleifer, 1971). Third,

demand- and supply-side spillover effects could lead to market failure and suboptimal

EV adoption. From consumers’ perspective, EV adoption decisions hinge on the avail-

ability of charging infrastructure, which in turn depends on EV stock. When the indirect

network effect for such a two-sided market is overlooked by consumers and investors,

inefficient welfare outcomes can result (Li et al., 2017; Zhou and Li, 2018; Springel, 2019;

Liebowitz and Margolis, 1995).7 From the producers’ perspective, firms could benefit

from early-stage technology diffusion (Stoneman and Diederen, 1994), and they could

achieve better cost-savings through human capital spillovers and upstream suppliers

(Kim and Marschke, 2005; Blalock and Gertler, 2008; Poole, 2013; Serafinelli, 2019). There-

fore, firms may have less incentive to invest in private R&D — collectively leading to

market-wide underinvestment.

Financial Incentives

Consumer subsidies are the most common policy to promote EV adoption across coun-

tries. As a comparison, Table 3.1 presents the level of subsidies and eligibility rules in the

United States and China. In the United States, the policies are implemented at both fed-

eral and state levels, through tax credits, rebates, and exemptions and reductions of fees.

In addition, federal, state, and local governments provide funding to support charging-

station deployment (Li et al., 2017; Li, 2020).8 Similarly, government policies in China at

7Given the nature of the market, each side of the market is unlikely to internalize the external effect on
the other side through market transactions. If EVs are produced by one automaker, the automaker would
have an incentive to offer a charging station network to increase EV adoption. Nissan and GM are the two
early producers of EVs, but more and more automakers are entering the competition. Nissan is a large
owner of charging stations, but GM is not. Tesla is building its own proprietary network for Tesla owners
only. This suggests that they recognize the importance of charging stations in EV adoption. At the same
time, proprietary stations would create duplicate systems.

8In 2010, the U.S. federal government began providing a federal income tax credit to new EV buyers
based on each vehicle’s battery capacity and the gross vehicle weight rating. The amount ranges from
$2,500 to $7,500, with a phase-out target of 200,000 EVs sold. In addition, 46 out of 50 states had pub-
lished incentives (both monetary and non-monetary) to promote the adoption of EVs as of 2017, according
to the National Conference of State Legislatures (Source: https://www.ncsl.org/research/energy/
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central and local levels have promoted EV adoption largely by using consumer subsidies

tied to vehicle quality attributes. The central subsidy program expanded considerably,

starting in 2009, with updates in every three to five years. The policy program followed a

phase-out design over each effective policy period. Local subsidies are generally pegged

to the central subsidy amount according to a certain ratio that depends on the respective

government mandate at the provincial and city levels, some with additional restrictions

contingent on various vehicle attributes other than those specified in the central subsidy

policies. Panels (a) and (b) in Figure 3.3 show average consumer subsidies (including

central- and local-government subsidies) per vehicle across the 150 cities in 2015 and 2018.

In 2015, subsidies were available for only major cities and at a higher amount. In 2018,

the coverage expanded as the central subsidy was made available for all cities; however,

the amount decreased in general.

Central Policies In 2009, the Chinese government first initiated the federal-level EV

policy through a pilot program named “Ten Cities, Thousand Vehicles” jointly announced

by the Ministry of Finance (MoF), Ministry of Science and Technology (MoST), Ministry of

Industry and Information Technology (MIIT), and the National Development and Reform

Commission (NDRC). The program started in 13 pilot cities in 2010 and expanded to 88

cities by the end of 2013. The subsidy program was made nationwide starting in 2016.

Table 3.2 shows the subsidy structure from 2013 to 2018. The subsidy amount follows

a step-wise structure with multiple tiers for BEVs and one tier for PHEVs. The minimum

threshold for driving range for BEVs was raised from 80km to 100km in 2016 and further

to 150km in 2018. At the same time, the subsidy amount for eligible vehicles was reduced.

In 2018, the eligibility rules were revised to incorporate additional technical requirements

including the minimum battery density of 105Wh/kg and minimum energy efficiency in

state-electric-vehicle-incentives-state-chart.aspx). These incentives include tax exemp-
tions and rebates for EVs and non-financial incentives such as high-occupancy vehicle (HOV) lane access,
toll reduction, and free parking.
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kWh/100km (as a function of vehicle weight).9 The policy was further revised in March

2019: the minimum threshold for the driving range was increased to 250km, and the

subsidy amount was again reduced. The revision also required local governments to

terminate subsidies by June 26, 2019.10 After the reduction and cancellation of subsidies,

EV sales experienced negative growth for six consecutive months in 2019. Due to the

negative sales impact of the subsidy removal and the effects of the ongoing pandemic,

the four ministries issued a policy in April 2020 to reinstate the subsidy policy with a

gradual reduction of 10 percent in 2020, 20 percent in 2021, and 30 percent during 2022,

relative to 2019 levels.11

Local Policies EV subsidies at the local level follow closely the central government’s

guidelines, with some variation (e.g., additional restrictions issued by local governments).

The subsidy amount is generally pegged to the amount of the central subsidy, such as a

1:1 match. Hence, the phase-out timeline and eligibility conditions of the central subsidy

also affect local subsidy programs. In general, cities issue subsidies following the catalog

of eligible vehicle models provided by the MIIT, but there are exceptions. Some cities

publish additional requirements, such as vehicle-quality attributes to further regulate the

issuance of subsidies at local levels. For example, Beijing and Shanghai distribute local

subsidies based on their own lists of eligible vehicles; Heifei set its minimum driving-

range threshold for eligible BEVs at 150km in 2013 when the minimum threshold for the

central-level subsidy was then 80km; and, in 2017, Hangzhou set subsidy parameters

based on vehicle size.12 Local financial incentives are generally funded by a combina-
9The four central ministries announced the revision in February 2018. Source: http://www.miit.

gov.cn/n1146285/n1146352/n3054355/n3057585/n3057592/c6064667/content.html
10The policy was announced in March with a three-month transition period. Vehicles sold during the

transition period that did not meet the 2019 revised standard were only eligible for 10 percent of the 2018-
level central subsidy. Source: http://www.gov.cn/xinwen/2019-03/27/content_5377123.htm.
The most recent policy announcement on April 23, 2020, postponed the termination of subsidies to 2022.
Source: http://www.gov.cn/zhengce/zhengceku/2020-04/23/content_5505502.htm

11Source: http://www.gov.cn/zhengce/zhengceku/2020-04/23/content_5505502.htm
12Sources of the policies are as follows: Beijing, http://czj.beijing.gov.cn/zwxx/tztg/

t20180130_883639.html; Shanghai, http://www.shanghai.gov.cn/shanghai/download/
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tion of resources from both provincial and city governments. Cities in the same province

can implement different local incentives. Major cities, such as provincial capitals and pi-

lot cities that were enrolled in EV policy programs at earlier stages, tend to have more

complicated policy designs with higher subsidy amounts; other cities tend to rely more

heavily on central and provincial guidelines. The local-level measures often include other

miscellaneous financial incentives, such as parking fee reductions, subsidies for the elec-

tricity bill, switching costs from ICEVs to EVs, and vehicle insurance.

Non-financial Incentives

Non-financial incentives play an important role in promoting electric-vehicle adoption.

Many such types of incentives have been shown to be effective. For example, vehicle

registration privileges have been granted to electric vehicles in cities (e.g., Shanghai, Bei-

jing, Tianjin, Guangzhou, Hangzhou, and Shenzhen) that have quotas for vehicle pur-

chases, and auctions or lotteries for issuing license plates. A growing number of cities

have established provisions that give electric vehicles access to roads that are otherwise

restricted to alleviate traffic congestion and pollution. The use of such driving-restriction

exemptions grew from 7 cities in 2015 to 29 cities in 2018. More cities are also offering

green license plates for electric vehicles that are distinguishable from the ICEV models —

giving consumers a readily visible way to signal “conspicuous adoption” of an energy-

efficient vehicle, and giving authorities an easy way to distinguish EVs’ relevant driving

and parking privileges. The green-plate policy, which began with five pilot cities in 2016,

expanded to 20 cities in 2017, and, by the end of 2018, it had effectively reached the entire

nation (all 147 cities in our sample), as shown in panels (c) and (d) in Figure 3.3.

In addition to these demand-side incentives, there are supply-side policies to directly

gongkai/hfbf1421.pdf; Hefei, http://www.caam.org.cn/chn/9/cate_104/con_5197593.
html; and Hangzhou, http://www.hangzhou.gov.cn/art/2017/8/14/art_1302334_4131.
html.
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target fuel efficiency and EV penetration. In September 2017, the MIIT issued a mandate

that established a dual credit-point system for both corporate average fuel consumption

(CAFC) and new energy vehicles (NEVs) — measures that are essentially a modified ver-

sion of California’s Zero Emission Vehicle (ZEV) mandate.13 The mandate aims at im-

proving the fuel efficiency of the overall vehicle fleet and is considered to be an extension

of consumer subsidy policies, with incentives instead injected through supply channels,

and with fewer financial and administrative burdens for the government.

3.2.3 Data Description

Vehicle data We obtain data on EV sales from the China Automotive Technology and

Research Center. The data are for the period from 2015 to 2018, and they are listed at the

city-quarter-trim level. A vehicle trim is defined as a unique combination of the brand

(e.g., Toyota), model (e.g., Camry), fuel type (e.g., BEV or PHEV), and driving range. Our

sample of analysis consists of 150 cities — including the top 40 cities with the largest ag-

gregate EV sales during our data period, and their neighboring cities, which are included

so that we can conduct city-border analysis. In 2018, 0.82 million passenger EVs were

sold in these cities; these sales represent 78 percent of the EV sales nationwide during the

period.14 Our analysis focuses on sales to individual buyers (rather than to institutions)

because institutional purchases (e.g., by government agencies and rental companies) are

subject to different subsidy policies, and institutions have different incentives than indi-

vidual consumers. Individual sales accounted for about 65 percent of total EV sales in our

150 sample cities in 2018.

13The official document that provides a full description on the mandate issued by five central min-
istries available at: http://www.gov.cn/xinwen/2017-09/28/content_5228217.htm. A de-
scription of California’s policy is available at: https://ww2.arb.ca.gov/our-work/programs/
zero-emission-vehicle-program.

14Among the EV sales, BEVs took up 76 percent. EV sales in the top 40 cities accounted for 69 percent of
national EV sales; the other 110 cities in the sample accounted for only 9 percent.
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We have detailed vehicle attributes at the vehicle trim level. After dropping very

unpopular models with annual national sales of fewer than 400 vehicles, there are 27,577

observations with 190 unique trims from 44 firms in our data.15 Panels (a) and (b) in

Figure 3.4 present annual new EV sales (individual purchases) per million residents by

city in 2015 and 2018. There are two salient features. First, sales increased dramatically

from an average of 67 per million residents to 497 per million residents over this period.

Second, figures from 2018 show large spatial heterogeneity, ranging from 5,587 sales per

million residents in Shenzhen, Guangdong Province; to 7 sales per million residents in

Hechi, Guangxi Autonomous Region.

To show how different levels of subsidies are associated with different levels of EV

sales, we plot sales per million residents against the average EV subsidy for each city in

each year, as shown in Appendix Figure C.5. The top 40 cities generally have higher sub-

sidies and higher EV sales than their neighboring cities (non-top-40 cities). In addition,

there seems to be a positive relationship between the level of subsidy and the level of EV

sales, though the relationship appears to weaken over time, likely due to the increasing

role of factors other than financial incentives.

To better control for other demand factors, we examine the within-cluster differences

in sales and subsidies between the top-40 cities and their (average) non-top-40 neighbor-

ing cities in Figure 3.5. A point in the first (third) quadrant shows that the top-40 city

has a higher (lower) level of subsidy and more (fewer) EV sales compared to neighboring

non-top-40 cities in the same cluster, implying a positive correlation between subsidies

and EV sales. Most of the clusters lie in the first and third quadrants, implying a positive

relationship between subsidies and EV sales.

15We dropped the unpopular models for two reasons. One is that data on sales of unpopular models are
more likely to contain measurement errors (Barwick et al., forthcoming). The other reason for dropping
such models is to alleviate potential concerns about supply constraints. The results are robust to using a
full sample with all vehicle models.
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Charging Stations We obtain information on non-private charging stations from the

China Electric Vehicle Charging Infrastructure Promotion Alliance, a member organiza-

tion of charging operators. Our data on charging stations allow us to construct the num-

ber of charging ports/outlets (by AC or DC) on-site by city by quarter from 2015 to 2018.

Public charging stations are open to all; dedicated charging stations are open to desig-

nated groups, such as residents in a community or company employees. The Alliance

operates about 337,000 (public and dedicated) charging ports/outlets, which accounted

for 69 percent of all operating charging ports in China at the end of 2019.16 Panels (c) and

(d) in Figure 3.4 show the number of charging ports per million residents for the 150 sam-

ple cities at the end of 2015 and 2018. The average number of charging stations per million

residents across cities increased from 4.7 in December 2015 to 134 in December 2018. The

overall temporal and spatial patterns are very similar to those of EV sales, shown in pan-

els (a) and (b) in Figure 3.4. The correlation coefficient between EV sales and the number

of charging ports per million residents for the 150 cities in our sample is 0.46 in 2015 and

0.79 in 2018.

Policies We are not aware of a centralized database on various EV policies in China. We

collect the central and local policies from a variety of online sources including govern-

ment websites, industry reports, and newspapers. Central subsidy programs are issued

through official government documents that are generally published on the government

official websites of the Ministry of Finance (MoF), Ministry of Science and Technology

(MoST), Ministry of Industry and Information Technology (MIIT), and the National De-

velopment and Reform Commission (NDRC). Local subsidy policies are issued by provin-

cial and city governments and can be retrieved from official documents released on gov-

ernment websites, and from unofficial online documentation sources such as news arti-

cles. The non-financial incentives, such as offering exemptions from driving restrictions

1671 percent of the charging ports are open to the public, and the rest are exclusively for dedicated groups.
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and offering green license plates, are mostly announced separately from the subsidy pro-

grams. The official policy documents and most news reports contain general information

about the policy, the subsidy amount, eligibility conditions (e.g., vehicle attribute require-

ments), and the effective policy period. This information allows us to match a given pol-

icy directly to certain vehicle models over a defined period of time based on the eligibility

conditions.

Summary Statistics Table 3.3 presents summary statistics of our full data, including ve-

hicle sales, vehicle attributes, and policies. The average Manufacturer Suggested Retail

Price (MSRP) is about ¥200,000 (or $30,000) with a range of ¥81,800 to ¥608,800. The 2018

Cadillac CT6, a PHEV, is the most expensive EV model in our data, followed by Audi

A6, and the Volvo XC60, both of which are also PHEV.17 While these high-end models

are produced by joint ventures or are imported, the low-end models are mostly produced

by China’s domestic automakers such as Kangdi, Dongfeng Xiaokang, and ChangAn. In

contrast to the high-end models, which are sold in various countries, these low-end mod-

els are not sold outside China. Due to the lack of transaction prices, we use MSRPs in our

estimation. Dealer-level incentives are limited in China due to the practice of “minimum

retail price maintenance” (RPM), whereby automakers either explicitly or implicitly pro-

hibit dealers from selling below a preset price to reduce price competition among dealers

(Barwick et al., forthcoming). To examine the correlation between MSRPs and transaction

prices, we obtain data on dealer-level transaction prices in five cities (Beijing, Chengdu,

Guangzhou, Hangzhou, and Shanghai) from 2011 to 2015. The data show that transac-

tion prices and MSRPs are highly correlated (correlation coefficient 0.994). In addition, the

instrumental variable for MSRPs could further address measurement errors in MSRPs.

The total subsidy includes vehicle purchase subsidies from the central, provincial, and
17The Cadillac CT6 PHEV is produced in the facility in Shanghai in a joint venture (JV) between GM and

Shanghai Auto (SAIC). The popularity of the luxury Cadillac brand among Chinese consumers was a factor
in the decision to base the production of this model in China.
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local governments, and other miscellaneous subsidies, which together are worth more

than ¥45,000 per vehicle on average in our sample period.18 There is significant variation

over time and across cities. In addition, because the subsidy amount depends on fuel type

and driving range, there is important variation across vehicle models, even within a city.

Our analysis of vehicle demand controls for a set of vehicle attributes such as vehicle size

(the length by width), motor power, vehicle weight, and driving range. Battery capacity

and the EV stock by institutional buyers are to be used as instruments in our analysis.

3.3 Empirical Model and Identification

In this section, we first present our empirical model and then discuss the identification

strategy.

3.3.1 EV Demand

To describe the empirical model for EV demand, we define a vehicle model as a brand-

model name combination (e.g., BYD Song) and a trim as a unique combination of model

and driving range combination (e.g., BYD Song with a range of 80km). Let m index a

model, k index an EV trim, c index a city, y index a year, and t index time (i.e., year-

18The miscellaneous subsidies are related to the services and facilities that are associated with EVs (e.g.,
parking fee reductions, charging subsidies, subsidies for replacing ICEV models with EV models, and so
on). When we can identify these subsidies at the per-vehicle level, we record this information in our data.
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quarter). We specify the following equation as the starting point of the analysis:19

ln(qckt) = β1MS RPckt + β2S ckt + β3Nct + β4DRckt + β5GPct + X′cktα + ηcm + δt + ξcy + εckt (3.1)

where qckt is the sales of EV trim k in city c and year-quarter t. MS RPckt denotes the man-

ufacturer’s suggested retail price (MSRP). S ckt denotes the total subsidies that consumers

are eligible for. β1 measures consumer demand response to MSRPs, and β2 captures the

effect of the subsidies. We separate MSRPs from consumer subsidies in the equation to

allow for the possibility that consumers may respond to these two variables differently.

Nct denotes the total number of public charging ports/outlets that have been built in the

city by the end of a given quarter.20 The coefficient on Nct captures the (indirect) network

effect of charging infrastructure on consumer adoption of EVs. DRckt is an indicator vari-

able being one for trim k if it is exempted from the driving-restriction policy. GPct is an

indicator variable being one if city c implements a green-plate policy for EVs at time t.

Xckt is a vector of vehicle attributes including vehicle size, battery power over weight (a

measure of acceleration), and driving range.

We also include a full set of city-model (e.g., BYD Song in Beijing) fixed effects and

year-quarter (e.g., the first quarter of 2011) fixed effects in equation (3.1). City-model

fixed effects control for time-invariant product attributes such as quality and brand loy-

alty that could affect vehicle demand, the time-invariant local preference for green prod-

ucts (Kahn, 2007; Kahn and Vaughn, 2009), and demand shocks for each model (e.g., a

stronger preference or dealer presence for BYD Song in Beijing). Year-quarter fixed effects

control for common demand shocks, such as the national changes in consumer awareness

19We include MSRPs and consumer subsidies (central + local) separately in our main specification. This
is under the assumption of full pass-through of subsidies to consumers. Evidence from other existing
studies of related programs suggests that full pass-through is a reasonable assumption for EV subsidies
(Muehlegger and Rapson, 2018; Gulati et al., 2017; Sallee, 2011). The specification enables us to test whether
consumers respond differently to the MSRPs and subsidies.

20We use the number of charging ports rather than the number of charging stations to represent the
availability of charging infrastructure; regardless of which we use, the qualitative findings are the same.
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of EV technology. In addition, we include city-year fixed effects to control for city-specific

demand shocks that vary across years. These could be unobserved local incentives or

changes in consumer preferences. Since the variation in charging ports is at the city-time

(year-quarter) level, including city-time fixed effects would absorb Nct. εckt indicates, for

each trim, the unobserved demand shocks that are time-varying and city-specific (for ex-

ample, unobserved local incentives that vary across EV trims or city-specific promotions

for a vehicle model that vary over time).

Our key parameters of interest are β’s, which capture the effects of important policy

and market drivers. However, each of the corresponding variables is subject to the con-

cern of endogeneity even with the rich set of controls in (3.1). There are multiple sources

of endogeneity. The first source is unobserved product attributes (e.g., quality or prestige)

that could render MSRP endogenous. Previous literature on vehicle demand (e.g., Berry

et al. (1995) and Petrin (2002)) has documented that failing to control for unobserved

product attributes could lead to a downward bias in the price coefficient estimates. The

city-model fixed effects included in (3.1) absorb model-level observed and unobserved

vehicle attributes that do not vary over time. The remaining variation in MSRP and in ob-

served attributes Xckt comes from the variation across trims within the same model, and

more importantly the variation over time for the same trim. Nevertheless, the variation

in unobserved attributes across trims within the same model and over time could still be

correlated with the vehicle price, rendering the MSRP-coefficient estimate inconsistent.

The second source of endogeneity is the simultaneous and intertwined nature of the

relationship between consumer demand for EVs and investment decisions on charging

stations. The availability of charging facilities could help promote consumer adoption by

alleviating concerns consumers have about the limited driving range of EVs. The impor-

tance of charging infrastructure in the early stage of EV diffusion has been shown in Li et

al. (2017), Zhou and Li (2018), Springel (2019), and Meunier and Ponssard (2020). At the
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same time, investors’ decisions take into account current and future demand conditions.

The simultaneity between consumer demand and charging infrastructure could result in

Nct being endogenous, as shown in Corts (2010) (in the context of the U.S. flex-fuel vehicle

market) and Li et al. (2017) (in the EV market), respectively.

The third source of endogeneity is unobserved demand shocks or policies that could

confound the policies of interest (subsidies, exemptions from driving restrictions, and the

green license plate policy). National subsidies vary over time and across vehicle trims

based on the driving range. Local subsidies vary over time, across cities and products.

The driving restriction and the green license plate policies vary over time and across cities

due to their staggered rollout. We include time fixed effects to control for common de-

mand shocks at the national level and city-year fixed effects to control for city-specific

demand shocks that vary across years but are constant within a given year. To the ex-

tent that these policies are a response of the government to time-varying and city-specific

demand shocks, these policy variables could be endogenous. For example, if a city gov-

ernment observes or projects a negative demand shock to its local EV demand, it may

start to implement a policy to counteract the negative demand shock. If this is true, the

policy impact estimated from OLS would have a downward bias.

3.3.2 Identification Strategy

We address the first two sources of endogeneity — unobserved product attributes and si-

multaneity — using the instrumental variable method. For the third source of endogene-

ity, we use a city-border-regression design to address the selection of local policies. To

incorporate these identification elements, we use an IV method paired with a city-border

design.

To address price endogeneity due to unobserved product attributes, we construct a
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set of IVs based on battery capacity (kWh). We interact battery capacity with supplier

dummies. We distinguish battery suppliers as CATL, BYD, and the rest. CATL is by far

the largest EV-battery supplier in China with a market share of 41.3 percent in 2018 and

50.6 percent in 2019; while BYD is the second-largest battery supplier with a market share

of 20 percent in 2018 and 17.3 percent in 2019.21 Battery is a major cost component for

EVs, accounting for anywhere between 20 to 60 percent of vehicle prices. The battery

cost has decreased dramatically over time; technological improvements and scaling up of

production have led the (volume-weighted) cost to fall from $1,100/kWh in 2010 to less

than $160 in 2019.22 Production scale and technology capabilities may give CATL and

BYD batteries cost advantages. The identification assumption is that battery capacity is

not correlated with unobserved product attributes. The choice of battery capacity is likely

to be dictated by the decisions on vehicle driving range, power, and weight — matters for

which we control in our regressions.23

To address the endogeneity of the availability of charging infrastructure (i.e., the num-

ber of charging ports) due to simultaneity, we use as an IV the lagged stock (i.e., cumula-

tive sales) of EVs purchased by institutions (e.g., government agencies or taxi fleets) dur-

ing all previous quarters. Our demand analysis focuses on individual purchases, which

account for about 65 percent of total EV sales in the sample cities during our data period.

21BYD started as a rechargeable battery manufacturer in 1995, and the company entered the automobile
business in 2003. Now the largest EV producer by volume in China, it supplies batteries to all BYD models.
CATL was founded in 2011, and it specializes in the manufacturing of lithium-ion batteries for electric
vehicles and energy storage systems. It grew quickly to become the largest battery supplier for EVs in
China.

22Source: bloom.bg/2LiZSu5
23We argue that, in our setting, battery capacity should satisfy the exclusion restriction. Consumers are

most likely to care about driving range and driving performance, like handling and road feel. These char-
acteristics correlate with battery capacity, but they are distinct from battery capacity per se. Therefore, we
control for a set of vehicle attributes including driving range, vehicle size, and motor power over weight
(a measure of acceleration) in our model. In doing so, we assume that battery capacity affects consumer
demand through these controlled attributes, rather than by providing utility directly by itself. The relation-
ship between battery capacity and driving range/performance in consumer demand for EVs is similar to
the relationship between fuel economy and specific fuel-saving technologies (such as gasoline direct injec-
tion, and valve timing and lift technologies) in consumer demand for gasoline vehicles. These fuel-saving
technologies would likely affect consumer demand, but only through their desire to assess overall fuel
efficiency.
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The size of the EV stock by institutions could affect investment decisions on charging

stations. A similar strategy is used in Corts (2010) to study the investment decision of

flex-fuel charging stations. The identification assumption is that the lagged institutional

EV stock is unlikely to be correlated with concurrent demand shocks to individual buyers.

Our results hold when we use the second lag of the institutional EV stock.

To address potential policy endogeneity due to unobserved local demand shocks, we

use a city-border-regression design, similar in spirit to studies such as those by Holmes

(1998), Dube et al. (2010), Kahn and Mansur (2013), Hagedorn et al. (2015), and Bar-

wick et al. (forthcoming). The city-border-regression design is essentially a difference-

in-differences (DID) estimator with a more deliberate choice of the control group. To

examine the impact of a policy, a standard DID compares the outcome of the treatment

group and that of the control group before and after the policy implementation. In our

case, the treatment group would consist of cities with the policy, and the control group

would be cities without the policy. A key challenge with this framework is that changes

in EV sales over time between treatment cities and control cities could be systematically

different due to local unobservables (demand shocks or other policies), confounding the

estimated impact of the policy of interest. In our city-border regression, we compare EV

sales for cities with a certain policy (e.g., a driving restriction exemption or green license

plates) before and after the policy was implemented. The design exploits the fact that

local policies change sharply across city borders, but other demand factors such as trans-

portation costs, access to dealer outlets, and consumer preferences are likely to be similar

among neighboring cities.24 To identify the policy impacts, the city-border regression

deliberately compares cities nearby (e.g., neighboring cities) and leverages the contempo-

raneous policy variation across cities within a cluster.

In practice, we group adjacent cities into a cluster of multiple cities. Among the 150

24Subsidies are tied to the city of residence.
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cities, we create 34 clusters with each cluster having 4.4 cities on average. Each cluster in-

cludes at least one city that is among the top 40 EV cities (e.g., a major city). To control for

time-varying local unobservables common in each cluster, we include cluster-time fixed

effects and cluster-brand-year fixed effects. Cluster-brand-year fixed effects to control for

demand shocks that are specific to each brand in a cluster — such as, for example, as the

result of the change in dealer presence, or changes in consumer preferences for a brand

among cities in a cluster. In a robustness check, we restrict the clusters to include only

bordering cities with average household incomes that are within 20 percent of the house-

hold incomes of the major city in the cluster. This leaves 31 clusters with 106 cities. The

results using this grouping are very similar to results using all 150 cities.

3.4 Estimation Results

We first present estimation results for the main specifications, and we then present the

results from robustness checks.

3.4.1 Parameter Estimates

Table 3.4 reports the estimation results of the demand model in Equation (3.1) from seven

specifications. All the regressions include MSRPs, consumer subsidies, the total num-

ber of charging ports, the dummy variable for exemptions from driving restrictions, the

dummy variable for the green license-plate policy, and three key vehicle attributes: vehi-

cle size (length by width), power over weight, and driving range. The first five columns

show the OLS results and the last two columns show the results from the IV specification.

The last column is our preferred specification, which we use to derive the results of our

policy analysis.
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From columns (1) to (5), we add more and more controls to examine the effects of

potential confounding factors on our key parameters of interest. Column (1) includes city-

model fixed effects to control for city-specific but time-invariant consumer preferences or

demand shocks for each model. All the coefficient estimates have intuitive signs and are

statistically significant. Bearing in mind that these estimates may not be consistent, the

results suggest the following: (1) an increase of ¥10,000 in the MSRP leads to a decrease

of EV sales by 2.7 percent.; (2) a subsidy of ¥10,000 increases EV sales by 11.6 percent,

a much larger impact than the impact from an equivalent price change; (3) an increase

of 1,000 charging ports increase EV sales by 4.7 percent; (4) an exemption from driving

restrictions increases EV sales by more than 50 percent, and (5) the green license-plate

policy increases EV sales by more than 30 percent.25 Column (2) adds time (year-quarter)

fixed effects to control for national time-varying demand shocks. Including time fixed

effects meaningfully changes the coefficient estimates for the number of charging ports,

green license-plate policy, and driving range, suggesting that time-varying unobservables

are important confounders for these three variables of interest.

Column (3) adds city-year fixed effects to control for city-specific demand shocks that

vary from year to year. This addition results in two significant changes in the coefficient

estimates. First, the estimate of the number of charging ports becomes statistically signif-

icant and the magnitude stays roughly the same in all the remaining specifications. The

key variation for identifying the effect of charging infrastructure in column (3) is within-

city, quarter-to-quarter variation in the number of charging stations within a year. Second,

the coefficient estimate decreases for the policy that provides an exemption from driving

restrictions, the estimate becomes statistically insignificant for the remaining specifica-

tions. By removing the year-to-year variation in the policy, the identification relies solely

on the within-city, within-year changes in the policy status. That is, the identification

25The percentage impact of a policy dummy on EV sales can be consistently estimated by 100*[exp(β̂ −̂var(β̂)/2) − 1].
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is based on the limited cases in which a city adopted the policy in mid-year. There is

limited quarter-to-quarter variation within a year in policy adoption, as suggested by

Appendix Figure C.4. The result suggests that the policy that provides EVs with exemp-

tions from road access restrictions does not significantly incentivize consumers to switch

from gasoline vehicles to EVs. This could be due to the weak enforcement of the policy,

or to consumers’ adaptive behavior in their travel decisions. The driving restrictions that

are in place at present only apply to peak hours and for roads that are within the city cen-

ter. Thus, consumers could adjust their travel times, or use other modes of transportation

(e.g., using public transit) without having to resort to buying EVs.

As discussed in Section 3.3.1, one of the key identification challenges is the time-

varying and city-specific demand shocks. To examine the effect of charging infrastruc-

ture on EV demand, it is not practical to include city-time fixed effects. Instead, we use a

border-regression design in columns (4) to (7) in which bordering cities are classified into

clusters. Column (4) adds cluster-time fixed effects and relies on cross-city but within-

cluster variation as the key source of variation in identifying the effects of charging in-

frastructure and policy variables. Intuitively, if a city has a larger increase in the number

of charging ports relative to the change in other cities within the same cluster during a

given quarter, and if it also observes a larger increase in EV sales during the same period,

these commensurate changes would suggest a positive impact of access to charging in-

frastructure on EV demand. The identification assumption is that the larger increase in

the number of charging ports in the city is exogenous to concurrent city-specific demand

shocks for EVs. Similarly, the effect of the green license-plate policy is identified from

contemporaneous policy variation within the same cluster. The coefficient estimate on

the charging port increases slightly, but the effect size of the green license-plate policy

increases by one-half. Column (5) further adds cluster-brand-year fixed effects to control

for brand-specific demand shocks that are common in each cluster but vary by year —

such as the change in dealer presence of a brand, or advertising efforts of a brand in a
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region. These fixed effects also control for year-to-year changes in consumer preferences

or product quality by brand. The coefficient estimate on vehicle size becomes negative

and imprecise.

When relying on the border-regression design and the rich set of fixed effects, one

might still worry about potential endogeneity in consumer price due to unobserved prod-

uct attributes, and in the number of charging ports due to simultaneity and unobserv-

ables. We address these issues in columns (6) and (7) using IVs. Column (6) instruments

MSRPs using battery capacity interacting with supplier dummies (CATL, BYD, and oth-

ers). In column (7), we instrument both MSRPs and the number of charging ports by

adding one more IV, the stock of institutional EVs as of the previous quarter. The first-

stage results for column (7) are reported in Appendix Table C.1; the results are consistent

with our intuition. Column (1) shows that battery capacity is positively correlated with

MSRPs. Column (2) indicates that the lagged EV stock owned by institutions is positively

correlated with the number of charging ports.

The IVs in columns (6) and (7) produce strong first-stage results, and they pass the

weak identification test in all specifications. The key difference between column (5) and

columns (6) to (7) is that the coefficient estimate on MSRPs more than quadrupled in

magnitude in columns (6) and (7). This is consistent with the finding in the literature

that unobserved product attributes tend to bias consumer price sensitivity to zero. The

comparison highlights that OLS results would dramatically underestimate the impact of

MSRPs on EV diffusion. Nevertheless, the estimation results across columns (6) to (7)

are very close in magnitude. This suggests that the number of charging ports could be

reasonably taken as exogenous to current demand shocks after controlling for time fixed

effects, and city-year fixed effects, likely due to its nature of being a stock variable.

Taking the estimates from the last column as the preferred results, the estimates sug-

gest the following: (1) an increase of ¥10,000 in the MSRP decreases EV sales by 18.1
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percent; (2) a subsidy of ¥10,000 increases EV sales by 16 percent, implying that con-

sumers respond to MSRPs and subsidies in similar magnitudes; (3) an increase of 1,000

charging ports increases EV sales by 20 percent; (4) the policy that exempts EVs from driv-

ing restrictions does not seem to impact EV sales; and (5) the green license-plate policy

increases EV sales by nearly 37 percent. The results are qualitatively similar to those of

Zambrano-Gutierrez et al. (2018), who find that both tax credits for individuals and grants

for charging infrastructure have a positive effect on plug-in electric vehicle registrations.

The coefficient estimate on the MSRP variable implies an own-price elasticity of -3.7 for a

vehicle at the average price of ¥203,000. The implied price elasticity is in line with the es-

timates from recent studies on EVs in other countries. For the United States, for example,

Li et al. (2017) estimate a price elasticity of -1.3, using estimates based on the initial stage

of EV sales (from 2011-2013) and a similar empirical framework; Xing et al. (2019) provide

an elasticity estimate of -2.7 using a rich random-coefficient, discrete-choice model with

the second-choice data from U.S. consumer surveys; and Muehlegger and Rapson (2019)

report a price elasticity estimate from -3.1 to -3.9 among California households with an

annual income of less than $100,000. For Norway, Springel (2019) estimates the price elas-

ticities for EVs to be between -1 to -1.5 in that EV market. In the policy analysis (Section

5), we further discuss the implications of our parameter estimates, and we compare our

findings with those in the literature.

3.4.2 Alternative Specifications

We estimate several alternative model specifications to examine the robustness of our

findings. We include our benchmark result from Table 3.4 column (7) in Table 3.5 column

(1), and report the results from other specifications in columns (2)-(7) of Table 3.5.

In Tables 3.4, the dependent variable is log(sales) as specified in Equation (3.1). There

138



is 13 percent of observations with zero sales. The observations concentrate on less-

popular models and in small cities. These observations could contain useful information

about consumer demand. For example, if zero sales are more likely to occur in cities with

less generous policy incentives, it would help us identify the effects of the policies. Thus,

we added 0.5 to the sales for these observations in order to keep them in the sample in-

stead of dropping them. To examine the robustness of our results to the ad hoc method

of using 0.5 to replace zero, we replace the dependent variable in Equation (3.1) with the

inverse hyperbolic sine function, which has a value of zero at zero but a similar shape

with the logarithm function at positive support. The results are reported in Tables 3.5

column (2). The coefficient estimates are similar in magnitude to those in column (1), our

benchmark results.

On the other hand, one might worry that zero sales do not represent true zero de-

mands but are instead driven by supply constraints. To examine the robustness of our

results, we dropped those observations with zero sales. The results are reported in col-

umn (3) of Table 3.5. These estimates are qualitatively similar to those in column (1),

suggesting that our findings are robust regarding whether or not there are supply con-

straints.

The demand equation (3.1) takes a convenient form for the purpose of estimation and

interpretation rather than being derived from an underlying utility maximization frame-

work. However, with a slight modification of the dependent variable, equation (3.1) could

be consistent with a stylized utility maximization framework. In particular, the depen-

dent variable would be ln(skct) − ln(s0ct) where skct is the market share of trim/choice k in

market c and time t, and s0ct is the share of consumers who do not purchase an EV (i.e.,

they choose an outside option instead). This (linear) logit demand function is an aggre-

gation of choices made by individuals with homogeneous consumer preferences (Berry,

1994). Column (4) of Table 3.5 provides the estimates of the logit model. The implied
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price elasticity can be derived based on the price-coefficient estimate in column (4) as

β̂1 ∗ pk ∗ (1 − sk). The implied price elasticities are very similar between the two columns

since s j is close to zero. The coefficient estimates on other variables are nearly identical as

well.

It is important to note that with only EV models in our data, our analysis treats all

other non-EV models to be in one category (i.e., the outside good). Limiting the choice

set and the substitution pattern across choices could potentially impact the estimate of

the price elasticity and policy simulations. EV models represent a technology that is dra-

matically different from conventional gasoline vehicles. Therefore, consumers making

purchase decisions are likely to consider them as a separate category. Traditional hybrid

vehicles are nearly nonexistent in the Chinese market, limiting the possibility of substitu-

tion between PHEV and traditional hybrid vehicles. (This is different from the situation

in the U.S. market, which features hybrid vehicles.) EVs represented only about 4.4 per-

cent of new vehicle sales in China in 2018. Including gasoline models in our regressions

does not meaningfully change the estimates of the key variables of interest. Nevertheless,

identifying the nuanced substitution pattern is important in understanding the environ-

mental benefit of the policies, as shown in Xing et al. (2019); as demonstrated in that

United States-based study, the micro-level data with the second-choice information are

much better suited to assess the substitution pattern between EVs and non-EVs than the

aggregate data that we use in our study. We leave this issue for future research.

As discussed above, the border-regression design relies on the identification assump-

tion that unobserved confounding factors are common across cities within a cluster due

to the fact that cities in the same cluster tend to be similar. Nevertheless, some neigh-

boring cities could have large differences in household income, which is likely the most

important demographic variable in affecting EV demand. If large differences in house-

hold income translate to large differences in unobserved demand shocks across cities,
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including these cities could invalidate our key identification assumption. In alternative

specifications, we remove the neighboring cities whose average household income lev-

els differ by more than 20 percent from the household income levels in the major city in

the cluster (the city with the largest EV sales). This subsample includes 106 out of the 150

cities. The regression results based on the subsample are presented in column (5) of Tables

3.5. The results based on the subsample are very similar to those in column (1), providing

support for the key identification assumption behind the border-regression design.

In our main specification, we dropped the unpopular vehicle models with annual na-

tional sales of fewer than 400. Column (6) reports the results based on the full sample

with all vehicle models. Again, the results are similar to our baseline in column (1).

Our last robustness check is to use an alternative set of IVs. To further address the

concern that battery capacity may provide additional (or stand-alone) value to consumers

than its impact through the driving range, we use battery density as an alternative IV. Bat-

tery density is the ratio of battery capacity and battery weight — a metric that consumers

are likely to be even less familiar with than battery capacity, but one that affects EV prices

through the cost of batteries. The IV results are shown in column (7) in Table 3.5, where

we instrument MSRPs using battery density interacting with battery-supplier dummies.

The estimate on MSRPs in column (7) is smaller in magnitude than that in column (1), but

other coefficients remain very close across the two columns.

Heterogeneity analysis and Policy Interactions Appendix Table C.2 presents regres-

sions with additional interaction terms to examine heterogeneity and policy interactions.

We first interact the total subsidy with the number of charging ports to examine whether

there is complementarity between financial subsidies and the investment of charging

ports. The IV estimate in column (7), our preferred specification, is positive and signifi-

cant. The result is in line with the intuition that when more charging ports are available,
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subsidies could have a larger impact on stimulating EV adoption. Next, we interact the

exemption from driving restrictions with the green license-plate policy to examine the

presence of policy interactions. The coefficient estimate from the preferred specification

in column (7) is positive but not statistically significant. Therefore, there is no strong evi-

dence to suggest policy interactions between the policy offering green license plates and

exemptions from driving restrictions.

One might be interested in the impacts of electricity and gasoline prices on EV de-

mand. Higher electricity prices could deter EV purchases. However, electricity prices (on

average ¥0.5 per kwh) may be low enough that they may not be a significant cost factor

in vehicle-purchase decisions. In practice, there is very limited within-year variation in

average electricity prices in a city, preventing us from precisely identifying the coefficient

estimate. The coefficient estimate on gasoline prices has a counter-intuitive sign but is

not statistically significant. We also interact vehicle size and income to capture consumer

preferences heterogeneity based on income. Intuitively, high-income households may

have a stronger demand for larger vehicles for safety and comfort. The coefficient for the

interaction term is positive and statistically significant in columns (2)-(4), and positive

but not precise in our preferred specification in column (7). We add to this set of regres-

sions a final interaction, between the driving range and the number of charging ports.

The availability of charging ports should alleviate consumers’ driving-range anxiety, and,

hence, wider charging availability should disproportionately benefit vehicle models with

a lower range. Again, the coefficient estimate on the interaction term is intuitively signed

but not precise.

To examine the heterogeneity of the subsidy effect by time, we separate our study

period (2015-2018) into two sub-periods, 2015-2016, and 2017-2018, and examine the dif-

ference in the impact during these two sub-periods. We generate an indicator variable

“1(Post-2016)” that equals one for the end of the study period (2017-2018), and we inter-
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act it with consumer subsidies and the number of charging ports. The regression results

are reported in Appendix Table C.3. We find that the coefficient estimates for the inter-

action term between consumer subsidies and the post-2016 dummy are positive and sig-

nificant, suggesting that consumer subsidies played a bigger role in stimulating EV sales

during the 2017-2018 period than they did in the 2015-2016 period. This finding is likely

driven by two factors. First, many more EV models were available in the latter period

(35 models in 2015 and 2016, relative to 104 models in 2017 and 2018). Second, early EV

adopters are likely less sensitive to prices/subsidies because for them other factors (such

as environmental awareness, and conspicuous consumption) may play a bigger role in

their purchase decisions.

We also examine the heterogeneity of the subsidy effect by vehicle price. We divide EV

models into two groups: low-priced models with MSRPs below the mean and high-priced

models with MSRPs above the mean.26 Appendix Table C.4 shows that the coefficient

estimates for the interaction term between consumer subsidies and the dummy for low-

priced models are negative and significant across different columns. Based on column

(7), the sales effect of subsidies on low-priced EVs is more than twice as large as that on

high-priced EVs; a ¥10,000 subsidy leads to a 16.7 percent increase in sales of low-priced

models, compared to a 7.2 percent increase in high-priced models. This result could be

driven by the fact that buyers of low-priced models tend to have a lower income and are

more price sensitive (Barwick et al., forthcoming).

Nonlinear analysis Appendix Table C.5 shows the results with a quadratic term of the

number of charging ports used to check whether there is a nonlinear effect. The intuition

is that as more charging ports become available, the impact from an additional charging-

port unit of the charging port could be decreasing. The estimates of the square term
26The average MSRPs is ¥150,000 for the low-priced models, and ¥265,000 for the high-priced models.

The average subsidies for the two groups are ¥47,800 for the low-priced models and ¥42,900 for the high-
priced models.

143



agree with this pattern. In all columns except for column (3), the sign of the coefficient

is negative, but none of the estimates are significant. There might be a threshold effect

whereby the size of the charging infrastructure needs to reach a critical point to sustain

EV demand in the long run. Zhou and Li (2018) study the critical mass issue in the EV

market in the United States, and find that in many cities in the US, the EV market exhibits

multiple equilibria. This implies that the number of charging stations needs to pass a

critical threshold; otherwise, EV adoption will converge to zero in the long run. We leave

this question for future research.

Mediating Analysis To examine whether charging-station availability (e.g., due to

charging station incentives) affects the estimated sales impact of consumer subsidies, we

check the four necessary conditions for the mediating effect to occur, following the ap-

proach used by Zambrano-Gutierrez et al. (2018).27 The results are reported in Appendix

Table C.6. Column (1) shows that lower EV prices (MSRPs) or higher consumer EV subsi-

dies increase the availability of charging stations, likely due to the indirect network effect

as documented in the literature (e.g., more EVs leading to more charging stations). This

suggests that the second condition for the mediating effect holds. Columns (2) and (3)

show that the coefficient estimates on consumer subsidies are very close (0.162 compared

to 0.160), whether excluding or including the number of charging ports. This compar-

ison suggests that the fourth condition for the mediating effect to occur does not hold.

Therefore, our results suggest that consumer subsidies have a direct impact on EV sales

rather than having an effect that takes place through the channel of charging stations.

While our data do not include subsidies on charging stations, it is likely that this type

of subsidy would affect EV sales through the channel of charging stations, as shown in

Zambrano-Gutierrez et al. (2018) in the U.S. context.
27The four necessary conditions for the mediating effect to occur are as follows: (1) The number of charg-

ing stations influences registrations. (2) Policies influence the number of charging stations. (3) Policies
influence registrations in the absence of control for charging stations. (4) The impact of policies on registra-
tions changes when the model includes the mediator.
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3.5 Policy Analysis

In this section, we conduct simulations to examine the role of the underlying driving

factors behind the dramatic growth of China’s EV market. Based on the model estimates,

we simulate the counterfactual number of EV sales that would occur in the absence of

certain policies.

3.5.1 Consumer Subsidies

The average subsidy from the central government is ¥34,600 with a range of ¥0 to ¥55,000

during our sample period. The average local subsidy is ¥9,800 with a range of ¥0 to

¥60,000. Together, the total subsidy amounts to ¥44,400 (or about $7,000) per EV, or nearly

26 percent of MSRP, on average, and reaching levels as high as 73 percent of MSRP in

some cases. The total subsidy from the central and local governments is nearly ¥55 billion

during our sample period for the 150 cities.28

To examine the impact of consumer subsidies on EV sales, we simulate the EV sales

without the subsidies based on the coefficient estimates of column (7) in Table 3.4. The

simulated sales and the 95 percent confidence interval are depicted in Figure 3.6. The

results suggest that the subsidies played an important role in promoting EV sales. The

subsidies explained nearly 55 percent of the EV sales during the data period. Appendix

Figure C.6 presents simulation results based on the coefficient estimates using the sub-

sample of 106 cities as shown in column (5) of Table 3.5. The effect size is similar to

the baseline estimate. The significance of consumer subsidies in the diffusion of alterna-

tive fuel vehicles (hybrid vehicles and EVs) has been documented in previous studies in

28The total consumer subsidies from both central and local governments from 2011 to 2019 were nearly
¥300 billion (or nearly $50 billion) including subsidies to commercial vehicles. Source: http://www.
21cnev.com/html/201912/783429_1.html.
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other countries. Li et al. (2017) estimates that the federal tax credit of $2,500 to $7,500 per

EV contributed to about 40 percent of EV sales from 2011 to 2013 in the United States.

Springel (2019) finds that the subsidies for consumer purchases and charging stations ex-

plained about 37 percent of EV sales from 2011 to 2015 in Norway.29 Jenn et al. (2018) find

that every $1000 rebate or tax credit increases EV sales by 2.6 percent in the United States.

Wee et al. (2018) find that a $1,000 increase in the subsidy for an EV model increases the

registration of that model by 5 percent to 11 percent in the United States. Comparing these

estimates shows that the effect of consumer subsidies is stronger in China as a result of

greater price sensitivity among Chinese consumers.

3.5.2 Green License Plates

Under the green license-plate policy, EVs receive special license plates that are green in

color, making them distinct from the license plates for gasoline vehicles. The policy rolled

out in three waves: 1) beginning in five cities in December 2016, 2) adding another 12 cities

in November 2017, and 3) covering the rest of the country in 2018.

Our regressions suggest a robust and large effect of this policy on EV sales. The pre-

ferred specification in Table 3.4 suggests that the green license-plate policy has an EV-sales

effect that is equivalent to about ¥20,000 in subsidies. Based on the parameter estimates,

Panel (b) in Figure 3.6 depicts the number of sales that would have occurred in a coun-

terfactual scenario in which the green-license plate policy had not been implemented. It

shows that the policy contributed to nearly 17 percent of EV sales during our sample pe-

riod. A similar effect is shown in Panel (b) in Appendix Figure C.6 using the subsample

29Norway has the highest EV penetration in the world. Sales of such vehicles accounted for nearly 56
percent of new vehicle sales in 2019 — an increase from 2015, when they accounted for 25 percent of sales.
In Norway, EVs are exempt from the value-added tax of 25 percent levied on all other new vehicle pur-
chases. For an EV with an average price of $33,000 (the average price during the 2011-2015 period), this tax
exemption was equivalent to roughly $8,250.
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of 106 cities. The efficacy of the policy is substantial, in fact, it may be difficult to be-

lieve that this accurately reflects its influence, given that the measure’s cost was likely to

have been minimal. However, the coefficient estimates on the green license-plate-policy

variable across all specifications are economically large and statistically significant. This

finding highlights the large value that the green license plate brings to consumers poten-

tially through multiple channels.

One might worry that the green license-plate policy may capture the effect of other

(unobserved) policies or the policy interactions whereby the green license-plate policy is

enhanced by its links with other incentivizing policies (such as the parking privileges and

exemptions from certain driving restrictions). In terms of unobserved EV policies, city-

year fixed effects control for city-level unobserved policies/shocks that vary from year

to year. Cluster-time (i.e., year-quarter) fixed effects control for within-year variation in

policies/shocks that are constant across cities in a cluster. For the estimated impact of

the green license-plate policy to capture the impact of other unobserved policies, those

policies have to be rolled out in the same fashion as the green license-plate policy in

both temporal and spatial dimensions. We are not aware of such coordination of policies.

To examine the possibility of policy interaction, we include in our specification for het-

erogeneity analysis and policy interactions the interaction term of the policies on green

license plates and offering exemptions from certain driving restrictions (see Appendix

Table C.2). The coefficient estimate is positive but imprecise.

Recent literature has found that consumers demonstrate their environmental prefer-

ences through buying green products (Kahn, 2007; Kahn and Vaughn, 2009) to seek status.

Sexton and Sexton (2014) define “conspicuous conservation” as a phenomenon in which

individuals seek status conferred upon demonstration of actions and purchases that min-

imize the environmental impact of consumption. The authors find that consumers are

willing to pay an additional $430 to $4,200 for the distinctively designed Toyota Prius.
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Our finding is also consistent with the findings from the eco-labeling literature, which

shows that such labeling can help guide consumer purchasing decisions, and encourage

a behavioral change of consumers and producers towards sustainability (Teisl et al., 2002;

Bjørner et al., 2004; Mason, 2013).

3.5.3 Charging Infrastructure

As in many new technology markets, the EV market is characterized by indirect network

effects. That is, the demand for EVs depends on the availability of publicly accessible

charging stations, and, in turn, the supply of charging infrastructure depends on the in-

stalled base of EVs to use the stations. An inherent challenge in the development of this

type of market is the coordination problem whereby one group of market participants

tends to wait for the other group to act.30 Policies that strengthen one side of the market

could help the development of the other side of the market. The government can choose

to subsidize EV purchases (demand) or investment in charging stations (supply) — or to

do some of both. The question of whether the policies on either side of the market are

equally effective or not in promoting EV sales (i.e., the symmetry/neutrality of the poli-

cies) is an empirical question that has important implications for effective policy design.

The preferred specification in Table 3.4 shows that adding 1,000 charging ports has an

effect on EV sales that is equivalent of offering a ¥12,500 consumer subsidy. To examine

the issue of neutrality, we examine the average cost of per induced EV sales from charging

station investment, and from consumer subsidies separately during our data period. The

total consumer subsidies during our data period amount to ¥55 billion, and the total sales

30More broadly, the consumer’s benefit from adopting the primary good (i.e., EVs) depends on the avail-
ability of complementary goods (i.e., charging stations); by contrast, an investor’s benefit from supplying
the complementary goods depends on the installed base of the primary good. The interdependence is re-
ferred to as an indirect network effect. Examples of this type of market include computer hardware and
software, CD players and CDs, video game consoles and games, and e-readers and ebooks.
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induced by these subsidies were 561,904 vehicles (or 55 percent of all EVs sold). These

numbers imply an average government cost of ¥97,825 to induce consumers to buy one

extra EV through consumer subsidies.

To calculate the total investment cost of charging ports, we assume that, during our

data period, the average cost of an AC charging port was ¥10,000, while that of a DC

charging port was ¥100,000.31 A total of 132,207 AC charging ports and 65,902 DC charg-

ing ports were constructed during our data period. The total cost would have been ¥7.92

billion. Since our data only capture 60 percent of all public charging stations, this implies

the total cost of ¥13.2 billion for all public charging stations in the sample cities. During

our data period, the total induced sales by the availability of the charging infrastructure

are estimated to be 482,967 vehicles, as based on results in Table 3.4. These results imply

an average government cost of ¥27,331 to induce consumers to buy one extra EV through

subsidizing or investing in charging stations. This cost estimate is an underestimation of

the effectiveness of the charging infrastructure because these charging stations will con-

tinue to contribute to future EV sales that are not included in our calculations.

These estimates above suggest that investing in charging stations is nearly four times

as effective as subsidizing consumer purchases in promoting EV sales from the perspec-

tive of government expenditure. This finding on the superior cost-effectiveness of spend-

ing on charging infrastructure to promote EVs is consistent with findings in other coun-

tries. Both Li et al. (2017) and Springel (2019) show that subsidizing charging stations

is more than twice as effective as subsidizing consumer purchases on a per-dollar basis

in the United States and Norway, respectively. Both studies also find that the effect of

subsidies on charging stations tapers off as the charging network grows larger. (Li et al.

(2017) reach their findings using aggregate sales data by city from 2011 to 2013; Springel

(2019) uses individual registration records from 2011 to 2015.) Our finding of the rela-

31Source: https://zhuanlan.zhihu.com/p/20800474. The cost has been reduced by about 20-30
percent by 2020. https://www.shangyexinzhi.com/article/547872.html.
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tive cost-effectiveness of charging-station investments is even more striking given that

our data are from a relatively later time period (2015 to 2018) than those used in other

countries, and given that Chinese consumers appear to be more price sensitive than con-

sumers in the United States and Norway. The greater cost-effectiveness of subsidizing

charging stations in China could be driven by certain prevalent features of housing and

urban structures in China. The vast majority of city residents in China live in apartment

complexes, where they lack space to build private charging stations. Also, cities in China

are denser, a feature that allows public charging stations to serve more drivers.

3.6 Conclusion

This study provides a comprehensive analysis of the factors that underlie the rapid

growth of the world’s largest electric vehicle (EV) market: China. Using detailed data on

EV sales, charging infrastructure, and policy measures implemented from 2015 to 2018,

our analysis offers the following three key findings: First, generous consumer subsidies

from both central and local governments played a crucial role, explaining at least half

of the EV sales purchased during the period. Second, a program that offered signature,

green license plates for EVs worked surprisingly well; the low-cost policy had substantial

impacts, highlighting the important psychological and social dimensions that can play a

part in hastening the diffusion of environmentally friendly technologies. Third, the avail-

ability of charging infrastructure had a large effect on the diffusion of EVs. The strength

of the indirect network effects that charging infrastructure has on EV demand means that,

at the current diffusion stage, subsidizing the deployment of charging stations is much

more cost-effective than subsidizing the purchases of electric vehicles.

While this study focuses on China, the lessons gleaned from this study could offer im-

portant guidance on designing future EV policies in other countries. Offering consumers
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generous subsidies is the most commonly used policy strategy for governments seeking

to support the EV market; however, our study reveals that this strategy does not appear

to be the most cost-effective option in the early stage of EV diffusion. Governments could

help promote wider EV adoption through relatively inexpensive, non-financial policies

— such as providing information on the potential environmental benefits of EVs and of-

fering license plates or exterior designs that give consumers a way to visually signal that

they have made such environmentally friendly purchases. The early stage of the EV mar-

ket can be reasonably characterized by a signature line from the 1989 movie, “Field of

Dreams”: “If you build it, they will come.” Building charging infrastructure is a cost-

effective strategy for governments to leverage the indirect network effects in the EV mar-

ket.

These findings point to several important directions for future research. First, under-

standing the pass-through of consumer subsidies could further shed light on the cost-

effectiveness of policies. Given the relatively low price sensitivity of EV buyers as well

as other policies such as vehicle purchase restrictions that favor EVs in several major

cities, it is not clear a priori how much consumers would have captured the subsidies.

Second, although our empirical framework allows us to examine the aggregate impacts

of policies and charging infrastructure on EV adoption, it does not capture the substitu-

tion pattern, especially between EVs and gasoline models, a crucial element in evaluating

the environmental impacts and welfare consequences of the new technology. Future re-

search should rely on richer demand models and consumer-level data to better capture

consumer choices among different EV and gasoline models to evaluate the environmental

impacts of EV adoption (Holland et al., 2016a; Xing et al., 2019). To gain these important

policy insights, additional information is needed on the sources of fuel used to generate

electricity by location, and on the generation sources that will be used at the times when

EV charging is most likely to take place. Third, our analysis focuses on demand-side poli-

cies that directly affect consumer EV adoption; these same policies could have had im-

151



portant impacts on the supply side, too — affecting product choices of automakers and

their parts (e.g., battery) suppliers. Similarly, supply-side policies such as R&D subsidies

and production subsidies could also affect EV adoption. For example, R&D subsidies

could influence consumer EV adoption choices by improving quality and reducing costs.

A better understanding of the impacts of supply-side policies would further aid effective

policy designs.
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Figures and Tables

Figure 3.1. EV Sales and Charging Station by Country and Region

Notes: The figure plots passenger EV sales (bars) and charging outlets/ports (lines) separately for China,
US, and EU, EFTA (Iceland, Liechtenstein, Norway, and Switzerland) and UK combined. EVs include
both battery EVs (BEVs) and plug-in hybrid EVs (PHEVs). Source: International Energy Agency, and
marklines.com
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Figure 3.2. Number of EV Firms and Models

Notes: This figure shows the number of EV firms and models (BEVs and PHEVs) in China and US. Data
for China is up to May 2019.
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Figure 3.3. Consumer Subsidies and Green Plate Policy by City

(a) Subsidies in 2015 (b) Subsidies in 2018

(c) Green plate policy in 2017 (d) Green plate policy in 2018

Notes: Panels (a) and (b) depict average consumer subsidies from central and local governments in
¥10,000 per EV in 2015 and 2018. Panels (c) and (d) show the rollout of the green plate policy for EVs in
2017 and 2018. The policy started in 2016 with five cities: Shanghai, Nanjing, Wuxi, Jinan, and Shenzhen.
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Figure 3.4. EV Sales and Charging Ports (per million Residents) by City

(a) EV sales in 2015 (b) EV sales in 2018

(c) Charging ports in 2015 (d) Charging ports in 2018

Notes: Panels (a) and (b) depict annual EV sales (in units) per million residents by city for 150 sample
cities in 2015 and 2018. Panel (c) and (d) show the number of charging ports per million residents by city
for 150 sample cities by the end of 2015 and 2018.
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Figure 3.5. Within-Cluster Variation in Subsidy and EV Sales

Notes: The figure plots the within-cluster (min and max) difference of EV sales per million residents
versus the difference of average subsidy per vehicle (including both central and local subsidies), between
top-40 cities and non-top-40 cities. Each circle represents a cluster with at least one city from the top-40
city list.
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Figure 3.6. Simulation Results

(a) Removing subsidies

(b) Removing green plate

Notes: The figures plot the counterfactual sales and the 95% confidence interval based on the estimation
results from column (7) of Table 3.4. Panel (a) removes central and local subsidies while Panel (b) re-
moves the green plate policy. The counterfactual sales would have been 45 percent and 83 percent of
what have been observed in the data during the sample period, respectively.
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Table 3.1. Consumer Subsidies in China and US

Federal Local

China
Subsidy based on driving range
2010: 13 pilot cities
2013: 88 pilot cities
2016: nationwide subsidy

Matched with central subsidy by 1:1 to 1:0.5 ratio
Shared by provincial and city governments
Total subsidy no more than 50% to 70% of MSRPs

US
Subsidy based on battery capacity
From 2010: $2500 for 4kWh battery,
with an additional $417 per kWh to $7500
200k qualifying vehicles per automaker

Rebates: CA, IL, MA, NY, PA, TX
Tax credit: CO, GA, LA, MD, SC, UT, WV
Sales tax exemption or reduction: CO, NJ, WA
Fee exemptions or reduced fee: AZ, IL
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Table 3.2. Central Subsidies from 2013 to 2019

Type Range 2013 2014 2015 2016 2017 2018 2019

≥ 180km ¥35,000 ¥33,250 ¥31,500 - - - -
≥ 100km ¥25,000 ¥20,000 - -
≥ 150km ¥50,000 ¥47,500 ¥45,000 ¥45,000 ¥36,000 ¥15,000 -

BEV ≥ 200km ¥24,000 -
≥ 250km ¥60,000 ¥57,000 ¥54,000 ¥55,000 ¥44,000 ¥34,000 ¥18,000
≥ 300km ¥45,000
≥ 400km ¥50,000 ¥25,000

PHEV ≥ 50km ¥35,000 ¥33,250 ¥31,500 ¥30,000 ¥24,000 ¥22,000 ¥10,000

Notes: This table shows the subsidies from the central government. The amount of subsidies is based on
driving range. Starting from 2018, the subsidies are adjusted based on two additional requirements for
EVs to be eligible: minimum energy efficiency (kWh/100km) as a function of vehicle weight, and battery
energy density ≥ 105 Wh/kg. For comparison, the amount of EV subsidies in the US is only based on
battery capacity.
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Table 3.3. Summary Statistics

Mean S.D. Min Max

Sales 37.02 209.21 0.00 7834
MSRP (in ¥10,000) 20.01 8.25 8.18 60.88
Total subsidy (in ¥10,000) 4.53 2.27 0.00 14.17
Central subsidy (in ¥10,000) 3.51 1.42 0.00 5.71
No. of charging ports (1,000) 1.62 3.99 0.00 36.65
No. of charging stations 177 446 0.00 3666
EV exempt from driving restrictions 0.21 0.41 0.00 1.00
Green plate for EVs 0.54 0.50 0.00 1.00
Vehicle size (m2) 7.21 1.58 3.75 9.85
Motor power (100kW) 0.87 0.71 0.09 4.80
Weight (ton) 1.23 0.45 0.51 2.19
Driving range (100km) 1.85 1.07 0.50 4.20
Battery capacity (kWh) 26.66 14.74 8.00 82.00
EV stock by institutions 5.86 12.68 0.00 81.44
Population (in mil.) 7.52 5.15 0.74 31.02
Income (in ¥10,000) 3.90 1.07 2.02 6.80

Notes: The unit of observation is city-quarter by vehicle trim. The number of
observations is 27,577. The data are from 2015 to 2018 for 150 cities. MSRP is
the manufacturer suggested retail price.
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Table 3.4. Regression Results of EV Demand

(1) (2) (3) (4) (5) (6) (7)

MSRPs (in ¥10,000) -0.027∗∗ -0.035∗∗∗ -0.044∗∗∗ -0.046∗∗∗ -0.038∗∗∗ -0.174∗∗∗ -0.181∗∗∗

(0.011) (0.009) (0.009) (0.009) (0.010) (0.030) (0.031)
Consumer subsidies per vehicle (in ¥10,000) 0.116∗∗∗ 0.106∗∗∗ 0.162∗∗∗ 0.159∗∗∗ 0.154∗∗∗ 0.160∗∗∗ 0.160∗∗∗

(0.015) (0.015) (0.026) (0.028) (0.029) (0.027) (0.027)
No. of charging ports (1,000) 0.047∗ 0.010 0.168∗∗∗ 0.189∗∗∗ 0.191∗∗∗ 0.192∗∗∗ 0.200∗∗∗

(0.024) (0.016) (0.032) (0.034) (0.034) (0.034) (0.038)
EV exempt from driving restrictions 0.456∗∗∗ 0.478∗∗∗ 0.121 -0.008 0.036 0.029 -0.028

(0.116) (0.131) (0.176) (0.139) (0.149) (0.150) (0.156)
Green plate for EVs 0.338∗∗∗ 0.144∗∗ 0.197∗∗∗ 0.316∗∗∗ 0.325∗∗∗ 0.312∗∗∗ 0.314∗∗∗

(0.056) (0.067) (0.064) (0.077) (0.080) (0.079) (0.081)
Vehicle size (m2) 0.525∗∗∗ 0.376∗∗ 0.281 0.305 -0.214 -0.088 -0.143

(0.187) (0.178) (0.182) (0.186) (0.184) (0.166) (0.171)
Power/Weight (kW/kg) 9.937∗∗∗ 12.383∗∗∗ 13.231∗∗∗ 13.025∗∗∗ 10.894∗∗∗ 6.372∗∗∗ 6.180∗∗∗

(2.087) (2.034) (2.088) (2.092) (2.062) (2.010) (2.007)
Driving range (100km) 0.075∗ -0.101∗∗ -0.141∗∗∗ -0.129∗∗∗ -0.007 0.111∗∗ 0.118∗∗

(0.041) (0.040) (0.042) (0.043) (0.053) (0.055) (0.054)
City-Model FE Y Y Y Y Y Y Y
Time FE N Y Y N N N N
City-Year FE N N Y Y Y Y Y
Cluster-Time FE N N N Y Y Y Y
Cluster-Brand-Year FE N N N N Y Y Y

Observations 25003 25003 24995 24994 24828 24828 24493
Adjusted R2 0.495 0.554 0.564 0.567 0.564 -0.108 -0.110
Joint-F on excluded IVs 105.456 85.959
Underidentification stat 89.758 88.137
Weak Identification stat 105.456 85.959
Overidentification stat 22.094 21.691

Notes: The regressions are based on 150 cities. The dependent variable is ln(sales). Column (6) instruments for MSRPs using battery capacity
interacted with battery-supplier dummies. Column (7) instruments for MSRPs and the number of charging ports using battery capacity interacted
with battery-supplier dummies, and the lagged institutional EV stock. Standard errors are clustered at the city level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01
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Table 3.5. Robustness Checks

Baseline Asinh Drop Zero Logit Subsample All Models Alternative IV
(1) (2) (3) (4) (5) (6) (7)

MSRPs (in ¥10,000) -0.181∗∗∗ -0.173∗∗∗ -0.161∗∗∗ -0.181∗∗∗ -0.194∗∗∗ -0.150∗∗∗ -0.224∗∗∗

(0.031) (0.030) (0.028) (0.031) (0.035) (0.055) (0.069)
Consumer subsidies per vehicle (in ¥10,000) 0.160∗∗∗ 0.155∗∗∗ 0.193∗∗∗ 0.160∗∗∗ 0.167∗∗∗ 0.161∗∗∗ 0.162∗∗∗

(0.027) (0.027) (0.023) (0.027) (0.031) (0.032) (0.027)
No. of charging ports (1,000) 0.200∗∗∗ 0.200∗∗∗ 0.140∗∗∗ 0.223∗∗∗ 0.157∗∗∗ 0.185∗∗∗ 0.202∗∗∗

(0.038) (0.037) (0.036) (0.040) (0.038) (0.038) (0.039)
EV exempt from driving restrictions -0.028 -0.021 -0.010 -0.033 -0.047 -0.002 -0.031

(0.156) (0.154) (0.129) (0.155) (0.154) (0.165) (0.156)
Green plate for EVs 0.314∗∗∗ 0.310∗∗∗ 0.321∗∗∗ 0.331∗∗∗ 0.405∗∗∗ 0.298∗∗∗ 0.310∗∗∗

(0.081) (0.080) (0.079) (0.089) (0.095) (0.086) (0.083)
Vehicle size (m2) -0.143 -0.134 -0.025 -0.143 -0.239 0.501∗∗∗ -0.108

(0.171) (0.169) (0.172) (0.171) (0.201) (0.146) (0.199)
Power/Weight (kW/kg) 6.180∗∗∗ 5.969∗∗∗ 9.448∗∗∗ 6.121∗∗∗ 6.839∗∗∗ 10.786∗∗∗ 4.761

(2.007) (1.959) (2.004) (2.010) (2.180) (2.466) (3.626)
Driving range (100km) 0.118∗∗ 0.118∗∗ -0.119∗∗ 0.117∗∗ 0.135∗∗ 0.149∗∗ 0.155∗∗

(0.054) (0.053) (0.058) (0.055) (0.061) (0.069) (0.074)

No. of cities 150 150 150 150 106 150 150
Observations 24493 24493 20447 24493 20143 26586 24493
Adjusted R2 -0.110 -0.108 -0.132 -0.108 -0.124 -0.102 -0.121
Joint-F on excluded IVs 85.959 85.959 106.718 85.959 76.396 87.123 31.889
Underidentification stat 88.137 88.137 84.291 88.137 70.194 79.704 62.870
Weak Identification stat 85.959 85.959 106.718 85.959 76.396 87.123 31.889
Overidentification stat 21.691 21.767 31.616 21.618 23.519 26.952 17.142

Notes: All columns include the same set of fixed effects as in Column (7) of Table 3.4: city-model FEs, city-year FEs, city cluster-time (i.e., year-
quarter) FEs, and city cluster-brand-year FEs. Column (1) is our benchmark specification where the dependent variable is ln(sales). The dependent
variable is the inverse hyperbolic sine of sales in column (2). Column (3) drops all observations with zero EV sales but otherwise is the same as
column (1). Column (4) is the logit demand with the dependent variable being ln(skct) − ln(s0ct) where skct is the market share of trim k in city c
and time t and s0ct is the share of consumers who are not purchasing an EV. Column (5) is based on 106 cities in clusters that contain cities with
similar average household income. Column (6) is based on the full sample of all vehicle models including models with small sales. Columns
(1)-(6) instrument for MSRPs and the number of charging ports using battery capacity interacting with battery-supplier dummies, and the lagged
institutional EV stock. Column (7) instruments for MSRPs and the number of charging ports using battery density interacting with battery-
supplier dummies, and the lagged institutional EV stock. Standard errors are clustered at the city level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.1 Proofs

A.1.1 Proof of Proposition 1

Differentiating (1.4)-(1.6), we can solve for:

dπ =
π

∆

[
−
ϵ − 1
τ

dτ+
ϵ∗ − 1
τ∗

dτ∗
]

(A.1)

dM∗1 = −
M∗1ϵ

∗

∆

[
ϵ − 1
τ

dτ+
ϵ

τ∗
dτ∗

]
(A.2)

dM2 = −
M2ϵ

∆

[
ϵ∗

τ
dτ+

ϵ∗ − 1
τ∗

dτ∗
]

(A.3)

where ϵ = − π
M2

∂M2
∂π
= − τ

M2

∂M2
∂τ

> 0, ϵ∗ = π
M∗1

∂M∗1
∂π
= − τ∗

M∗1

∂M∗1
∂τ∗

> 0 are the elasticities of import

demand for the home and foreign countries, respectively. Assume that the Marshall-

Lerner conditions are satisfied ∆ = ϵ + ϵ∗ − 1 > 0 .

By equations (A.2)-(A.3), the marginal effects of unilaterally increasing import barrier

on imports and exports of the home country are:

∂M2

∂τ
= −

M2ϵ

∆

ϵ∗

τ
(A.4)

∂M∗1
∂τ
= −

M∗1ϵ
∗

∆

ϵ − 1
τ

(A.5)

∂(M2 − M∗1)
∂τ

=
ϵ∗

∆τ
[−M2ϵ + M∗1(ϵ − 1)] (A.6)

Equation (A.4) implies that ∂M2
∂τ

< 0. Equation (A.5) implies that ∂M∗1
∂τ

< 0 if ϵ > 1.
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Equation (A.6) shows that ∂(M2−M∗1)
∂τ

> 0 if and only if M2
M∗1

> ϵ−1
ϵ

. Therefore, if the home coun-

try increases its import barrier, both its imports and exports will decrease. Net imports

decrease if and only if M2
M∗1

> ϵ−1
ϵ

.

A.1.2 Proof of Proposition 2

Total differentiating (1.1)-(1.3) yields:

dV = Vp dp2 +VY dY = Vp(π dτ+τ dπ) (A.7)

where Vp < 0. The second equality holds because dY = 0.

Substituting dπ in (A.8) yields:

dV =
Vpπ

∆

[
ϵ∗ dτ+

τ

τ∗
(ϵ∗ − 1) dτ∗

]
(A.8)

Assume that the home country unilaterally increases τwhile the foreign country keeps

τ∗ fixed. ∂V
∂τ
=

Vpπ

∆
ϵ∗ < 0 as Vp < 0, implying that unilaterally restricting imports would

reduce the gains from trade.

Differentiating (1.7) and substituting dM∗1 and dM2 yields the following results:

dD =
δ

∆

{
ϵ∗

τ
[−M2ϵ + M∗1(ϵ − 1)] dτ+

ϵ

τ∗
[−M2(ϵ∗ − 1) + M∗1ϵ

∗] dτ∗
}

(A.9)
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Substituting dV and dD yields the following:

dW = dV − dD (A.10)

=
1
∆

{
Vpπϵ

∗ + δ
ϵ∗

τ
[M2ϵ − M∗1(ϵ − 1)]

}
dτ+

1
∆

{
Vpπ

τ

τ∗
(ϵ∗ − 1) + δ

ϵ

τ∗
[M2(ϵ∗ − 1) − M∗1ϵ

∗]
}

dτ∗

(A.11)

Therefore,
∂W
∂τ
=

1
∆

{
Vpπϵ

∗ + δ
ϵ∗

τ
[M2ϵ − M∗1(ϵ − 1)]

}
(A.12)

The first term is negative; the second term is positive when ϵ > 1 and M2
M∗1

> ϵ−1
ϵ

. When

δ is large enough, the environmental benefits of unilaterally restricting imports could

outweigh the deadweight losses from reduced trade, leading to an increase of the social

welfare, i.e., ∂W
∂τ
> 0.

A.1.3 Proof of Proposition 3

If the foreign country unilaterally increases τ∗, from Equation (A.11), we have:

∂W
∂τ∗
=

1
∆

{
Vpπ

τ

τ∗
(ϵ∗ − 1) + δ

ϵ

τ∗
[M2(ϵ∗ − 1) − M∗1ϵ

∗]
}

dτ∗ (A.13)

The first term captures the spillover effect on the gains from trade. It is negative when

ϵ∗ > 1. The second term captures the spillover effect on the environment. The sign is

ambiguous. It is negative when ϵ∗ > 1 and M∗1
M2
> ϵ∗−1

ϵ∗
, indicating that increasing the import

barrier in the foreign country could generate negative spillovers on the environment of
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the home country. In this case, the total spillover effect on the welfare is negative. If

the second term is positive and δ is large, it is possible that total spillover effect becomes

positive.

A.1.4 Proof of Proposition 4

The slope of the home country’s welfare contours is obtained from setting dW = 0 and

solving for:
dτ∗

dτ
|home,wel f are = −

Vpπϵ
∗ + δ ϵ

∗

τ
[M2ϵ − M∗1(ϵ − 1)]

Vpπ
τ
τ∗

(ϵ∗ − 1) + δ ϵ
τ∗

[M2(ϵ∗ − 1) − M∗1ϵ
∗]

(A.14)

Assume further that ϵ > 1 and ϵ∗ > 1. Since Vp < 0, the first term of the numerator is

negative. The sign of the second term depends on M2ϵ −M∗1(ϵ − 1), which can be rewritten

as M∗1ϵ(
M2
M∗1
− ϵ−1

ϵ
) = M∗1ϵ(

τ∗

τπ
− ϵ−1

ϵ
). Assume that when τ = τ∗ = 1, we have 1

π
> ϵ−1

ϵ
. Then

M2ϵ − M∗1(ϵ − 1) > 0. If δ is large enough, the numerator would be positive.

For the denominator, the first term is negative. As M2(ϵ∗ − 1) − M∗1ϵ
∗ = M∗1(ϵ∗ − 1)( M2

M∗1
−

ϵ∗

ϵ∗−1 ) = M∗1(ϵ∗ − 1)( τ
∗

τπ
− ϵ∗

ϵ∗−1 ). If 1
π
< ϵ∗

ϵ∗−1 , then the second term is negative. Then the

denominator would be negative.

Therefore, if ϵ > 1, ϵ∗ > 1, ϵ−1
ϵ
< 1

π
< ϵ∗

ϵ∗−1 , then dτ∗
dτ |home,τ=τ∗=1 > 0. As τ increases, τπ

would increase as d(τπ) = π
∆

[
ϵ∗ dτ+ τ

τ∗
(ϵ∗ − 1) dτ∗

]
> 0. Therefore, M∗1ϵ(

τ∗

τπ
− ϵ−1

ϵ
) decreases.

At some point of τ, the numerator would be zero. After that point, the numerator would

become negative. The denominator is always negative. Therefore, as τ increases, the

sign of dτ∗
dτ |home will be positive first and then negative, suggesting that the home country’s

welfare contour is first increasing and then decreasing with τ.

Setting dτ∗
dτ |home,wel f are = 0 defines the (implicit) best response function of the home coun-
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try:

Vp p2 + δ[M2ϵ − M∗1(ϵ − 1)] = 0 (A.15)

By the implicit function theorem, the slope of the best response function of the home

country is:

dτ∗

dτ
|home,br = −

(p2Vpp + Vp)ϵ∗π + δ ϵ
2ϵ∗M∗1
τ

[
− τ∗

τπ
+ ( ϵ−1

ϵ
)2
]

(p2Vpp + Vp) τ
τ∗

(ϵ∗ − 1) + δ ϵ
2(ϵ∗−1)M∗1

τ

[
− τ∗

τπ
+ ϵ−1

ϵ
ϵ∗

ϵ∗−1

] (A.16)

Assume Vp < 0,Vpp > 0, p2Vpp + Vp > 0. When ( ϵ−1
ϵ

)2 < τ∗

τπ
< ϵ−1

ϵ
ϵ∗

ϵ∗−1 , − τ∗

τπ
+ ( ϵ−1

ϵ
)2 < 0 and

− τ∗

τπ
+ ϵ−1

ϵ
ϵ∗

ϵ∗−1 > 0. When δ is large enough, the numerator is negative and the denominator

is positive, thus the slope of the best response function could be positive.

A.1.5 Proof of Proposition 5

The non-cooperative Nash equilibrium are determined when both the home country and

foreign country maximizes their own social welfare, conditional on the other country’s

import barrier decision:

max
τ

W(τ, τ∗) and max
τ∗

W∗(τ, τ∗) (A.17)

The FOCs are:
∂W
∂τ
= 0 and

∂W∗

∂τ∗
= 0 (A.18)

On the other hand, the Pareto optimum could be solved through maximizing the home

country’s welfare subject to the constraint that the foreign country is guaranteed with a
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minimum amount of welfare:

max
τ,τ∗

W(τ, τ∗) s.t W∗(τ, τ∗) ≥ w̄0 (A.19)

Let λ be the Lagrange multiplier on the constraint, then the FOCs of the Pareto opti-

mality are:
∂W
∂τ
+ λ

∂W∗

∂τ
= 0 and

∂W
∂τ∗
+ λ

∂W∗

∂τ∗
= 0 (A.20)

From (A.11) we know that ∂W∗
∂τ
, 0 and ∂W

∂τ∗
, 0. Therefore, (A.18) and (A.20) are not

equivalent, which implies that the Nash equilibrium is inefficient.
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A.2 Figures and Tables

Figure A.1. Age Distribution of Used Vehicles

(a) Registration Data (b) Auction Data

Notes: This figure plots the age distributions of used vehicles in the registration data and the auction data,
respectively. The registration dataset contains 40,053,363 observations of used vehicles transactions from
January 2013 to June 2018. The auction dataset contains 100,875 observations scraped from a Chinese
online used vehicle auction platform, Tiantian Paiche, from November 2018 to Februray 2021.
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Figure A.2. Observed and Predicted Prices

Notes: This figure plots the density of observed used vehicle auction prices and the density of predicted
prices based on a hedonic model regressing prices on vehicle age dummies and brand-model dummies.
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Figure A.3. Age Distribution by Emission Intensity

Notes: This figure plots the age distributions of used vehicles in the registration data by vehicle emission
standard. The labels 1 to 5 represents used vehicles that meet emission standards China 1 to China 5,
respectively. The registration dataset contains 40,053,363 observations of used vehicles transactions from
January 2013 to June 2018.
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Figure A.4. Estimated Effects of Restrictions on AOD

Notes: This figure shows the dynamic effects of restricting the (intercity) imports of used vehicles
according to emission standard China 4 on city AOD readings. The average treatment effects are estimated
using CSDID method proposed by Callaway and Sant’Anna (2021). The data are at the city-year quarter
level from 2013 to 2015.
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Table A.1. Summary Statistics of Registration Data and Auction Data

Registration Data Auction Data

Observations 40,053,363 100,875
Sample Period 2013.1-2018.6 2018.11-2021.2
Number of vehicle brands 185 180
Number of vehicle models 1,566 1,849
Number of cities 350 54
Price (10,000 RMB) - Mean = 8.01

Min = 1, Max = 273
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Table A.2. A Hedonic Model for Used Vehicle Prices

Dependent variable ln(Price)

(1) (2) (3)
Constant 2.377*** 2.389*** 2.389***

(0.012) (0.013) (0.013)
Age=1 -0.109*** -0.112*** -0.113***

(0.006) (0.006) (0.006)
Age=2 -0.227*** -0.234*** -0.234***

(0.008) (0.008) (0.008)
Age=3 -0.346*** -0.355*** -0.354***

(0.010) (0.011) (0.011)
Age=4 -0.470*** -0.482*** -0.481***

(0.012) (0.013) (0.013)
Age=5 -0.603*** -0.615*** -0.615***

(0.014) (0.014) (0.014)
Age=6 -0.746*** -0.761*** -0.760***

(0.015) (0.015) (0.015)
Age=7 -0.912*** -0.928*** -0.927***

(0.016) (0.017) (0.017)
Age=8 -1.073*** -1.089*** -1.088***

(0.018) (0.018) (0.018)
Age=9 -1.235*** -1.253*** -1.252***

(0.021) (0.022) (0.022)
Age=10 -1.413*** -1.435*** -1.434***

(0.026) (0.027) (0.027)
Age=11 -1.623*** -1.643*** -1.642***

(0.035) (0.036) (0.035)
Age=12 -1.829*** -1.851*** -1.849***

(0.041) (0.042) (0.041)
Age=13 -2.039*** -2.064*** -2.061***

(0.044) (0.045) (0.045)
Age=14 -2.253*** -2.280*** -2.277***

(0.065) (0.065) (0.065)
Age=15 -2.500*** -2.527*** -2.525***

(0.070) (0.070) (0.070)
Age=16 and above -2.654*** -2.680*** -2.680***

(0.082) (0.082) (0.082)

Brand-model FE Y Y Y
Year-month FE Y Y
City FE Y

Observations 100432 100429 100429
R2 0.94 0.95 0.95

Notes: This table reports the estimates of a hedonic model regressing used vehicle auction prices on
vehicle age dummies and different fixed effects. The auction price data are scrapped from one of the
largest online used vehicle auction platform, Tiantian Paiche (https://www.ttpai.cn/). Robust
standard errors are clustered at the model level, in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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APPENDIX B

APPENDIX OF CHAPTER 2

B.1 Figures and Tables

Figure B.1. Upwind Direction

Notes: This figure illustrates how we define the upwind direction in calculating upwind pollution. The
upper right figure shows a 16-wind compass. The upwind direction for Beijing in a month when the wind
direction is NE includes three adjacent directions of NE, i.e., NE, NNE, and ENE.
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Figure B.2. Robustness Checks of Different Samples and Models

(a) Import
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(b) Local sales

0 Quarter After
Home Lifted

1 Quarter After
Home Lifted

2 Quarters After
Home Lifted

3 Quarters After
Home Lifted

-.15 -.1 -.05 0 .05

Sub sample+LASSO Sub sample+FE
Full sample+LASSO Full sample+FE

(c) Export

0 Quarter After
Home Lifted

1 Quarter After
Home Lifted

2 Quarters After
Home Lifted

3 Quarters After
Home Lifted

-.5 0 .5 1 1.5

Sub sample+LASSO Sub sample+FE
Full sample+LASSO Full sample+FE

(d) Total Sales

0 Quarter After
Home Lifted

1 Quarter After
Home Lifted

2 Quarters After
Home Lifted

3 Quarters After
Home Lifted

-.1 0 .1 .2 .3

Sub sample+LASSO Sub sample+FE
Full sample+LASSO Full sample+FE

Notes: This figure shows the estimated impact of removing the restriction on import, local sales, export
and total sales of dirty used vehicles, using different samples and models. Filled blue circles represent
point estimates for our main specification with subsample and LASSO method. Hollow diamonds,
triangles and squares represents the other three specifications. Bars represent 95 percent confidence
intervals constructed with standard errors clustered at the city level.
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Figure B.3. Robustness Checks of Different Weights

(a) Import
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Notes: This figure shows the estimated impact of removing the restriction on import, local sales, export
and total sales of dirty used vehicles, using different weights. Filled blue circles represent point estimates
for our main specification using bilateral trades of used vehicles as of 2015 as weights to construct the
“Other Lifted” variable. Hollow diamonds and triangles represents using baseline exports and imports of
used vehicles as weights. Bars represent 95 percent confidence intervals constructed with standard errors
clustered at the city level.
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Figure B.4. Map of Import Share of Dirty Vehicles to Vehicle Stock: 2016.1-2018.6

Notes: This figure shows the import share of dirty used vehicles to motor vehicle stock by city from
January 2016 to June 2018. Dirty used vehicles are those below emission standard China 4.
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Table B.1. Restriction Adoption and City Characteristics

Dependent var. 1(Adopted in 2013) 1(Adopted during 2013-2015)
(1) (2)

AOD 0.354∗∗∗ 0.276∗

(0.133) (0.158)
Tax Share of Auto Industry 2.393∗∗ 1.604

(1.109) (1.376)
ln(GDP Per Capita) -0.091 -0.264∗∗∗

(0.066) (0.093)
ln(Number of Motor Vehicles) -0.139∗∗∗ -0.216∗∗∗

(0.048) (0.071)
ln(Government Revenue) 0.027 0.138

(0.061) (0.092)
ln(Number of Unemployed) 0.054 0.021

(0.050) (0.086)
Mayor Tenure Length -0.007 0.057∗∗

(0.021) (0.026)
1(Mayor Age < 57) -0.504∗ -0.093

(0.259) (0.258)
1(Mayor Has Master Degree) -0.151∗∗ -0.100

(0.070) (0.088)
1(Mayor Has PhD Degree) 0.073 0.071

(0.073) (0.097)
Party Secretary Tenure Length 0.018 0.041∗

(0.021) (0.024)
1(Party Secretary Age < 57) 0.323∗ -0.414

(0.190) (0.310)
1(Party Secretary Has Master Degree) 0.042 -0.028

(0.057) (0.090)
1(Party Secretary Has PhD Degree) 0.059 0.137

(0.081) (0.091)

Adjusted R2 0.143 0.129
Observations 182 182

Notes: This table reports the cross-sectional correlation between restriction adoption and city pollution,
economy and politics factors. The dependent variable in column (1) is the policy indicator that equals 1
if the city adopted the restriction in 2013, while the dependent variable in column (2) equals 1 if the city
adopted the restriction during 2013-2015. The regressors are pollution, economic and politics variables
as of 2012. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.2. Dynamic Effects on Clean Used Vehicle Sales

Dep. var. log(Imports) log(Local Sales) log(Exports) log(Total)

(1) (2) (3) (4)

Home Lifted
Event time=0 0.012 -0.016 -0.005 -0.025

(0.049) (0.014) (0.021) (0.017)

Event time=1 -0.069 -0.038∗∗ -0.037 -0.061∗∗

(0.073) (0.017) (0.050) (0.025)

Event time=2 -0.118 -0.086∗∗∗ -0.088 -0.105∗∗∗

(0.116) (0.022) (0.074) (0.037)

Event time=3 0.016 -0.091∗∗ -0.057 -0.112∗∗∗

(0.141) (0.037) (0.098) (0.042)

Other Lifted 0.185 -0.008 0.017 0.034
(0.130) (0.033) (0.112) (0.067)

Year FE Y Y Y Y
City FE Y Y Y Y
Province-Year FE Y Y Y Y

Observations 929 929 929 929

Notes: This table reports the dynamic impacts of lifting restriction on clean used vehicle sales from
event study models with the sub sample and LASSO method. The event time refers to the time when
restriction was lifted in the home city. “Event time=1” means 1 quarter after restriction lifted. Dirty
vehicles refer to vehicles below emission standard China 4. The regression controls for city FEs, year-
month FEs, province×year FEs and uses PDS (Post Double Selection) method to select controls from a
rich set of variables described in the main text (Belloni et al., 2012). Robust standard errors are clustered
at the city level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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APPENDIX OF CHAPTER 3

C.1 Figures and Tables

Figure C.1. Top 5 EV Firms in China and US

Notes: This figure shows the top five automakers by EV sales and their market shares in China and US
in 2018.
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Figure C.2. China’s EV and Fuel Economy Targets

Notes: China’s long-term national goals on EV sales, and fleet average fuel economy standards.
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Figure C.3. Patterns of EV Production across Firms and Cities

(a) Production across firms in 2015 (b) Production across firms in 2018

(c) Production across cities in 2015 (d) Production across cities in 2018

Notes: Panels (a) and (b) plot the shares of EV production against the shares of gasoline vehicle pro-
duction by firm in 2015 and 2018. The EV (gasoline vehicle) production share is the firm’s EV (gasoline
vehicle) production divided by the total EV (gasoline vehicle) production. Each point represents an
automaker. Panels (c) and (d) plot the shares of gasoline vehicle production against the shares of EV
production by city in 2015 and 2018. Each dot represents a city that has automobile manufacturing.
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Figure C.4. Policy Rollout over Time

Notes: The figure plots the number of cities with driving restriction exemption and green plate
by quarter from 2015 to 2018.
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Figure C.5. Subsidy and EV Sales

Notes: The figure shows the scatter plots of the EV sales per million residents against average subsidy
per vehicle (including both central and local subsidies) for each city at each year from 2015 to 2018. The
top-40 cities with the largest aggregate EV sales are distinguished from their neighboring cities (non-top-
40 cities).
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Figure C.6. Simulation Results

(a) Removing subsidies

(b) Removing green plate

Notes: The figures plot the counterfactual sales and the 95 percent confidence interval based on estima-
tion using 106 cities. Panel (a) removes central and local subsidies while Panel (b) removes the green
plate policy. The sales would have been 44 percent and 79 percent of what have been observed in the
data on average during the sample period, respectively.
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Table C.1. First-stage results

Dependent variable MSRPs No. of Charging Ports
(1) (2)

1(Battery supplier=CATL) × Battery capacity (kwh) 0.027 -0.001
(0.019) (0.002)

1(Battery supplier=BYD) × Battery capacity (kwh) 0.432∗∗∗ -0.005∗∗∗

(0.039) (0.001)
1(Battery supplier=Other) × Battery capacity (kwh) 0.042∗∗ -0.001

(0.019) (0.002)
Lagged EV stock by institutions 0.005 0.317∗∗∗

(0.004) (0.068)
Consumer subsidies per vehicle (in ¥10,000) 0.074∗∗∗ 0.002

(0.021) (0.005)
EV exempt from driving restrictions -0.069 -0.094∗

(0.080) (0.054)
Green plate for EVs -0.091∗∗∗ 0.050

(0.035) (0.075)
Vehicle size (m2) 0.269∗ 0.006

(0.149) (0.026)
Power/Weight (kW/kg) -29.717∗∗∗ -0.542

(4.976) (0.334)
Driving range (100km) 0.374∗∗ 0.026

(0.179) (0.020)

Observations 24493 24493

Notes: This table reports the first-stage regression results for Column (7) of Table 3.4. The dependent
variable is MSRPs in Column (1) and the number of charging ports in Column (2). Both columns include
the same set of fixed effects as in Column (7) of Table 3.4: city-model FEs, city-year FEs, city cluster-
time (i.e., year-quarter) FEs, and city cluster-brand-year FEs. 1(Battery supplier=CATL) is a dummy
indicating the supplier is CATL, 1(Battery supplier=BYD) is a dummy indicating the supplier is BYD,
and 1(Battery supplier=Other) is a dummy indicating other (smaller) suppliers. Standard errors are
clustered at the city level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.2. Heterogeneous Effects and Policy Interactions

(1) (2) (3) (4) (5) (6) (7)
MSRPs (in ¥10,000) -0.046∗∗∗ -0.031∗∗∗ -0.040∗∗∗ -0.041∗∗∗ -0.037∗∗∗ -0.172∗∗∗ -0.179∗∗∗

(0.010) (0.009) (0.009) (0.009) (0.010) (0.031) (0.031)
Consumer subsidies per vehicle (in ¥10,000) 0.083∗∗∗ 0.092∗∗∗ 0.140∗∗∗ 0.133∗∗∗ 0.139∗∗∗ 0.147∗∗∗ 0.109∗∗∗

(0.012) (0.013) (0.026) (0.026) (0.028) (0.027) (0.034)
No. of charging ports (1,000) 0.027 -0.074∗∗ 0.118∗ 0.141∗∗∗ 0.155∗∗∗ 0.160∗∗∗ 0.116∗∗

(0.020) (0.031) (0.060) (0.050) (0.056) (0.054) (0.054)
Subsidies * No. of charging ports 0.021∗∗∗ 0.022∗∗∗ 0.009∗ 0.010∗∗ 0.007 0.006 0.026∗

(0.007) (0.007) (0.005) (0.005) (0.007) (0.006) (0.016)
EV exempt from driving restrictions 0.579∗∗∗ 0.575∗∗∗ 0.139 -0.129 -0.080 -0.107 -0.228

(0.148) (0.130) (0.213) (0.162) (0.180) (0.178) (0.239)
Green plate for EVs 0.484∗∗∗ 0.174∗∗∗ 0.196∗∗∗ 0.273∗∗∗ 0.285∗∗∗ 0.268∗∗∗ 0.238∗∗∗

(0.062) (0.062) (0.069) (0.072) (0.072) (0.072) (0.072)
Driving restriction Exemption * Green plate -0.199 -0.169 -0.015 0.144 0.133 0.156 0.222

(0.150) (0.113) (0.148) (0.153) (0.178) (0.176) (0.216)
Gasoline price (RMB/liter) 0.081 0.055 -0.052 -0.085 -0.127 -0.117 -0.098

(0.067) (0.083) (0.081) (0.095) (0.098) (0.102) (0.102)
Vehicle size (m2) 1.273∗∗∗ -0.085 -0.526∗∗ -0.534∗∗ -0.471 -0.240 -0.245

(0.211) (0.228) (0.255) (0.269) (0.489) (0.469) (0.483)
Vehicle size * Income(¥10,000) -0.103∗∗∗ 0.079∗∗∗ 0.139∗∗∗ 0.145∗∗∗ 0.053 0.030 0.020

(0.024) (0.030) (0.035) (0.037) (0.104) (0.100) (0.104)
Power/Weight (kW/kg) 10.942∗∗∗ 12.567∗∗∗ 13.260∗∗∗ 13.105∗∗∗ 10.901∗∗∗ 6.535∗∗∗ 6.523∗∗∗

(2.156) (2.052) (2.098) (2.099) (2.173) (2.104) (2.109)
Driving range (100km) 0.120∗∗∗ -0.122∗∗∗ -0.141∗∗∗ -0.116∗∗ -0.022 0.095∗ 0.163∗∗

(0.042) (0.041) (0.047) (0.046) (0.056) (0.057) (0.065)
Driving range * No. of charging ports (1,000) -0.024∗∗ -0.020∗∗ -0.001 -0.006 -0.002 -0.001 -0.034

(0.009) (0.008) (0.006) (0.006) (0.006) (0.006) (0.022)
City-Model FE Y Y Y Y Y Y Y
Time FE N Y Y N N N N
City-Year FE N N Y Y Y Y Y
Cluster-Time FE N N N Y Y Y Y
Cluster-Brand-Year FE N N N N Y Y Y
Observations 25003 25003 24995 24994 24828 24828 24493
Adjusted R2 0.500 0.557 0.565 0.568 0.564 -0.107 -0.111
Joint-F on excluded IVs 103.595 67.546
Underidentification stat 89.559 87.995
Weak Identification stat 103.595 67.546
Overidentification stat 21.823 20.743

Notes: The regressions are the full sample from 150 cities. The dependent variable is ln(sales). Column (6) instruments for MSRPs using battery
capacity interacted with battery-supplier dummies. Column (7) instruments for MSRPs and the number of charging ports using battery capacity
interacted with battery-supplier dummies, and the lagged institutional EV stock. Standard errors are clustered at the city level. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01
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Table C.3. Heterogeneous Effects Before- and Post-2016

(1) (2) (3) (4) (5) (6) (7)
MSRPs (in ¥10,000) -0.029∗∗∗ -0.036∗∗∗ -0.044∗∗∗ -0.045∗∗∗ -0.039∗∗∗ -0.168∗∗∗ -0.175∗∗∗

(0.010) (0.009) (0.008) (0.008) (0.010) (0.030) (0.030)
Consumer subsidies per vehicle (in ¥10,000) 0.106∗∗∗ 0.084∗∗∗ 0.087∗∗∗ 0.073∗∗ 0.106∗∗∗ 0.107∗∗∗ 0.104∗∗∗

(0.015) (0.014) (0.026) (0.028) (0.028) (0.028) (0.028)
Subsidies * 1(Post-2016) -0.001 0.147∗∗∗ 0.158∗∗∗ 0.172∗∗∗ 0.092∗∗ 0.101∗∗ 0.104∗∗

(0.014) (0.028) (0.026) (0.028) (0.043) (0.043) (0.043)
No. of charging ports (1,000) 0.189∗∗∗ 0.137∗∗∗ 0.110∗ 0.037 0.056 0.060 0.061

(0.059) (0.041) (0.065) (0.110) (0.115) (0.117) (0.089)
No. of charging ports * 1(Post-2016) -0.133∗∗∗ -0.130∗∗∗ 0.065 0.176∗ 0.157 0.154 0.163

(0.036) (0.028) (0.065) (0.105) (0.110) (0.111) (0.110)
EV exempt from driving restrictions 0.421∗∗∗ 0.457∗∗∗ 0.138 0.006 0.047 0.040 -0.019

(0.111) (0.119) (0.173) (0.136) (0.148) (0.148) (0.153)
Green plate for EVs 0.332∗∗∗ 0.130∗ 0.210∗∗∗ 0.341∗∗∗ 0.347∗∗∗ 0.335∗∗∗ 0.338∗∗∗

(0.057) (0.070) (0.062) (0.085) (0.088) (0.087) (0.089)
Vehicle size (m2) 0.526∗∗∗ 0.448∗∗ 0.400∗∗ 0.437∗∗ -0.208 -0.087 -0.143

(0.185) (0.175) (0.176) (0.180) (0.184) (0.166) (0.171)
Power/Weight (kW/kg) 10.042∗∗∗ 11.564∗∗∗ 12.127∗∗∗ 11.846∗∗∗ 10.795∗∗∗ 6.459∗∗∗ 6.274∗∗∗

(2.106) (2.099) (2.089) (2.101) (2.067) (2.012) (2.011)
Driving range (100km) 0.094∗∗ -0.277∗∗∗ -0.267∗∗∗ -0.263∗∗∗ -0.072 0.035 0.040

(0.045) (0.053) (0.052) (0.053) (0.067) (0.069) (0.069)
City-Model FE Y Y Y Y Y Y Y
Time FE N Y Y N N N N
City-Year FE N N Y Y Y Y Y
Cluster-Time FE N N N Y Y Y Y
Cluster-Brand-Year FE N N N N Y Y Y
Observations 25003 25003 24995 24994 24828 24828 24493
Adjusted R2 0.497 0.557 0.566 0.569 0.565 -0.106 -0.107
Joint-F on excluded IVs 107.375 70.197
Underidentification stat 89.854 88.224
Weak Identification stat 107.375 70.197
Overidentification stat 22.809 22.402

Notes: The regressions are based on the full sample from 150 cities. The dependent variable is ln(sales). 1(Post-2016) is a dummy that equals one
for years 2017-2018. Column (6) instruments for MSRPs using battery capacity interacted with battery-supplier dummies. Column (7) instruments
for MSRPs and the number of charging ports using battery capacity interacted with battery-supplier dummies, and the lagged institutional EV
stock. Standard errors are clustered at the city level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

190



Table C.4. Heterogeneous Effects by Vehicle Price

(1) (2) (3) (4) (5) (6) (7)
MSRPs (in ¥10,000) -0.009 -0.017∗ -0.025∗∗∗ -0.026∗∗∗ -0.011 -0.151∗∗∗ -0.160∗∗∗

(0.011) (0.009) (0.009) (0.009) (0.010) (0.030) (0.030)
Consumer subsidies per vehicle (in ¥10,000) 0.050∗∗ 0.036∗∗ 0.063∗∗ 0.055∗ 0.026 0.076∗ 0.072∗

(0.021) (0.017) (0.028) (0.030) (0.041) (0.041) (0.041)
Consumer subsidies*1(Low MSRP) 0.097∗∗∗ 0.101∗∗∗ 0.110∗∗∗ 0.114∗∗∗ 0.139∗∗∗ 0.091∗∗∗ 0.095∗∗∗

(0.014) (0.013) (0.012) (0.012) (0.019) (0.022) (0.022)
No. of charging ports (1,000) 0.040∗ 0.005 0.170∗∗∗ 0.191∗∗∗ 0.194∗∗∗ 0.194∗∗∗ 0.204∗∗∗

(0.022) (0.015) (0.032) (0.034) (0.034) (0.034) (0.039)
EV exempt from driving restrictions 0.448∗∗∗ 0.479∗∗∗ 0.135 0.007 0.053 0.040 -0.017

(0.117) (0.130) (0.179) (0.136) (0.147) (0.148) (0.155)
Green plate for EVs 0.344∗∗∗ 0.138∗∗ 0.194∗∗∗ 0.311∗∗∗ 0.317∗∗∗ 0.308∗∗∗ 0.310∗∗∗

(0.056) (0.067) (0.064) (0.077) (0.080) (0.080) (0.082)
Vehicle size (m2) 0.551∗∗∗ 0.411∗∗ 0.335∗ 0.362∗∗ 0.116 0.122 0.077

(0.183) (0.174) (0.178) (0.181) (0.173) (0.173) (0.177)
Power/Weight (kW/kg) 10.116∗∗∗ 12.573∗∗∗ 13.444∗∗∗ 13.239∗∗∗ 11.453∗∗∗ 6.921∗∗∗ 6.660∗∗∗

(2.047) (1.987) (2.021) (2.019) (2.040) (1.972) (1.963)
Driving range (100km) 0.082∗∗ -0.098∗∗ -0.107∗∗ -0.092∗∗ 0.004 0.114∗∗ 0.122∗∗

(0.041) (0.040) (0.044) (0.044) (0.055) (0.055) (0.055)
City-Model FE Y Y Y Y Y Y Y
Time FE N Y Y N N N N
City-Year FE N N Y Y Y Y Y
Cluster-Time FE N N N Y Y Y Y
Cluster-Brand-Year FE N N N N Y Y Y
Observations 25003 25003 24995 24994 24828 24828 24493
Adjusted R2 0.498 0.556 0.567 0.569 0.567 -0.100 -0.101
Joint-F on excluded IVs 120.864 97.375
Underidentification stat 89.862 88.537
Weak Identification stat 120.864 97.375
Overidentification stat 18.185 18.126

Notes: The regressions are based on the full sample from 150 cities. The dependent variable is ln(sales). 1(Low MSRP) equals one if the vehicle
MSRP is below the mean (¥200,000); otherwise it equals zero. Column (6) instruments for MSRPs using battery capacity interacted with battery-
supplier dummies. Column (7) instruments for MSRPs and the number of charging ports using battery capacity interacted with battery-supplier
dummies, and the lagged institutional EV stock. Standard errors are clustered at the city level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.5. Nonlinear Effects of Charging Station Availability

(1) (2) (3) (4) (5) (6) (7)
MSRPs (in ¥10,000) -0.027∗∗ -0.035∗∗∗ -0.044∗∗∗ -0.046∗∗∗ -0.038∗∗∗ -0.174∗∗∗ -0.181∗∗∗

(0.011) (0.009) (0.009) (0.009) (0.010) (0.030) (0.031)
Consumer subsidies per vehicle (in ¥10,000) 0.118∗∗∗ 0.107∗∗∗ 0.162∗∗∗ 0.159∗∗∗ 0.154∗∗∗ 0.160∗∗∗ 0.160∗∗∗

(0.017) (0.016) (0.026) (0.028) (0.029) (0.027) (0.027)
No. of charging ports (1,000) 0.064 0.020 0.161∗∗ 0.221∗∗∗ 0.226∗∗∗ 0.226∗∗∗ 0.201∗∗∗

(0.071) (0.053) (0.062) (0.064) (0.066) (0.066) (0.070)
No. of charging ports squared (mil.) -0.611 -0.345 0.201 -0.874 -0.950 -0.933 -0.020

(1.961) (1.573) (1.323) (1.210) (1.269) (1.266) (1.657)
EV exempt from driving restrictions 0.450∗∗∗ 0.478∗∗∗ 0.122 -0.007 0.038 0.030 -0.028

(0.116) (0.130) (0.177) (0.138) (0.148) (0.148) (0.156)
Green plate for EVs 0.330∗∗∗ 0.138∗∗ 0.197∗∗∗ 0.315∗∗∗ 0.324∗∗∗ 0.312∗∗∗ 0.314∗∗∗

(0.054) (0.057) (0.062) (0.076) (0.079) (0.079) (0.082)
Vehicle size (m2) 0.523∗∗∗ 0.376∗∗ 0.281 0.307 -0.212 -0.086 -0.143

(0.187) (0.178) (0.183) (0.186) (0.185) (0.166) (0.171)
Power/Weight (kW/kg) 9.949∗∗∗ 12.404∗∗∗ 13.227∗∗∗ 13.036∗∗∗ 10.911∗∗∗ 6.393∗∗∗ 6.184∗∗∗

(2.083) (2.025) (2.084) (2.087) (2.060) (2.010) (2.007)
Driving range (100km) 0.072 -0.104∗∗∗ -0.142∗∗∗ -0.130∗∗∗ -0.007 0.111∗∗ 0.118∗∗

(0.046) (0.038) (0.043) (0.043) (0.053) (0.054) (0.054)
City-Model FE Y Y Y Y Y Y Y
Time FE N Y Y N N N N
City-Year FE N N Y Y Y Y Y
Cluster-Time FE N N N Y Y Y Y
Cluster-Brand-Year FE N N N N Y Y Y
Observations 25003 25003 24995 24994 24828 24828 24493
Adjusted R2 0.495 0.554 0.564 0.567 0.564 -0.108 -0.110
Joint-F on excluded IVs 105.451 68.566
Underidentification stat 89.762 88.143
Weak Identification stat 105.451 68.566
Overidentification stat 22.384 21.925

Notes: The regressions are based on 150 cities. The dependent variable is ln(sales). Column (6) instruments for MSRPs using battery capacity
interacted with battery-supplier dummies. Column (7) instruments for MSRPs and the number of charging ports using battery capacity interacted
with battery-supplier dummies, and the lagged institutional EV stock. Standard errors are clustered at the city level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01

192



Table C.6. Mediating Analysis: Charging Station Availability and Subsidy Effectiveness

(1) (2) (3)
Dependent variable No. of Charging Ports Ln(Sales) Ln(Sales)

IV IV IV

MSRPs (in ¥10,000) -0.013∗∗∗ -0.176∗∗∗ -0.181∗∗∗

(0.004) (0.030) (0.031)
Consumer subsidies per vehicle (in ¥10,000) 0.013∗∗ 0.162∗∗∗ 0.160∗∗∗

(0.006) (0.027) (0.027)
EV exempt from driving restrictions -0.071 0.015 -0.028

(0.096) (0.160) (0.156)
Green plate for EVs -0.082 0.297∗∗∗ 0.314∗∗∗

(0.100) (0.081) (0.081)
Vehicle size (m2) -0.023 -0.092 -0.143

(0.032) (0.166) (0.171)
Power/Weight (kW/kg) -2.856∗∗∗ 5.822∗∗∗ 6.180∗∗∗

(0.772) (2.008) (2.007)
Driving range (100km) -0.008 0.110∗∗ 0.118∗∗

(0.015) (0.055) (0.054)
No. of charging ports (1,000) 0.200∗∗∗

(0.038)
City-Model FE Y Y Y
Time FE Y Y Y
City-Year FE Y Y Y
Cluster-Time FE Y Y Y
Cluster-Brand-Year FE Y Y Y

Observations 24828 24828 24493
Adjusted R2 -0.114 -0.117 -0.110
Joint-F on excluded IVs 105.433 105.433 85.959
Underidentification stat 89.752 89.752 88.137
Weak Identification stat 105.433 105.433 85.959
Overidentification stat 0.541 21.721 21.691

Notes: The regressions investigate the potential mediating effect of subsidies through charging stations
availability following Zambrano-Gutierrez et al. (2018). The dependent variable is the number of charg-
ing ports in Column (1) and ln(sales) in Columns (2) and (3). Columns (1) and (2) instrument for MSRPs
using battery capacity interacted with battery-supplier dummies. Column (3) instruments for MSRPs
and the number of charging ports using battery capacity interacted with battery-supplier dummies, and
the lagged institutional EV stock. Standard errors are clustered at the city level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01
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