
EFFICIENT RESOURCE MANAGEMENT OF CLOUD
NATIVE SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Yanqi Zhang

May 2023

© 2023 Yanqi Zhang

ALL RIGHTS RESERVED

EFFICIENT RESOURCE MANAGEMENT OF CLOUD NATIVE SYSTEMS

Yanqi Zhang, Ph.D.

Cornell University 2023

Cloud native architecture has been a prevailing trend and is widely adopted by major

online service providers including Netflix, Uber and WeChat. It enables applications

to be structured as loosely-coupled distributed systems that can be developed and man-

aged independently, and provide different programming models, namely microservice

and serverless, to accommodate different user requirements. Specifically, microservices

are a group of small services that collectively perform as a complete application. Each

microservice implements a web server that handles specific business logic, and is usu-

ally packaged in a container that encapsulates its own runtime and dependencies. Mi-

croservice containers typically live for a long time and scale up or down to cope with

load fluctuations as per user-specified policies. Serverless provides a further simplified

approach to application development and deployment. It allows users to upload their ap-

plication code as functions, without the need for explicit provisioning or management of

containers, through an event-driven interface. Serverless containers are typically short-

living ’one-off’ containers handling a single request at a time. The billing of serverless

is fine-grained and users only pay for the resources consumed by actual function execu-

tion.

Despite the popularity of cloud native systems, managing their resources efficiently

is challenging. Cloud native applications consist of many component services with di-

verse resource requirements, posing a greater challenge compared to traditional mono-

lithic applications. Furthermore, the backpressure effect caused by inter-service connec-

tions also complicates resource management. Lastly, although cloud-native relives users

from the burden of infrastructure management, cloud providers still need to provision

and pay for the infrastructure to host cloud native applications, which incurs high cost.

This dissertation aims to tackle the challenge of efficient resource management for

cloud-native systems and proposes three resource managers. First, we present Sinan, a

machine learning (ML)-driven and service level agreement (SLA)-aware resource man-

ager for microservices. Sinan uses a set of validated ML models to learn the per-service

resource requirements , taking into account the effects of inter-service dependencies.

Sinan’s ML models predict the end-to-end latency of a given resource allocation, and

the resource manager then chooses the optimal resource allocation that preserves the

SLAs, based on the predictions. Sinan highlights the importance of a balanced training

dataset that includes an equal share of SLA violations and satisfactions, for the effec-

tiveness of ML models. Additionally, Sinan demonstrates that the system is flawed if

the training dataset is dominated by either SLA satisfaction or violation. In order to

obtain a balanced training dataset, Sinan explores different resource allocations with an

algorithm inspired by multi-arm bandit (MAP).

Although Sinan outperforms traditional approaches such as autoscaling, it requires

a lengthy exploration process and triggers a large number of SLA violations, hindering

its practicality. Furthermore, the ML models are on the critical path of resource man-

agement decisions, limiting the speed and scalability of the system. To address these

limitations, we further propose Ursa, a lightweight and scalable resource management

framework for microservices. By investigating the backpressure-free conditions, Ursa

allocates resources within the space that each service can be considered independent for

the puropose of resource allocation. Ursa then uses an analytical model that decomposes

the end-to-end latency into per-service latency, and maps per-service latency to individ-

ually checkable resource allocation threshold. To speed up the exploration process, Ursa

explores as many independent microservices as possible across different request paths,

and swiftly stops exploration in case of SLA violations.

Finally, in order to reduce the infrastructure provisioning cost of cloud-native sys-

tems, we propose to leverage harvested resources in datacenter, which cloud providers

provide at a massive discount. Orthogonal to the first two parts of the thesis which aim

to reduce operation cost by providing the minimum amount of resources that do not

compromise performance, this part aims to achieve cost reduction by using cheaper but

less reliable resources. We use serverless as the target workload, and propose to run

serverless platforms on low-priority Harvest VMs that grow and shrink to harvest all

the unallocated CPU cores in their host servers. We quantify the challenges of running

serverless on harvest VMs by characterizing the serverless workloads and Harvest VMs

in production. We propose a series of policies that uses a mix of Harvest and regular

VMs with different tradeoffs between reliability and efficiency, and design a serverless

load balancer that is aware of VM evictions and resource variations in Harvest VMs.

Our results show that adopting harvested resources improves efficiency and reduces cost

significantly, and request failure rate caused by Harvest VM evictions is marginal.

BIOGRAPHICAL SKETCH

Yanqi Zhang received his master degree in Electrical and Computer Engineering from

University of Wisconsin, Madison, where he worked with Prof. David Wood and

Prof. Mikko Lipasti on computer architecture. He then joined the School of Electri-

cal and Computer Engineering (ECE) at Cornell University as a Ph.D. student, where

he has been supervised by Prof. Christina Delimitrou at the Computer Systems Labora-

tory. During his doctorate studies, Yanqi worked on various research problems includ-

ing benchmarking, simulation, resource management and performance optimization of

cloud native systems. He interned twice at Microsoft Research, in Fall 2019 and Sum-

mer 2022, where he was supervised by Dr. Sameh Elinkety, and worked closely with

Dr. Ricardo Bianchini, Dr. Rodrigo Fonseca and Dr. Íñigo Goiri.

iii

For my family and everyone who has faith in me.

iv

ACKNOWLEDGEMENTS

As I reflect on my PhD journey, I find that I have been fortunate to have had the support

and assistance of many intelligent and kind people, to whom I am deeply grateful.

I would like to convey my gratitude to all my committee members. I would like to

thank my advisor Prof. Christina Delimitrou for her support and advice throughout my

PhD journey, especially during the COVID pandemic which had me stationed in China

for almost two years. Furthermore, I would like to thank her for introducing me to all

kinds of opportunities in both academia and industry, and for allowing me complete

freedom to steer the course of my research and to study topics that interest me. I would

also like to thank my other two committee members from Cornell, Prof. Edward Suh

and Prof. Lorenzo Alvisi, for their valuable feedbacks on my A exam. I also wish to

extend my appreciation to Dr. Sameh Elinkety, my mentor at Microsoft Research, with

whom I collaborated on a majority of the projects presented in this thesis. Dr. Elinkety’s

vast knowledge and unwavering patience as a researcher have always provided me with

profound insights, and I am immensely grateful for the experience.

I would like to thank my collaborators at Microsoft Research, including Dr. Sameh

Elinkety, Dr. Ricardo Bianchini, Dr. Rodrigo Fonseca and Dr. Íñigo Goiri. My in-

ternships at Microsoft Research proved to be a most valuable and rewarding experi-

ence during my doctoral studies. These bright minds imparted upon me the essence of

computer systems research in industry, especially in terms of identifying high-impact

research problems and pursuing simplicity and efficiency in problem-solving, setting a

benchmark for good computer systems research.

I would like to thank my collaborators at Cornell, including Dr. Weizhe Hua,

Zhuangzhuang Zhou, and Dr. Yu Gan. Weizhe is a motivated researcher who is al-

ways full of brilliant research ideas, from whom I learnt a lot about machine learning.

Zhuangzhuang is always a smart collaborator with whom I have worked together on

v

multiple projects spanning both microservices and serverless. Yu and I were part of the

first group of students to work with Prof. Delimitrou, and together, we have contributed

to some of the lab’s infrastructure projects. I would also like to extend my appreciation

to all the members of the SAIL group, including Mingyu Liang, Nikita Lazarev, and

Dr. Shuang Chen, among others, for our inspiring research discussions. Furthermore, I

would like to express my gratitude to all my friends at CSL, for the wonderful time we

have shared together, particularly on the badminton courts. I would also like to extend

my thanks to friends outside Cornell for sharing a lot of pleasure in daily life.

Foremost, I would like to express my utmost gratitude to my parents, Jianping Zhang

and Xuliang Zhang for their invaluable and unwavering support throughout my life,

without which I would not be the person I am today.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 3
1.3 Contributions . 5
1.4 Thesis Organization . 7

2 Sinan: ML-Based and SLA-Aware Resource Management for Cloud Mi-
croservices 9
2.1 Introduction . 9
2.2 Overview . 11

2.2.1 Problem Statement . 11
2.2.2 Motivating Applications . 12
2.2.3 Management Challenges & the Need for ML 14
2.2.4 Proposed Approach . 17

2.3 Machine Learning Models . 18
2.3.1 Latency Predictor . 20
2.3.2 Violation Predictor . 23

2.4 System Design . 25
2.4.1 System Architecture . 25
2.4.2 Resource Allocation Space Exploration 26
2.4.3 Online Scheduler . 31

2.5 Evaluation . 33
2.5.1 Methodology . 33
2.5.2 Sinan’s Accuracy and Speed 34
2.5.3 Performance and Resource Efficiency 36
2.5.4 Incremental Retraining . 39
2.5.5 Sinan’s Scalability . 41
2.5.6 Explainable ML . 42

2.6 Conclusion . 45

3 Ursa: Lightweight Resource Management for Cloud-Native Microservices 46
3.1 Introduction . 46
3.2 Backpressure Effect . 49
3.3 Performance model . 53
3.4 Proof of Theorem 1 . 58

vii

3.5 Allocation Space Exploration . 59
3.6 Design and Implementation . 62
3.7 Benchmarks . 65
3.8 Evaluation . 67

3.8.1 Experimental Setup . 68
3.8.2 Competing Approaches . 68
3.8.3 Online Exploration Overhead 69
3.8.4 Model Accuracy . 71
3.8.5 Performance Comparison . 72
3.8.6 Control Plane Latency . 76
3.8.7 Adapting to Service Changes 79
3.8.8 Summary . 79

3.9 Conclusion . 80

4 Faster and Cheaper Serverless Computing on Harvested Resources 82
4.1 Introduction . 82
4.2 Background and Related Work . 84
4.3 Characterization . 87

4.3.1 Harvest VMs . 88
4.3.2 Serverless Functions . 90
4.3.3 Implications . 93

4.4 Handling Evictions . 95
4.4.1 Methodology . 95
4.4.2 Combining Regular and Harvest VMs 98
4.4.3 Running on Harvest VMs . 100
4.4.4 VM Migration/Snapshotting 101
4.4.5 Conclusion . 101

4.5 Handling Resource Variability . 102
4.5.1 Join-the-Shortest-Queue (JSQ) 102
4.5.2 Min-Worker-Set (MWS) . 103

4.6 Implementation . 105
4.6.1 OpenWhisk Architecture . 106
4.6.2 Harvest VM-Aware Load Balancing 107

4.7 Evaluation . 109
4.7.1 Experiment Setup . 109
4.7.2 Impact of Load Balancing . 110
4.7.3 Impact of Resource Variability 112
4.7.4 Cost vs Performance . 115
4.7.5 Harvest VMs vs Spot VMs . 116
4.7.6 Running on Real Harvest VMs 119
4.7.7 Summary . 122

4.8 Conclusion . 123

viii

5 Conclusions and Future Work 124
5.1 Summary and Contributions . 124
5.2 Open Problems . 125
5.3 Future Work . 127

Bibliography 129

ix

LIST OF TABLES

2.1 ML model parameters. 24
2.2 Resource allocation actions in Sinan. 32
2.3 RMSE, model size, and performance for three NNs — Batch size is

2048. Initial learning rates for MLP, LSTM, and CNN are 0.0001,
0.0005, and 0.001, respectively. All models are trained with a single
NVidia Titan Xp. 34

2.4 The accuracy, number of trees, and total training time of Boosted Trees
using a single NVidia Titan Xp. 35

2.5 Top-5 most critical tiers and resources for QoS with/without log syn-
chronization in Social Network — SGrf and WUsr are social graph and
write user, respectively. 44

3.1 Notations in the MIP. 56
3.2 SLAs of the social network. 66
3.3 SLAs of the media service. 67
3.4 SLAs of the video processing pipeline. 67
3.5 Online exploration overheads. 71
3.6 Control plane latency (ms). 78

4.1 Details on the two FaaS traces used in the chapter. 90
4.2 The examined serverless functions from FunctionBench [82] and their

description. 110
4.3 Number of Harvest VMs with the same budget, based on the discount

level. 115
4.4 Characteristics of the Harvest VMs, regular VMs, and Spot VMs used

in the experiment in §4.7.6. 119
4.5 Latency reduction at multiple percentiles of Harvest and Spot VM clus-

ters over regular VM clusters. 120

x

LIST OF FIGURES

2.1 Hotel reservation microservice architecture [66]. Client requests first
reach a front-end webserver, and, depending on the type of requests,
are then directed to logic tiers implementing functionality for searching
hotels, completing hotel reservations, and getting recommendations on
available hotels. At the right-most of the figure, the requests reach the
back-end databases, implemented both with in-memory caching tiers
(memcached), and persistent databases (MongoDB). 13

2.2 Social Network microservice architecture [66]. Client requests first
reach Nginx, which works as frontend http servers. Then, depending on
the type of user request, a number of logic, mid-tiers will be invoked to
create a post, read a user’s timeline and to follow/unfollow users. At the
right-most of the figure, the requests reach the back-end databases, im-
plemented both with in-memory caching tiers (memcached and Redis),
and persistent databases (MongoDB). 14

2.3 The figure showcases the delayed queueing effect in microservices;
QoS violations that are not detected eagerly (blue line), become un-
avoidable (red), even if later action is taken. 16

2.4 Multi-task NN overpredicts Social Network latency, due to the seman-
tic gap between the QoS violation probability, a value between 0 and 1,
and the latency, a value that is not strictly bounded. 19

2.5 Sinan’s hybrid model, consisting of a CNN and a Boosted Trees (BT)
model. The CNN extracts the latent variable (L f) and predicts the end-
to-end latency (yL). The BT take the latent variable and proposed re-
source allocation, and predicts the probability of a QoS violation (pV). . 22

2.6 Scale function ϕ(·) with different k. 24
2.7 Sinan’s system architecture. As user requests are being received, Sinan

collects resource and performance metrics through Docker and Jaeger,
inputs the collected metrics to the ML models, and uses the models’
output to accordingly allocate resources for each tier. Allocation deci-
sions are re-evaluated periodically online. 25

2.8 Training dataset latency distribution and ML training vs. validation er-
ror with respect to dataset latency range. The training dataset includes
an approximately balanced set of samples between those that preserve
and those that violate QoS. If the training dataset does not include any
samples that violate QoS (500ms), both the CNN and XGBoost ex-
perience serious overfitting, greatly mispredicting latencies and QoS
violations. 29

xi

2.9 Comparison of predicted and true latency with (a) autoscaling and (b)
random data collection schemes. When using autoscaling, the model
significantly underestimates latency due to insufficient training samples
of QoS violations, and causes large spikes in tail latency, forcing the
scheduler to use all available resources to prevent further violations.
On the other hand, when the model is trained using random profiling, it
constantly overestimates latency and prohibits any resource reduction,
leading to resource overprovisioning. 30

2.10 The mean and max CPU allocation, and the probability of meeting QoS
for Sinan, Autoscaling, and PowerChief. 37

2.11 (Top) RPS, latency, and allocated resources per tier with Sinan for So-
cial Network with 250 users. (Bottom) RPC, latency, and allocated re-
sources per tier with diurnal load. For both scenarios, Sinan’s predicted
latency closely follows the end-to-end measured latency, avoiding QoS
violations and excessive overprovisioning, while allocated resources
per tier take into account the impact of microservice dependencies on
end-to-end performance. 38

2.12 Training & validation RMSE of Fine-tunned CNNs with different
amounts of samples. 40

2.13 Comparison of the average CPU allocation of four request mixes for
Social Network on GCE. 42

2.14 99th percentile latency distribution for four workload types of Social
Network on GCE, managed by Sinan. 42

2.15 Tail latency for the Social Network application when Redis’s logging
is enabled (red) and disabled (blue). Sinan identified Redis as the
source of unpredictable performance, and additionally determined the
resources that were being saturated, pointing to the issue being in Re-
dis’s logging functionality. Disabling logging significanly improved
performance, which is also reflected in that tier’s importance, as far as
meeting QoS is concerned, being reduced. 44

3.1 Inter-service communication methods. 48
3.2 Backpressure effect in a service chain. 49
3.3 Backpressure profiling engine architecture. 50
3.4 Profiling CPU threshold for no backpressure. 51
3.5 System Architecture of Ursa. 63
3.6 Estimated vs. measured latency for social network. 73
3.7 Estimated vs. measured latency for the video processing pipeline. . . . 74
3.8 SLA violation rate. 75
3.9 Average CPU allocation. 77
3.10 Ursa’s CPU allocation under diurnal load. 78
3.11 99th latency distribution of object-detect. 80

4.1 Distribution of the Harvest VM lifetime [36]. 88

xii

4.2 Intervals between Harvest VM CPU changes. 89
4.3 Distribution of Harvest VM CPU change sizes and correlation of

change sizes and change interval. 90
4.4 CDFs of the average and top percentiles of the invocation durations per

application in the FLarge trace. 92
4.5 Invocation durations per app for FLarge and FS mall. 93
4.6 Durations of all invocations in the FS mall trace. 94
4.7 Durations of long applications invocations. 94
4.8 Harvest VM creations and eviction patterns. 97
4.9 Inter-arrival times for short vs. long apps. 99
4.10 Fraction of Harvest VM capacity versus acceptable percentile of per-

app long invocations. 100
4.11 Architecture of our resource-variation-aware load balancing solution on

OpenWhisk. The dotted lines show our modifications and components
not present in vanilla OpenWhisk. 106

4.12 P99 latency across load balancing algorithms. 111
4.13 Cold start rate of MWS vs. JSQ. 112
4.14 Low percentile latency of MWS vs. JSQ. 113
4.15 Performance of harvest clusters in normal case (“Normal”), under fre-

quent and significant CPU changes (“Active”), and of the “Dedicated”
cluster. 114

4.16 Cold start rate against load for fixed budget. 115
4.17 Regular vs Harvest VMs with same budget. 116
4.18 Harvest VMs vs Spot VMs. Hx refers to Harvest VMs with base size

of x CPUs, and Sx refers to Spot VMs with x CPUs. 118
4.19 Invocations in the combined function trace. 120
4.20 CPU number and cluster CPU utilization for Harvest VMs (upper left),

regular VMs (upper right), and Spot VMs with 4 CPUs (lower left) and
48 CPUs (lower right). 121

4.21 Response latency comparing MWS on harvested resources to vanilla
OpenWhisk running on dedicated resources. 122

xiii

CHAPTER 1

INTRODUCTION

1.1 Background

Cloud computing has become a prevailing trend, offering various benefits such as

scalability to large systems, fine-grained elasticity, rapid time to market and data

loss prevention [76, 64, 128, 24, 21]. In line with this trend, cloud native systems

are also gaining popularity, as it enables applications to be built as loosely cou-

pled distributed systems that are elastic, scalable and observable. Cloud native sys-

tems leverage the compute resources provided by Infrastructure as a Service (IaaS),

and use containers [7, 98, 30, 25, 29, 124, 60] and lightweight virtual machines

(VMs) [33, 95] as the smallest unit to package user applications. The virtualized

sandboxes are typically managed by orchestration frameworks [13, 28] (sometimes

with the help of service mesh [27]) which handle tasks including service discovery,

load balancing, automatic scaling, resource bin packing, service self-healing, and auto-

matic rollout/rollback. Moreover, the ecosystem also provides a range of frameworks

to enable communication, data storage, monitoring and tracing of cloud native sys-

tems [3, 18, 16, 31, 17, 47, 22, 105]. These frameworks relive users from the burden of

infrastructure development, allowing them to focus on rapid development and iteration

of business logic. Cloud native systems provide different programming models, namely

microservice and serverless, to accommodate different user requirements.

Microservices are small, loosely-coupled services that collectively perform as a

complete application, and are widely adopted by major online service providers such

as Twitter, Netflix and WeChat [6, 143, 131]. Each microservice implements a web

server that handles specific business logic, and is usually packaged in a container that

1

encapsulates its own runtime and dependencies [23]. These microservice containers

typically live for a long time and scale in or out automatically according to user spec-

ified policy to cope with load fluctuations. Communication between microservices are

implemented via protocols including REST APIs, remote procedure calls (RPCs) and

message queues [5, 10, 18, 3]. Compared to monolithic applications, microservices of-

fer several benefits. Microservices enable flexible and rapid development by allowing

each microservice to be developed and deployed independently, with its own program-

ming language, framework, and dependencies. This flexibility shortens time-to-market

and facilitates fast iteration, allowing users to make small and incremental updates to

their business logic without the need for redeployment of the entire system. In addition,

microservices enable fine-grained management, allowing each microservice to be con-

figured, deployed, and scaled independently to meet its specific resource requirements.

This results in lower operational costs, as users can add resources only to bottleneck ser-

vices when faced with load spikes, rather than scaling the entire system as in monolithic

systems.

Serverless provides a further simplified approach to application development and

deployment. Serverless platforms enable users to upload their application codes as func-

tions, without the need for explicit provisioning or management of containers and virtual

machines. This is achieved through an event-driven interface, where user functions are

executed in response to specific events, such as an HTTP request or a timer alarm. To

accommodate the event-driven nature of serverless, the underlying platform dynami-

cally allocates containers to execute user functions. Unlike microservice containers that

usually are long-living and process multiple requests in parallel, serverless container

are typically short-living ’one-off’ containers handling a single request at a time. The

billing of serverless is fine-grained and users are only billed for the resources consumed

by actual function execution. The simplicity offered by serverless comes at the cost of

2

performance and efficiency. The event-driven framework incurs overhead in communi-

cation, as well as a container cold start, where the code and runtime of the function must

be brought into memory from persistent storage. Despite these trade-offs, the simplic-

ity of serverless makes it a compelling option for cloud programming from the user’s

perspective.

Despite their popularity, cloud native systems introduce new challenges for resource

management. Cloud native systems usually need to satisfy SLA constraints defined in

terms of end-to-end tail latency, which is unstable and hard to estimate. Compared to

traditional monolithic systems, cloud native systems consist of many small component

services that have diverse resource requirements. In addition, the backpressure effect,

or dependencies between services caused by inter-service connections can lead to exac-

erbated queueing effects and potential cascading SLA violations, further complicating

resource management [66, 143]. Lastly, although cloud native systems relieves users

from the burden of infrastructure management, cloud providers still need to provision

and pay for the infrastructures, which usually incurs high cost.

1.2 Related Work

We now review related work on cloud native system including both microservice and

serverless, and resource management of cloud systems in general.

Microservices. The emergence of microservices has prompted efforts to bench-

mark and characterize them. Representative benchmarks include DeathstarBench [66]

and ticket reservation [144], which implement several end-to-end user-facing applica-

tions. These benchmarks use RPC as the only inter-service communication method,

and mostly perform lightweight text processing in the business logic. More recently,

3

Luo et al. [92] characterize microservices running on AliCloud and show that message

queues are common in practice, accounting for 23% of all communication methods,

and the performance of microservices is most sensitive to CPU interference. Related

work [143, 117, 94, 122] also shows that cloud-native applications implement a vari-

ety of business logic, including ML workloads, image and video processing, etc. In

terms of resource management for microservices, Wechat [143] manages microservices

with overload control, by matching the throughput of the upstream and downstream ser-

vices; PowerChief [141] dynamically power boosts bottleneck services in multi-phase

applications, and Suresh et al. [129] leverage overload control and adopt deadline-based

scheduling to improve tail latency in multi-tier workloads. Finally, Sriraman et al. [127]

present an autotuning framework for microservice concurrency, and show the impact of

threading decisions on application performance and responsiveness.

Serverless. Serverless computing has been the subject of extensive research aimed

at expanding its range of applicable applications and enhancing its infrastructure. This

research covers a wide range of areas, including: (a) scheduling policies for making

serverless platforms cost-effective and performant [122, 78]; (b) performance-aware

and cost-effective storage [83, 84, 103, 117]; (c) secure and light-weight container in-

frastructure [34, 106, 102, 137, 133, 125, 33]; (d) characterization of existing serverless

workloads [122]; and (e) enabling applications to run in a serverless-native manner,

including data processing and analytics [75, 112], video processing [63], ML training

[46], DNA sequence visualization [88] and compilation [62].

Resource management for the cloud. Improving resource efficiency in cloud plat-

forms in general is an important research area, and recent work [44, 61, 67, 70, 74,

77, 111, 132, 55, 80, 110] focuses on cluster scheduling frameworks, such as Kuber-

netes [13] and Apache YARN [134]. Resource central [53] uses a set of ML models to

4

predict VM performance metrics, such as CPU utilization and lifetime, Autopilot [119]

uses an ensemble of models to tune container configurations, Ambati et al. [36] propose

providing SLAs for resource harvesting VMs, and Narayanan et al. [104] propose to

efficiently solve large-scale granular resource allocation problems by randomly parti-

tioning them to smaller problems. However, these proposals are mainly applicable to

single VMs or containers, rather than microservices with directed acyclic graph (DAG)

topologies.

1.3 Contributions

This dissertation focuses on improving the resource efficiency of cloud native systems.

First, we tackle the problem of allocating the optimal amount of resources under

SLA constraints. Specifically, we target microservice workloads and investigate both

using machine learning (ML) and analytical models. We first propose Sinan, an ML-

driven, SLA-aware resource manager for microservices. Sinan leverages a set of

validated ML models to automatically learn the per-service resource requirements and

the impact of inter-service dependencies from data, and assign appropriate resources to

each service to preserve SLAs. Sinan highlights the importance of a balanced training

dataset that includes an equal share of SLA violation and SLA satisfaction, for the ef-

fectiveness of ML models. To collect the balanced training dataset, Sinan employs an

action space exploration algorithm inspired by multi-arm bandits to investigate the space

of possible resource allocations. After collecting the proper training dataset, Sinan trains

a set of models to predict the outcome of a resource allocation, both in the near-future

and in the long term. The predictions are then used by the resource manager to decide

the optimal resource allocation that preserves the SLA.

5

Sinan demonstrates that ML models are effective in predicting performance metrics

such as end-to-end tail latency and can be used to guide resource allocations. However,

the exploration process for collecting the balanced training dataset is time-consuming

and triggers a large number of SLA violations, making it impractical to be performed

online to track changes in user behavior or to cope with frequent business logic updates.

In addition, the ML models are on the critical path of every resource management deci-

sion, limiting the speed and scalability of resource management. To address these lim-

itations, we design Ursa, a lightweight resource management framework for cloud

native microservices. First, we study how latency anomalies, or backpressure, prop-

agate through different communication methods, due to improper resource allocation.

The results show that backpressure is only significant in RPCs and is most pronounced

in the parent service of the bottleneck microservice. Based on these findings, we propose

a method to determine the resource utilization threshold for microservices that prevents

backpressure. In a backpressure-free system, we develop a performance model based

on mixed-integer programming (MIP). The model decomposes end-to-end latency SLA

constraints into per-service latency constraints, and maps them to resource allocation

thresholds for individual services. To speed up exploration while reducing SLA viola-

tions, Ursa explores as many independent services across different request paths, and

swiftly stops exploration when violations occur or the resource utilization reaches the

backpressure-free thresholds. In brief review of the first two parts of the thesis, we

emphasize the benefits of analytical models in comparision to deep neural networks

(DNNs) concerning resource management or control problems. Despite the demonstra-

tion of DNNs’ capability in resolving black-box problems, analytical models designed

with domain knowledge can be more performant, efficient and explainable, while re-

quiring considerably smaller training dataset and incurring less exploration overheads.

Second, in order to reduce the infrastructure provisioning cost of cloud native sys-

6

tems, we propose to leverage harvested resources in datacenters which are provided at

massive discounts. Orthogonal to the first two parts of the thesis, which aim to reduce

operation cost by providing the minimum amount of resources without performance

degradation, this part aims to achieve cost reduction by using cheaper but less reliable

resources. For this part of the thesis we target serverless workloads because serverless

workloads are short running and benefit the most from harvested resources. Specifically,

we propose to run serverless platforms on Harvest VMs [36], a type of low-priority

evictable VMs that grow and shrink to harvest all the unallocated CPU cores in their

host servers. To understand the impact of evictions and of the variability in harvested

resources on a serverless platform, we characterize both the serverless workload and the

resources available to Harvest VMs using production traces. We contrast the duration

of function executions with the lifetime of Harvest VMs and the durations over which

resources are available for harvesting, and the analysis suggests a good match between

serverless platforms and Harvest VMs. Additionally, we study how to adapt a serverless

platform to run on harvested resources. To address Harvest VM evictions, we explore

the space of regular and Harvest VMs mixes, for short- and long-running functions,

and quantify the trade-off between cost and reliability. We find that even when run-

ning serverless solely on Harvest VMs, evictions cause at most 0.0015% of invocations

to fail. To make this practical, we design and implement a load balancer for server-

less platforms that places functions in VMs according to the availability of harvested

resources, while keeping the function cold start rate low.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 presents Sinan, an ML-

driven, SLA-aware resource manager for microservices. Chpater 3 presents Ursa, a

7

lightweight resource management framework for cloud native microservices. Chap-

ter 4 presents the study of running serverless workloads on Harvest VMs, which makes

serverless both faster and cheaper. Finally, Chapter 5 concludes the dissertation.

8

CHAPTER 2

SINAN: ML-BASED AND SLA-AWARE RESOURCE MANAGEMENT FOR

CLOUD MICROSERVICES

2.1 Introduction

In recent years, cloud applications have progressively shifted from monolithic services

to graphs with hundreds of single-purpose and loosely-coupled microservices [129,

66, 126, 32, 20, 6]. This shift is becoming increasingly pervasive, with large cloud

providers, such as Amazon, Twitter, Netflix, and eBay having already adopted this ap-

plication model [32, 20, 6].

Despite several advantages, such as modular and flexible development and rapid

iteration, microservices also introduce new system challenges, especially in resource

management, since the complex topologies of microservice dependencies exacerbate

queueing effects, and introduce cascading Quality of Service (QoS) violations that

are difficult to identify and correct in a timely manner [66, 143]. Current cluster

managers are designed for monolithic applications or applications consisting of a few

pipelined tiers, and are not expressive enough to capture the complexity of microser-

vices [135, 97, 90, 91, 66, 109, 121, 123, 56, 58]. Given that an increasing number of

production cloud services, such as EBay, Netflix, Twitter, and Amazon, are now de-

signed as microservices, addressing their resource management challenges is a pressing

need [32, 20, 66].

We take a data-driven approach to tackle the complexity microservices introduce

to resource management. Similar machine learning (ML)-driven approaches have been

effective at solving resource management problems for large-scale systems in previous

9

work [58, 53, 119, 57]. Unfortunately, these systems are not directly applicable to mi-

croservices, as they were designed for monolithic services, and hence do not account for

the impact of dependencies between microservices on end-to-end performance.

We present Sinan, a scalable and QoS-aware resource manager for interactive cloud

microservices. Instead of tasking the user or cloud operator with inferring the impact

of dependencies between microservices, Sinan leverages a set of validated ML models

to automatically determine the impact of per-tier resource allocations on end-to-end

performance, and assign appropriate resources to each tier.

Sinan first uses an efficient space exploration algorithm to examine the space of pos-

sible resource allocations, especially focusing on corner cases that introduce QoS vio-

lations. This yields a training dataset used to train two models: a Convolutional Neural

Network (CNN) model for detailed short-term performance prediction, and a Boosted

Trees model that evaluates the long-term performance evolution. The combination of

the two models allows Sinan to both examine the near-future outcome of a resource

allocation, and to account for the system’s inertia in building up queues with higher

accuracy than a single model examining both time windows. Sinan operates online,

adjusting per-tier resources dynamically according to the service’s runtime status and

end-to-end QoS target. Finally, Sinan is implemented as a centralized resource manager

with global visibility into the cluster and application state, and with per-node resource

agents that track per-tier performance and resource utilization.

We evaluate Sinan using two end-to-end applications from DeathStarBench [66],

built with interactive microservices: a social network and a hotel reservation site. We

compare Sinan against both traditionally-employed empirical approaches, such as au-

toscaling [19], and previous research on multi-tier service scheduling based on queueing

analysis, such as PowerChief [141]. We demonstrate that Sinan outperforms previous

10

work both in terms of performance and resource efficiency, successfully meeting QoS

for both applications under diverse load patterns. On the simpler hotel reservation appli-

cation, Sinan saves 25.9% on average, and up to 46.0% of the amount of resources used

by other QoS-meeting methods. On the more complex social network service, where

abstracting application complexity is more essential, Sinan saves 59.0% of resources

on average, and up to 68.1%, essentially accommodating twice the amount of requests

per second, without the need for more resources. We also validate Sinan’s scalability

through large-scale experiments on approximately 100 container instances on Google

Compute Engine (GCE), and demonstrate that the models deployed on the local cluster

can be reused on GCE with only minor adjustments instead of retraining.

Finally, we demonstrate the explainability benefits of Sinan’s models, delving into

the insights they can provide for the design of large-scale systems. Specifically, we use

an example of Redis’s log synchronization, which Sinan helped identify as the source of

unpredictable performance out of tens of dependent microservices to show that the sys-

tem can offer practical and insightful solutions for clusters whose scale make previous

empirical approaches impractical.

2.2 Overview

2.2.1 Problem Statement

Sinan aims to manage resources for complex, interactive microservices with tail la-

tency QoS constraints in a scalable and resource-efficient manner. Graphs of dependent

microservices typically include tens to hundreds of tiers, each with different resource

requirements, scaled out and replicated for performance and reliability. Section 2.2.2

11

describes some motivating examples of such services with diverse functionality used in

this work; other similar examples can be found in [32, 20, 6, 126].

Most cluster managers focus on CPU and memory management [119, 53, 135]. Mi-

croservices are by design mostly stateless, hence their performance is defined by their

CPU allocation. Given this, Sinan primarily focuses on allocating CPU resources to

each tier [66], both at sub-core and multi-core granularity, leveraging Linux cgroups

through the Docker API [7]. We also provision each tier with the maximum profiled

memory usage to eliminate out of memory errors.

2.2.2 Motivating Applications

We use two end-to-end interactive applications from DeathStarBench [66]: a hotel reser-

vation service, and a social network.

Hotel Reservation

The service is an online hotel reservation site, whose architecture is shown in Figure 2.1.

Functionality: The service supports searching for hotels using geolocation, placing

reservations, and getting recommendations. It is implemented in Go, and tiers commu-

nicate over gRPC [10]. Data backends are implemented in memcached for in-memory

caching, and MongoDB, for persistent storage. The database is populated with 80 hotels

and 500 active users.

12

Frontend

Search
Profile

Recommend

Geo
User

Rate

Reserve

Rate-

memc
Rate-

mongo

Profile-

memc
Profile-

mongo

Recommend-

mongo

Geo-

mongo

Frontend Business logic Caching & DB

Reserve-

memc
Reserve-

mongo

User-

mongo

Figure 2.1: Hotel reservation microservice architecture [66]. Client requests first reach
a front-end webserver, and, depending on the type of requests, are then directed to logic
tiers implementing functionality for searching hotels, completing hotel reservations, and
getting recommendations on available hotels. At the right-most of the figure, the re-
quests reach the back-end databases, implemented both with in-memory caching tiers
(memcached), and persistent databases (MongoDB).

Social Network

The end-to-end service implements a broadcast style social network with uni-directional

follow relationships, shown in Figure 2.2. Inter-microservice messages use Apache

Thrift RPCs [130].

Functionality: Users can create posts embedded with text, media, links, and tags to

other users, which are then broadcasted to all their followers. The texts and images

uploaded by users, specifically, go through image-filter (a CNN classifier) and text-filter

services (an SVM classifier), and contents violating the service’s ethics guidelines are

rejected. Users can also read posts on their timelines. We use the Reed98 [118] social

friendship network to populate the user database. User activity follows the behavior of

Twitter users reported in [86], and the distribution of post text length emulates Twitter’s

text length distribution [69].

13

NGINX

Image

Compose

-post

Post-

storage

Social-

graph

Image

-filter

Text Text-

filter
User

User-

mention
Unique

-ID
URL

Home-

timeline

User-

timeline

Write-

user-tl

Write-

home-tl

Post-

memc

Post-

mongo

Graph-

mongo
Graph-

Redis

User-

memc

User-

mongo

Home-tl-

Redis Home-

mongo

User-tl-

Redis
User-

mongo

User-tl-

RabbiMQ

User-tl-

RabbiMQ

Compose

Redis

Frontend Business logic Caching & DB

Figure 2.2: Social Network microservice architecture [66]. Client requests first reach
Nginx, which works as frontend http servers. Then, depending on the type of user
request, a number of logic, mid-tiers will be invoked to create a post, read a user’s
timeline and to follow/unfollow users. At the right-most of the figure, the requests reach
the back-end databases, implemented both with in-memory caching tiers (memcached
and Redis), and persistent databases (MongoDB).

2.2.3 Management Challenges & the Need for ML

Resource management in microservices faces four challenges.

1. Dependencies among tiers Resource management in microservices is additionally

complicated by the fact that dependent microservices are not perfect pipelines, and

hence can introduce backpressure effects that are hard to detect and prevent [66, 143].

These dependencies can be further exacerbated by the specific RPC and data store API

implementation. Therefore, the resource scheduler should have a global view of the

microservice graph and be able to anticipate the impact of dependencies on end-to-end

performance.

2. System complexity Given that application behaviors change frequently, resource

14

management decisions need to happen online. This means that the resource manager

must traverse a space that includes all possible resource allocations per microservice in

a practical manner. Prior empirical approaches use resource utilization [19], or latency

measurements [48, 58, 90] to drive allocation decisions. Queueing approaches similarly

characterize the system state using queue lengths [141]. Unfortunately these approaches

cannot be directly employed in complex microservices with tens of dependent tiers.

First, microservice dependencies mean that resource usage across tiers is codependent,

so examining fluctuations in individual tiers can attribute poor performance to the wrong

tier. Similarly, although queue lengths are accurate indicators of a microservice’s system

state, obtaining exact queue lengths is hard. First, queues exist across the system stack

from the NIC and OS, to the network stack and application. Accurately tracking queue

lengths requires application changes and heavy instrumentation, which can negatively

impact performance and/or is not possible in public clouds. Second, the application may

include third-party software whose source code cannot be instrumented. Alternatively,

expecting the user to express each tier’s resource sensitivity is problematic, as users

already face difficulties correctly reserving resources for simple, monolithic workloads,

leading to well-documented underutilization [58, 114], and the impact of microservice

dependencies is especially hard to assess, even for expert developers.

3. Delayed queueing effect Consider a queueing system with processing throughput To

under a latency QoS target, like the one in Figure 2.3. To is a non-decreasing function

of the amount of allocated resources R. For input load Ti, To should equal or slightly

surpass Ti for the system to stably meet QoS, while using the minimum amount of

resources R needed. Even when R is reduced, such that To < Ti, QoS will not be

immediately violated, since queue accumulation takes time.

The converse is also true; by the time QoS is violated, the built-up queue takes a long

15

Figure 2.3: The figure showcases the delayed queueing effect in microservices; QoS
violations that are not detected eagerly (blue line), become unavoidable (red), even if
later action is taken.

time to drain, even if resources are upscaled immediately upon detecting the violation

(red line). Multi-tier microservices are complex queueing systems with queues both

across and within microservices. This delayed queueing effect highlights the need for

ML to evaluate the long-term impact of resource allocations, and to proactively prevent

the resource manager from reducing resources too aggressively, to avoid latency spikes

with long recovery periods. To mitigate a QoS violation, the manager must increase

resources proactively (blue line), otherwise the violation becomes unavoidable, even if

more resources are allocated a posteriori.

4. Boundaries of resource allocation space Data collection or profiling are essential

to the performance of any model. Given the large resource allocation space in microser-

vices, it is essential for any resource manager to quickly identify the boundaries of that

space that allow the service to meet its QoS, with the minimum resource amount [59],

so that neither performance nor resource efficiency are sacrificed. Prior work often uses

random exploration of the resource space [58, 90, 48] or uses prior system state as the

16

training dataset [65]. Unfortunately, while these approaches work for simpler appli-

cations, in microservices they are prone to covariant shift. Random collection blindly

explores the entire space, even though many of the explored points may never occur dur-

ing the system’s normal operation, and may not contain any points close to the resource

boundary of the service. On the contrary, data from operation logs are biased towards

regions that occur frequently in practice but similarly may not include points close to the

boundary, as cloud systems often overprovision resources to ensure that QoS is met. To

reduce exploration overheads it is essential for a cluster manager to efficiently examine

the necessary and sufficient number of points in the resource space that allow it to just

meet QoS with the minimum resources.

2.2.4 Proposed Approach

These challenges suggest that empirical resource management, such as autoscaling [19]

or queueing analysis-based approaches for multi-stage applications, such as Power-

Chief [141], are prone to unpredictable performance and/or resource inefficiencies. To

tackle these challenges, we take a data-driven approach that abstracts away the complex-

ity of microservices from the user, and leverages ML to identify the impact of dependen-

cies on end-to-end performance, and make allocation decisions. We also design an effi-

cient space exploration algorithm that explores the resource allocation space, especially

boundary regions that may introduce QoS violations, for different application scenarios.

Specifically, Sinan’s ML models predict the end-to-end latency and the probability of

a QoS violation for a resource configuration, given the system’s state and history. The

system uses these predictions to maximize resource efficiency, while meeting QoS.

At a high level, the workflow of Sinan is as follows: the data collection agent col-

17

lects training data, using a carefully-designed algorithm which addresses Challenge 4

(efficiently exploring the resource space). With the collected data, Sinan trains two ML

models: a convolution neural network (CNN) model and a boosted trees (BT) model.

The CNN handles Challenges 1 and 2 (dependencies between tiers and navigating the

system complexity), by predicting the end-to-end tail latency in the near future. The

BT model addresses Challenge 3 (delayed queueing effect), by evaluating the proba-

bility for a QoS violation further into the future, to account for the system’s inertia in

building up queues. At runtime, Sinan infers the instantaneous tail latency and the prob-

ability for an upcoming QoS violation, and adjusts resources accordingly to satisfy the

QoS constraint. If the application or underlying system change at any point in time,

Sinan retrains the corresponding models to account for the impact of these changes on

end-to-end performance.

2.3 Machine Learning Models

The objective of Sinan’s ML models is to accurately predict the performance of the

application given a certain resource allocation. The scheduler can then query the model

with possible resource allocations for each microservice, and select the one that meets

QoS with the least necessary resources.

A straightforward way to achieve this is designing an ML model that predicts the

immediate end-to-end tail latency as a function of resource allocations and utilization,

since QoS is defined in terms of latency, and comparing the predicted latency to the

measured latency during deployment is straightforward. The caveat of this approach is

the delayed queueing effect described in Sec. 2.2.3, whereby the impact of an allocation

decision would only show up in performance later. As a resolution, we experimented

18

0 100 200 300
0

25

50

75

100

125

150

E
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

m
s
)

Time (s)

Figure 2.4: Multi-task NN overpredicts Social Network latency, due to the semantic
gap between the QoS violation probability, a value between 0 and 1, and the latency, a
value that is not strictly bounded.

with training a neural network (NN) to predict latency distributions over a future time

window: for example, the latency for each second over the next five seconds. However,

we found that the prediction accuracy rapidly decreased the further into the future the

NN tried to predict, as predictions were based only on the collected current and past met-

rics (resource utilization and latency), which were accurate enough for immediate-future

predictions, but were insufficient to capture how dependencies between microservices

would cause performance to evolve later on.

Considering the difficulty of predicting latency further into the future, we set an

alternative goal: predict the latency of the immediate future, such that imminent QoS

violations are identified quickly, but only predict the probability of experiencing a QoS

violation later on, instead of the exact latency of each decision interval. This binary

classification is a much more contained problem than detailed latency prediction, and

still conveys enough information to the resource manager on performance events, e.g.,

QoS violations, that may require immediate action in the present.

An intuitive method for this are multi-task learning NNs that predict the latency of

19

the next interval, and the QoS violation probability in the next few intervals. However,

the multi-task NN considerably overpredicts tail latency and QoS violation probability,

as shown in Figure 2.4. Note that the gap between prediction and ground truth does

not indicate a constant difference, which could be easily learned by NNs with strong

overfitting capabilities. We attribute the overestimation to interference caused by the

semantic gap between the QoS violation probability, a value between 0 and 1, and the

latency, a value that is not strictly bounded.

To address this, we designed a two-stage model: first, a CNN that predicts the end-to-

end latency of the next timestep with high accuracy, and, second, a Boosted Trees (BT)

model that estimates the probability for QoS violations further into the future, using the

latent variable extracted by CNN. BT is generally less prone to overfitting than CNNs,

since it has much fewer tunable hyperparameters than NNs; mainly the number of trees

and tree depth. By using two separate models, Sinan is able to optimize each model for

the respective objective, and avoid the overprediction issue of using a joint, expensive

model for both tasks. We refer to the CNN model as the short-term latency predictor,

and the BT model as the long-term violation predictor.

2.3.1 Latency Predictor

As discussed in Section 2.2.3, the CNN needs to account for both the dependencies

across microservices, and the timeseries pattern of resource usage and application per-

formance. Thus, both the application topology and the timeseries information are en-

coded in the input of the CNN. The input of the CNN includes the following three parts:

1. an “image” (3D tensor) consisting of per-tier resource utilization within a past

time window. The y-axis of the “image” corresponds to different microservices,

20

with consecutive tiers in adjacent rows, the x-axis corresponds to the timeseries,

with one timestep per column, and the z-axis (channels) corresponds to resource

metrics of different tiers, including CPU usage, memory usage (resident set size

and cache memory size) and network usage (number of received and sent packets),

which are all retrieved from Docker’s cgroup interface. Per-request tracing is not

required.

2. a matrix of the end-to-end latency distribution within the past time window, and

3. the examined resource configuration for the next timestep, which is also encoded

as a matrix.

In each convolutional (Conv) layer of the CNN, a convolutional kernel (k × k window)

processes information of k adjacent tiers within a time window containing k timestamps.

The first few Conv layers in the CNN can thus infer the dependencies of their adja-

cent tiers over a short time window, and later layers observe the entire graph, and learn

interactions across all tiers within the entire time window of interest. The latent rep-

resentations derived by the convolution layers are then post-processed together with

the latency and resource configuration information, through concatenation and fully-

connected (FC) layers to derive the latency predictions. In the remainder of this section,

we first discuss the details of the network architecture, and then introduce a custom

loss function that improves the prediction accuracy by focusing on the most important

latency range.

As shown in Figure 2.5, the latency predictor takes as input the resource usage his-

tory (XRH), the latency history (XLH), and the resource allocation under consideration

for the next timestep (XRC), and predicts the end-to-end tail latencies (yL) (95th to 99th

percentiles) of the next timestep.

XRH is a 3D tensor whose x-axis is the N tiers in the microservices graph, the y-axis

21

Figure 2.5: Sinan’s hybrid model, consisting of a CNN and a Boosted Trees (BT) model.
The CNN extracts the latent variable (L f) and predicts the end-to-end latency (yL). The
BT take the latent variable and proposed resource allocation, and predicts the probability
of a QoS violation (pV).

is T timestamps (T > 1 accounts for the non-Markovian nature of microservice graph),

and channels are F resource usage information related to CPU and memory. The set of

necessary and sufficient resource metrics is narrowed down via feature selection. XRC

and XLH are 2D matrices. For XRC, the x-axis is the N tiers and the y-axis the CPU

limit. For XRH, the x-axis is T timestamps, and the y-axis are vectors of different latency

percentiles (95th to 99th). The three inputs are individually processed with Conv and

FC layers, and then concatenated to form the latent representation L f , from which the

predicted tail latencies L f are derived with another FC layer.

The CNN minimizes the difference between predicted and actual latency, using the

squared loss function below:

L(X, ŷ,W) =
n∑
i

(ŷi − fW(xi))2 (2.1)

where fW(·) represents the forward function of the CNN, ŷ is the ground truth, and n is

the number of training samples. Given the spiking behavior of interactive microservices

22

that leads to very high latency, the squared loss in Eq. 2.1 tends to overfit for training

samples with large end-to-end latency, leading to latency overestimation in deployment.

Since the latency predictor aims to find the best resource allocation within a tail latency

QoS target, the loss should be biased towards training samples whose end-to-end la-

tencies are ≤ QoS . Therefore, we use a scaling function to scale both the predicted

and actual end-to-end latency before applying the squared loss function. The scaling

function (ϕ(·)) is:

ϕ(x) =


x x ≤ t

t + x−t
1+α(x−t) x > t

(2.2)

where the latency range is (0, t), and the hyper-parameter α can be tuned for differ-

ent decay effects. Figure 2.6 shows the scaling function with t = 100 and α =

0.005, 0.01, 0.02. It is worth mentioning that scaling end-to-end latencies only mitigates

overfitting of the predicted latency for the next decision interval, and does not improve

predictions further into the future, as described above. We implement all CNN models

using MxNet [50], and trained them with Stochastic Gradient Descent (SGD).

2.3.2 Violation Predictor

The violation predictor addresses the binary classification task of predicting whether a

given allocation will cause a QoS violation further in the future, to filter out undesirable

actions. Ensemble methods are good candidates as they are less prone to overfitting. We

use Boosted Trees [96], which realizes an accurate non-linear model by combining a

series of simple regression trees. It models the target as the sum of trees, each of which

maps features to a score. The final prediction is determined by accumulating scores

across all trees.

23

Param Definition
k future timesteps in BT
T past timesteps in CNN&BT
N application tiers
M latency percentiles
F resource statistics
R allocated resources

Table 2.1: ML model parameters.

0 100 200 300
Latency (ms)

0

100

200
S

c
a
le

d
 l
a

te
n
c
y
 (

m
s
)

=0.005

=0.01

=0.02

Figure 2.6: Scale function ϕ(·) with different k.

To further reduce the computational cost and memory footprint of Boosted Trees,

we reuse the compact latent variable L f extracted from the CNN as its input. Moreover,

since the latent variable L f is significantly smaller than XRC, XRH, and XLH in dimen-

sionality, using L f as the input also makes the model more resistant to overfitting.

Boosted Trees also takes resource allocations as input. During inference, we simply

use the same resource configuration for the next k timesteps to predict whether it will

cause a QoS violation k steps in the future. As shown in Figure 2.5, each tree leaf repre-

sents either a violation or a non-violation with a continuous score. For a given example,

we sum the scores for all chosen violation (sV) and non-violation leaves (sV) from each

tree. The output of BT is the predicted probability of QoS violation (pV), which can

be calculated as pV =
esV

esV+esNV . For the violation predictor we leverage XGBoost [49], a

gradient tree boosting framework that improves scalability using sparsity-aware approx-

24

Figure 2.7: Sinan’s system architecture. As user requests are being received, Sinan col-
lects resource and performance metrics through Docker and Jaeger, inputs the collected
metrics to the ML models, and uses the models’ output to accordingly allocate resources
for each tier. Allocation decisions are re-evaluated periodically online.

imate split finding.

We first train the CNN and then BT using the extracted latent variable from the

CNN. The CNN parameters (number of layers, channels per layer, weight decay etc.)

and XGBoost (max tree depth) are selected based on the validation accuracy.

2.4 System Design

We first introduce Sinan’s overall architecture, and then discuss the data collection pro-

cess, which is crucial to the effectiveness of the ML models, and Sinan’s online sched-

uler.

2.4.1 System Architecture

Sinan consists of three components: a centralized scheduler, distributed operators de-

ployed on each server/VM, and a prediction service that hosts the ML models. Fig-

25

ure 2.7 shows an overview of Sinan’s architecture.

Sinan makes decisions periodically. In each 1s decision interval (consistent with the

granularity at which QoS is defined), the centralized scheduler queries the distributed

operators to obtain the CPU, memory, and network utilization of each tier in the previ-

ous interval. Resource usage is obtained from Docker’s monitoring infrastructure, and

only involves a few file reads, incurring negligible overheads. Aside from per-tier infor-

mation, the scheduler also queries the API gateway to get user load statistics from the

workload generator. The scheduler sends this data to the hybrid ML model, which is

responsible for evaluating the impact of different resource allocations. Resource usage

across replicas of the same tier are averaged before being used as inputs to the models.

Based on the model’s output, Sinan chooses an allocation vector that meets QoS using

the least necessary resources, and communicates its decision to the per-node agents for

enforcement.

Sinan focuses on compute resources, which are most impactful to microservice per-

formance. Sinan explores sub-core allocations in addition to allocating multiple cores

per microservice to avoid resource inefficiencies for non-resource demanding tiers, and

enable denser colocation.

2.4.2 Resource Allocation Space Exploration

Representative training data is key to the accuracy of any ML model. Ideally, test data

encountered during online deployment should follow the same distribution as the train-

ing dataset, so that covariate shift is avoided. Specifically for our problem, the training

dataset needs to cover a sufficient spectrum of application behaviors that are likely to

occur during online deployment. Because Sinan tries to meet QoS without sacrificing

26

resource efficiency, it must efficiently explore the boundary of the resource allocation

space, where points using the minimum amount of resources under QoS reside. We de-

sign the data collection algorithm as a multi-armed bandit process [68], where each tier

is an independent arm, with the goal of maximizing the knowledge of the relationship

between resources and end-to-end QoS.

The data collection algorithm approximates the running state of the application with

a tuple (rps, latcur, latdiff), where rps is the input requests per second, latcur is the

current tail latency, and latdiff is the tail latency difference from the previous interval,

to capture the rate of consuming or accumulating queues. Every tier is considered as

an arm that can be played independently, by adjusting its allocated resources. For each

tier, we approximate the mapping between its resources and the end-to-end QoS as a

Bernoulli distribution, with probability p of meeting the end-to-end QoS, and we define

our information gain from assigning certain amount of resources to a tier, as the expected

reduction of confidence interval of p for the corresponding Bernoulli distribution. At

each step for every tier, we select the operation that maximizes the information gain, as

shown in Eq. 2.3, where ops
T is an action selected for tier T at running state s, n are the

samples collected for the resulting resource assignment after applying op on tier T at

state s, p is the previously-estimated probability of meeting QoS, and p+ and p− are the

newly-estimated probabilities of meeting QoS, when the new sample meets or violates

QoS respectively. Each operation’s score is multiplied by a predefined coefficient Cop

to encourage meeting QoS and reducing overprovisioning.

ops
T = arg max

op
Cop · (

√
p(1 − p)

n
− p

√
p+(1 − p+)

n + 1

−(1 − p)

√
p−(1 − p−)

n + 1
)

(2.3)

By choosing operations that maximize Equation. 2.3, the data collection algorithm is

27

incentivized to explore the boundary points that meet QoS with the minimum resource

amount, since exploring allocations that definitely meet or violate QoS (with p = 1

or p = 0) has at most 0 information gain. Instead, the algorithm prioritizes exploring

resource allocations whose impact on QoS is nondeterministic, like those with p =

0.5. It is also worth noting that the state encoding and information gain definition are

simplified approximations of the actual system, with the sole purpose of containing the

exploration process in the region of interest. Eventually, we rely on ML to extract the

state representation that incorporates inter-tier dependencies in the microservice graph.

To prune the action space, Sinan enforces a few rules on both data collection and

online scheduling. First, the scheduler is only allowed to select out of a predefined set

of operations. Specifically in our setting, the operations include reducing or increasing

the CPU allocation by 0.2 up to 1.0 CPU, and increasing or reducing the total CPU

allocation of a service by 10% or 30%. These ratios are selected according to the AWS

step scaling tutorial [19]; as long as the granularity of CPU allocations does not change,

other resource ratios also work without retraining the model. Second, an upper limit on

CPU utilization is enforced on each tier, to avoid overly aggressive resource downsizing

that can lead to long queues and dropped requests. Third, when end-to-end tail latency

exceeds the expected value, Sinan disables resource reclamations so that the system can

recover as soon as possible. A subtle difference from online deployment is that the data

collection algorithm explores resource allocations in the [0,QoS +α] tail latency region,

where α is a small value compared to QoS. The extra α allows the data collection process

to explore allocations that cause slight QoS violations without the pressure of reverting

to states that meet QoS immediately, such that the ML models are aware of boundary

cases, and avoid them in deployment. In our setting α is 20% of QoS empirically, to

adequately explore the allocation space, without causing the tail latency distribution

to deviate too much from values that would be seen in deployment. Collecting data

28

100 200 300 400 500 600 700 800 900 1000

Latency (m s)

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 (
%

)

CDF of Training Data

100 200 300 400 500 600 700 800 900 1000

Latency (m s)

0

50

100

150

200

250

R
M

S
E

 (
m

s
)

CNN validat ion RMSE

CNN t raining RMSE

XGB Validat ion Error Rate

XGB Training Error Rate

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

ra
te

Training vs Validat ion Error

Figure 2.8: Training dataset latency distribution and ML training vs. validation error
with respect to dataset latency range. The training dataset includes an approximately
balanced set of samples between those that preserve and those that violate QoS. If the
training dataset does not include any samples that violate QoS (500ms), both the CNN
and XGBoost experience serious overfitting, greatly mispredicting latencies and QoS
violations.

exclusively when the system operates nominally, or randomly exploring the allocation

space does not fulfill these requirements.

Figure 2.8 shows the latency distribution in the training dataset, and how the training

and validation error of the model changes with respect to the latency range observed in

the training dataset, for the Social Network application. In the second figure, the x-axis

is the latency of samples in the training dataset, the left y-axis is the root mean squared

error RMSE of the CNN, and the right y-axis represents the classification error rate of

XGBoost. Each point’s y-axis value is the model’s training and validation error when

trained only with data whose latency is smaller than the corresponding x-value. If the

training dataset does not include any samples that violate QoS (500ms), both the CNN

and XGBoost experience serious overfitting, greatly mispredicting latencies and QoS

violations.

Figure 2.9 shows data collected using data collection mechanisms that do not cu-

rate the dataset’s distribution. Specifically, we show the prediction accuracy when the

training dataset is collected when autoscaling is in place (a common resource manage-

29

0 100 200 3000

500

1000

1500

2000

2500

E
n
d

to
e
n
d
 l
a
te

n
c
y
 (

m
s
)

Times (s)

(a) Autoscaling data collection.

0 100 200 3000

50

100

150

200

250

E
n
d

to
e
n
d
 l
a
te

n
c
y
 (

m
s
)

Times (s)

(b) Random data collection.

Figure 2.9: Comparison of predicted and true latency with (a) autoscaling and (b) ran-
dom data collection schemes. When using autoscaling, the model significantly underes-
timates latency due to insufficient training samples of QoS violations, and causes large
spikes in tail latency, forcing the scheduler to use all available resources to prevent fur-
ther violations. On the other hand, when the model is trained using random profiling,
it constantly overestimates latency and prohibits any resource reduction, leading to re-
source overprovisioning.

ment scheme in most clouds), and when resource allocations are explored randomly.

As expected, when using autoscaling, the model does not see enough cases that violate

QoS, and hence seriously underestimates latency and causes large spikes in tail latency,

forcing the scheduler to use all available resources to prevent further violations. On

the other hand, when the model is trained using random profiling, it constantly over-

estimates latency and prohibits any resource reduction, highlighting the importance of

jointly designing the data collection algorithms and the ML models.

Incremental and Transfer Learning: Incremental retraining can be applied to accom-

modate changes to the deployment strategy or microservice updates. In deployment,

retraining can be triggered periodically in the background or when prediction accuracy

drops below expected thresholds. In cases where the topology of the microservice graph

is not impacted, such as hardware updates and change of public cloud provider, transfer

learning techniques such as fine tune can be used to train the ML models in the back-

30

ground with newly collected data. If the topology is changed, the CNN needs to be

modified to account for removed and newly-added tiers.

Additional resources: Sinan can be extended to other system resources. Several re-

sources, such as network bandwidth and memory capacity act like thresholds, below

which performance degrades dramatically, e.g., network bandwidth [48], or the applica-

tion experiences out of memory errors, and can be managed with much simpler models,

like setting fixed thresholds for memory usage, or scaling proportionally with respect to

user load for network bandwidth.

2.4.3 Online Scheduler

During deployment, the scheduler evaluates resource allocations using the ML models,

and selects appropriate allocations that meet the end-to-end QoS without overprovision-

ing.

Evaluating all potential resource allocations online would be prohibitively expen-

sive, especially for complex microservice topologies. Instead, the scheduler evaluates a

subset of allocations following the set of heuristics shown in Table 2.2. For scaling down

operations, the scheduler evaluates reducing CPU allocations of single tiers, and batches

of tiers, e.g., scaling down the k tiers with lowest cpu utilization, 1 < k ≤ N, N being

the number of tiers in the microservice graph. When scaling up is needed, the scheduler

examines the impact of scaling up single tiers, all tiers, or the set of tiers that were scaled

down in the past t decision intervals, 1 < t < T with T chosen empirically. Finally, the

scheduler also evaluates the impact of maintaining the current resource assignment.

The scheduler first excludes operations whose predicted tail latency is higher than

31

Table 2.2: Resource allocation actions in Sinan.

Category Actions
Scale Down Reduce CPU limit of 1 tier

Scale Down Batch Reduce CPU limit of k least utilized tiers,
(1 < k ≤ N)

Hold Keep current resource allocation
Scale Up Increase CPU limit of 1 tier

Scale Up All Increase CPU limit of all tiers

Scale Up Victim Increase CPU limit of recent victim tiers,
that are scaled down in previous t cycles

QoS − RMS Evalid. Then it uses the predicted violation probability to filter out risky

operations, with two user-defined thresholds, pd and pu (pd < pu). These thresholds are

similar to those used in autoscaling, where the lower threshold triggers scaling down

and the higher threshold scaling up; the region between the two thresholds denotes sta-

ble operation, where the current resource assignment is kept. Specifically, when the

violation probability of holding the current assignment is smaller than pu, the operation

is considered acceptable. Similarly, if there exists a scale down operation with viola-

tion probability lower than pd, the scale down operation is also considered acceptable.

When the violation probability of the hold operation is larger than pu, only scaling up

operations with violation probabilities smaller than pu are acceptable; if no such actions

exist, all tiers are scaled up to their max amount. We set pu such that the validation

study’s false negatives are no greater than 1% to eliminate QoS violations, and pd to

a value smaller than pu that favors stable resource allocations, so that resources do not

fluctuate too frequently unless there are significant fluctuations in utilization and/or user

demand. Among all acceptable operations, the scheduler selects the one requiring the

least resources.

32

The scheduler also has a safety mechanism for cases where the ML model’s pre-

dicted latency or QoS violation probability deviate significantly from the ground truth.

If a mispredicted QoS violation occurs, Sinan immediately upscales the resources of

all tiers. Additionally, given a trust threshold for the model, whenever the number of

latency prediction errors or missed QoS violations exceeds the thresholds, the sched-

uler reduces its trust in the model, and becomes more conservative when reclaiming

resources. In practice, Sinan never had to lower its trust to the ML model.

2.5 Evaluation

We first evaluate Sinan’s accuracy, and training and inference time, and compare it to

other ML approaches. Second, we deploy Sinan on our local cluster, and compare it

against autoscaling [19], a widely-deployed empirical technique to manage resources in

production clouds, and PowerChief [141], a resource manager for multi-stage applica-

tions that uses queueing analysis. Third, we show the incremental retraining overheads

of Sinan. Fourth, we evaluate Sinan’s scalability on a large-scale Google Compute

Engine (GCE) cluster. Finally, we discuss how interpretable ML can improve the man-

agement of cloud systems.

2.5.1 Methodology

Benchmarks: We use the Hotel Reservation and Social Network benchmarks described

in Section 2.2.2. QoS targets are set with respect to 99% end-to-end latency, 200ms for

Hotel Reservation, and 500ms for Social Network.

Deployment: Services are deployed with Docker Swarm, with one microservices per

33

Table 2.3: RMSE, model size, and performance for three NNs — Batch size is 2048.
Initial learning rates for MLP, LSTM, and CNN are 0.0001, 0.0005, and 0.001, respec-
tively. All models are trained with a single NVidia Titan Xp.

Apps Models Train &Val.
RMSE (ms)

Model
size (KB)

Train & Inference
speed (ms/batch)

Hotel
Reservation

MLP 17.8 18.9 1433 1.9 3.7
LSTM 17.7 18.1 384 1.3 3.2
CNN 14.2 14.7 68 4.5 3.5

Social
Network

MLP 32.3 34.4 4300 6.4 5.9
LSTM 29.3 30.7 404 4.5 5.6
CNN 25.9 26.4 144 16.0 5.7

container for deployment ease. Locust [14] is used as the workload generator for all

experiments.

Local cluster: The cluster has four 80-core servers, with 256GB of RAM each. We

collected 31302 and 58499 samples for Hotel Reservation and Social Network respec-

tively, using our data collection process, and split them into training and validation sets

with a 9:1 ratio, after random shuffling. The data collection agent runs for 16 hours and

8.7 hours for Social Network and Hotel Reservation respectively, and collecting more

training samples do not further improve accuracy.

GCE cluster: We use 93 container instances on Google Compute Engine (GCE) to run

Social Network, with several replicas per microservice tier. 5900 extra training samples

are collected on GCE for the transfer learning.

2.5.2 Sinan’s Accuracy and Speed

Table 2.3 compares the short-term ML model in Sinan (CNN) against a multilayer per-

ceptron (MLP), and a long short-term memory (LSTM) network, which is traditionally

34

Table 2.4: The accuracy, number of trees, and total training time of Boosted Trees using
a single NVidia Titan Xp.

Apps Train & Val.
accuracy (%)

Val. false
pos. & neg.

of
trees

Total train
time (s)

Hotel
Reservation 94.4 94.1 3.2 3.1 229 2.3

Social
Network 95.5 94.6 3.4 2.0 239 6.5

geared towards timeseries predictions. We rearrange the system history XRH to be a 2D

tensor with shape T × (F ∗ N), and a 1D vector with shape T ∗ F ∗ N for the LSTM

and MLP models, respectively. To configure each network’s parameters, we increase

the number of fully-connected, LSTM, and convolutional layers, as well as the number

of channels in each layer for the MLP, LSTM, and Sinan (CNN), until accuracy levels

off. Sinan’s CNN achieves the lowest RMSE, with the smallest model size. Although

the CNN is slightly slower than the LSTM, its inference latency is within 1% of the

decision interval (1s), which does not delay online decisions.

Table 2.4 shows a similar validation study for the Boosted Trees model. Specifically,

we quantify the accuracy of anticipating a QoS violation over the next 5 intervals (5s),

and the number of trees needed for each application. For both applications, the vali-

dation accuracy is higher than 94%, demonstrating BT’s effectiveness in predicting the

performance evolution in the near future. Sinan always runs on a single NVidia Titan

XP GPU with average utilization below 2%.

35

2.5.3 Performance and Resource Efficiency

We now evaluate Sinan’s ability to reduce resource consumption while meeting QoS

on the local cluster. We compare Sinan against autoscaling and PowerChief [141].

We experimented with two autoscaling policies: AutoScaleOpt is configured accord-

ing to [19], which increases resources by 10% and 30% when utilization is within

[60%, 70%) and [70%, 100%] respectively, and reduces resources by 10% and 30%

when utilization is within [30%, 40%) and [0%, 30%). AutoScaleCons is more con-

servative and optimizes for QoS, using thresholds tuned for the examined applications.

It increases resources by 10% and 30% when utilization is within [30%, 50%) and

[50%, 100%], and reduces resources by 10% when utilization is within [0%, 10%). Pow-

erChief is implemented as in [141], and estimates the queue length and queueing time

ahead of each tier using network traces obtained through Docker.

For each service, we run 9 experiments with an increasing number of emulated users

sending requests under a Poisson distribution with 1 RPS mean arrival rate. Figure 2.10

shows the mean and max CPU allocation, and the probability of meeting QoS across all

studied mechanisms, where CPU allocation is the aggregate number of CPUs assigned

to all tiers averaged over time, the max CPU allocation is the max of the aggregate CPU

allocation over time, and the probability of meeting QoS is the fraction of execution

time when end-to-end QoS is met.

For Hotel Reservation, only Sinan and AutoScaleCons meet QoS at all times, with

Sinan additionally reducing CPU usage by 25.9% on average, and up to 46.0%. Au-

toScaleOpt only meets QoS at low loads, when the number of users is no greater than

1900. At 2200 users, AutoScaleOpt starts to violate QoS by 0.7%, and the probability

of meeting QoS drops to 90.3% at 2800 users, and less than 80% beyond 3000 users.

Similarly, PowerChief meets QoS for fewer than 2500 users, however the probability of

36

10	

60	

110	

160	

210	

260	

1k 1.3k 1.6k 1.9k 2.2k 2.5k 2.8k 3.1k 3.4k 3.7kM
a
x
	C
P
U
	A
ll
o
c

Users

Sinan AutoScaleOpt AutoScaleConserv PowerChief

10	

60	

110	

160	

210	

260	

1k 1.3k 1.6k 1.9k 2.2k 2.5k 2.8k 3.1k 3.4k 3.7kM
e
a
n
	C
P
U
	A
ll
o
c

Users

Sinan AutoScaleOpt AutoScaleConserv PowerChief

0.0	

0.5	

1.0	

1k 1.3k 1.6k 1.9k 2.2k 2.5k 2.8k 3.1k 3.4k 3.7k

P
r(
m
e
e
t	
Q
o
S
)

Users

(a) Hotel reservation.

20	

70	

120	

170	

220	

270	

50 100 150 200 250 300 350 400 450

M
a
x
	C
P
U
	A
ll
o
c

Users

Sinan AutoScalOpt AutoscaleCons PowerChief

20	

70	

120	

170	

220	

270	

50 100 150 200 250 300 350 400 450M
e
a
n
	C
P
U
	A
ll
o
c

Users

Sinan AutoScalOpt AutoscaleCons PowerChief

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

50 100 150 200 250 300 350 400 450

P
r(
m
e
e
t	
Q
o
S
)

Users

(b) Social network.

Figure 2.10: The mean and max CPU allocation, and the probability of meeting QoS for
Sinan, Autoscaling, and PowerChief.

37

compPost -Redis

composePost

homeTl-Redis

homeTimeline

nginx

postStore-mem$

postStore-mongodb

postStore

graph-mongodb

graph-Redis

graph

text

textFilter

uniqueID

urlShorten

media

mediaFilter

userMent ion

user-mem$

user-mongodb

user

userTl-mongodb

userTl-Redis

userTimeline

writeHomeTimeline

writeHomeTl-Rabbitmq

writeUserTimeline

writeUserTl-Rabbitmq

0 50 100 150 200 250 300

230

240

R
P

S

Load (RPS)

0 50 100 150 200 250 300
0

200

400

L
a

te
n

c
y

 (
m

s
)

Predict ion Accuracy

0.0

0.2

0.4

0.6

0.8

P
(V

io
la

ti
o

n
)

0 50 100 150 200 250 300
0

20

40

60

80

100

C
P

U
 A

ll
o

c
a

ti
o

n

CPU Allocat ion

0 500 1000 1500 2000

Tim e (s)

0

100

200

R
P

S

0 500 1000 1500 2000

Tim e (s)

0

200

400

L
a

te
n

c
y

 (
m

s
)

0.0

0.2

0.4

0.6

0.8

P
(V

io
la

ti
o

n
)

0 500 1000 1500 2000

Tim e (s)

0

20

40

60

80

100

C
P

U
 A

ll
o

c
a

ti
o

n

Figure 2.11: (Top) RPS, latency, and allocated resources per tier with Sinan for Social
Network with 250 users. (Bottom) RPC, latency, and allocated resources per tier with
diurnal load. For both scenarios, Sinan’s predicted latency closely follows the end-to-
end measured latency, avoiding QoS violations and excessive overprovisioning, while
allocated resources per tier take into account the impact of microservice dependencies
on end-to-end performance.

meeting QoS drops to 50.8% at 2800 users, and never exceeds 40% beyond 3000 users.

AutoScaleOpt uses 53% the amount of resources Sinan requires on average, at the price

of performance unpredictability, and PowerChief uses 2.57× more resources than Sinan

despite violating QoS.

For the more complicated Social Network, Sinan’s performance benefits are more

pronounced. Once again, only Sinan and AutoScaleCons meet QoS across loads, while

Sinan also reduces CPU usage on average by 59.0% and up to 68.1%. Both AutoScale-

Opt and PowerChief only meet QoS for fewer than 150 users, despite using on average

1.26× and up to 3.75× the resources Sinan needs. For higher loads, PowerChief’s QoS

meeting probability is at most 20% above 150 users, and AutoscaleOpt’s QoS meeting

probability starts at 76.3% for 200 users, and decreases to 8.7% for 350 users.

By reducing both the average and max CPU allocation, Sinan can yield more re-

sources to colocated tasks, improving the machine’s effective utilization [90, 58, 91, 48].

There are three reasons why PowerChief cannot reduce resources similarly and leads to

38

QoS violations. First, as discussed in Sec. 2.2.3, the complex topology of microservices

means that the tier with the longest igress queue, which PowerChief signals as the source

of performance issues, is not necessarily the culprit but a symptom. Second, in interac-

tive applications, queueing takes place across the system stack, including the NIC, OS

kernel, network processing, and application, making precise queueing time estimations

challenging, especially when tracing uses sampling. Finally, the stricter latency targets

of microservices, compared to traditional cloud services, indicate that small fluctuations

in queueing time can result in major QoS violations due to imperfect pipelining across

tiers causing backpressure to amplify across the system.

Figure 2.11 shows the detailed results for Social Network, for 300 concurrent users

under a diurnal load. The three columns each show requests per second (RPS), predicted

latency vs. real latency and predicted QoS violation probability, and the realtime CPU

allocation. As shown, Sinan’s tail latency prediction closely follows the ground truth,

and is able to react rapidly to fluctuations in the input load.

2.5.4 Incremental Retraining

We show the incremental retraining overheads of Sinan’s ML models in three different

deployment scenarios with the Social Network applications: switching to new server

platforms (from the local cluster to a GCE cluster), changing the number of replicas

(scale out factor) for all microservices except the backend databases (to avoid data mi-

gration overheads), and modifying the application design by introducing encryption

in post messages uploaded by users (posts are encrypted with AES [54] before being

stored in the databases). Instead of retraining the ML models from scratch, we use the

previously-trained models on the local cluster, and fine-tune them using a small amount

39

of newly-collected data, with the initial learning rate λ being 1 × 10−5, 1
100 of the origi-

nal λ value, in order to preserve the learnt weights in the original model and constrain

the new solution derived by the SGD algorithm to be in a nearby region of the original

one. The results are shown in Figure 2.12, in which the y-axis is the RMSE and the

x-axis is the number of newly-collected training samples (unit being 1000). The RMSE

values with zero new training samples correspond to the original model’s accuracy on

the newly collected training and validation set. In all three scenarios the training and

validation RMSE converge, showing that incremental retraining in Sinan achieves high

accuracy, without the overhead of retraining the entire model from scratch.

Figure 2.12: Training & validation RMSE of Fine-tunned CNNs with different amounts
of samples.

In terms of new server platforms and different replica numbers, the original model

already achieve a RMSE of 33.23ms and 33.1ms correspondingly, showing the gen-

eralizability of selected input features. The RMSE of original model, when directly

applied to the modified application, is higher compared to the two other cases, reaching

40.56ms. In all of the three cases, the validation RMSE is siginificantly reduced with

1000 newly collected training samples (shown by the dotted lines in each figure), which

translates to 16.7 minutes of profiling time. The case of GCE, different replica num-

ber and modified application stabilize with 5900 samples (1.6 hours of profiling), 1800

samples (0.5 hour of profiling) and 5300 samples (1.5 hours of profiling), and achieve

training vs. validation RMSE of 24.8ms vs. 25.2ms, 27.5ms vs. 28.2ms, and 28.4ms vs.

40

28.3ms correspondingly.

2.5.5 Sinan’s Scalability

We now show Sinan’s scalability on GCE running Social Network. We use the fine-

tuned model described in Section 2.5.4. Apart from the CNN, XGBoost achieves train-

ing and validation accuracy of 96.1% and 95.0%. The model’s size and speed remain

unchanged, since they share the same architecture with the local cluster models.

To further test Sinan’s robustness to workload changes, we experimented with

four workloads for Social Network, by varying request types. Some requests, like

ComposePost involve the majority of microservices, and hence are more resource

intensive, while others, like ReadUserTimeline involve a much smaller number of

tiers, and are easier to allocate resources for. We vary the ratio of Compose-

Post:ReadHomeTimeline:ReadUserTimeline requests; the ratios of the W0, W1, W2 and

W3 workloads are 5:80:15, 10:80:10, 1:90:9, and 5:70:25, where W0 has the same ratio

as the training set. The ratios are representative of different social media engagement

scenarios [118]. The average CPU allocation and tail latency distribution are shown

in Figure 2.13 and Figure 2.14. Sinan always meets QoS, adjusting resources accord-

ingly. W1 requires the max compute resources (170 vCPUs for 450 users), because

of the highest number of ComposePost requests, which trigger compute-intensive ML

microservices.

41

20

40

60

80

100

120

50 100 150 200 250 300 350 400 450

C
P
U
A
ll
o
c
a
t
io
n

Users

W0 W1 W2 W3

Figure 2.13: Comparison of the average CPU allocation of four request mixes for Social
Network on GCE.

Figure 2.14: 99th percentile latency distribution for four workload types of Social Net-
work on GCE, managed by Sinan.

2.5.6 Explainable ML

For users to trust ML, it is important to interpret its output with respect to the system

it manages, instead of treating ML as a black box. We are specifically interested in

understanding what makes some features in the model more important than others. The

benefits are threefold: 1) debugging the models; 2) identifying and fixing performance

issues; 3) filtering out spurious features to reduce model size and speed up inference.

Interpretability Methods

For the CNN model, we adopt the widely-used ML interpretability approach

LIME [116]. LIME interprets NNs by identifying their key input features which con-

tribute most to predictions. Given an input X, LIME perturbs X to obtain a set of artificial

42

samples which are close to X in the feature space. Then, LIME classifies the perturbed

samples with the NN, and uses the labeled data to fit a linear regression model. Given

that linear regression is easy to interpret, LIME uses it to identify important features

based on the regression parameters. Since we are mainly interested in understanding

the culprit of the QoS violations, we choose samples X from the timesteps where QoS

violations occur. We perturb the features of a given tier or resource by multiplying that

feature with different constants. For example, to study the importance of MongoDB,

we multiply its utilization history with two constants 0.5 and 0.7, and generate multiple

perturbed samples. Then, we construct a dataset with all perturbed and original data

to train the linear regression model. Last, we rank the importance of each feature by

summing the value of their associated weights.

Interpreting the CNN

We used LIME to correct performance issues in Social Network [66], where tail latency

experienced periods of spikes and instability despite the low load, as shown by the red

line in Figure 2.15. Manual debugging is cumbersome, as it requires delving into each

tier, and potentially combinations of tiers to identify the root cause. Instead, we leverage

explainable ML to filter the search space. First, we identify the top-5 most important

tiers; the results are shown in the w/ Sync part of Table 2.5. We find that the most

important tier for the model’s prediction is social-graph Redis, instead of tiers with

heavy CPU utilization, like nginx.

We then examine the importance of each resource metric for Redis, and find that the

most meaningful resources are cache and resident working set size, which correspond

to data from disk cached in memory, and non-cached memory, including stacks and

heaps. Using these hints, we check the memory configuration and statistics of Redis,

43

Table 2.5: Top-5 most critical tiers and resources for QoS with/without log synchroniza-
tion in Social Network — SGrf and WUsr are social graph and write user, respectively.

w/
Sync

Tiers SGrf
Redis

post
storage

WUsr
timeline

SGrf
MongoDB SGrf

Weights 5109.9 1609.8 1503.1 849.7 482.7

Resource
utilization

cache
memory RSS # of cores CPU

utilization
received
packets

Weights 15181.9 1576.1 658.5 322.7 20.0

w/o
Sync

Tiers WUsr
timeline

WUsr
rabbitmq

SGrf
MongoDB SGrf SGrf

Redis
Weights 3948.6 3601.6 1794.0 600.9 451.7

0 100 200 300 400 500 6000

20

40

60

80

E
n
d

to
e
n
d
 l
a
te

n
c
y
 (

m
s
)

Time (s)

Figure 2.15: Tail latency for the Social Network application when Redis’s logging is
enabled (red) and disabled (blue). Sinan identified Redis as the source of unpredictable
performance, and additionally determined the resources that were being saturated, point-
ing to the issue being in Redis’s logging functionality. Disabling logging significanly
improved performance, which is also reflected in that tier’s importance, as far as meet-
ing QoS is concerned, being reduced.

and identify that it is set to record logs in persistent storage every minute. For each

operation, Redis forks a new process and copies all written memory to disk; during this

it stops serving requests.

Disabling the log persistence eliminated most of the latency spikes, as shown by the

44

blue line in Figure 2.15. We further analyze feature importance in the model trained

with data from the modified Social Network, and find that the importance of social-

graph Redis is significantly reduced, as shown in the w/o Sync part of Table 2.5, in

agreement with our observation that the service’s tail latency is no longer sensitive to

that tier.

2.6 Conclusion

We have presented Sinan, a scalable and QoS-aware resource manager for interactive

microservices. Sinan highlights the challenges of managing complex microservices, and

leverages a set of validated ML models to infer the impact allocations have on end-to-

end tail latency. Sinan operates online and adjusts its decisions to account for application

changes. We have evaluated Sinan both on local clusters and public clouds GCE) across

different microservices, and showed that it meets QoS without sacrificing resource ef-

ficiency. Sinan highlights the importance of automated, data-driven approaches that

manage the cloud’s complexity in a practical way.

45

CHAPTER 3

URSA: LIGHTWEIGHT RESOURCE MANAGEMENT FOR CLOUD-NATIVE

MICROSERVICES

3.1 Introduction

Cloud applications, such as Twitter and Netflix, are increasingly built as graphs of

microservices [131, 6, 66], and deployed with cloud-native frameworks like Kuber-

netes [13, 4, 9, 1]. Despite the benefits of modularity and elasticity, resource man-

agement for microservices that must meet SLA constraints, e.g., end-to-end latency, is

challenging, due to the diverse resource requirement of individual microservices and

their inter-service dependencies [65, 66]. Resource management for microservices has

been studied recently, and machine learning (ML) models, especially deep neural net-

works (DNN), have become a popular choice to address the complexity of microservice

topologies. Previous studies have either used ML to predict important performance

metrics, such as latency and load [142, 65, 51, 138, 93], or to directly adjust resource al-

location [113], and demonstrate that ML-driven approaches outperform traditional tech-

niques, such as autoscaling [19], in performance and resource efficiency.

However, ML-driven approaches still face key challenges limiting their adoption.

First, ML-driven approaches typically require a lengthy exploration process to collect

tens of thousands of data points to train the models. Worse, a large number of SLA vio-

lations need to be triggered during the exploration process [113, 142] to produce a bal-

anced dataset, making it impractical to perform the exploration process online with real

user requests, and thus hard to track changes in user behavior or to cope with frequent

updates to the microservice logic. Second, these ML models are on the critical path

for every resource management decision, limiting the speed and scalability of resource

46

management. Third, previous studies are evaluated using conventional benchmarks that

use remote procedure call (RPC) as the only method of inter-service communication and

include only lightweight text processing in the business logic [66, 126, 144], whereas

a modern cloud-native application use both RPC and message queues (MQ) [92], such

as Kafka [3] and Redis streams [18], and handle different user request classes perform-

ing different tasks, such as image processing and ML workloads [122, 94, 117], and

support different request priorities. Different request classes or priorities exhibit dif-

ferent latencies and therefore have different SLAs, making resource management more

challenging.

To address the challenges above, we introduce Ursa, a lightweight resource man-

agement framework for cloud-native microservices. As a first step, we conduct a case

study to understand how latency anomalies propagate through different communication

methods, due to improper resource allocation. The results show that backpressure is

only significant in RPCs and is most pronounced in the parent service of the culprit

(bottleneck microservice). We propose a method to determine the resource utilization

threshold for microservices that prevents backpressure in a microservice system. By

eliminating backpressure, the number of dependencies required to model microservice

latency with N microservices is reduced from the worst case O(N2) where a service’s

latency may depend on resources of of its downstream in addition to its own, to O(N)

where each service’s latency becomes only a function of its own resources. Then, in

a backpressure-free system, we develop a performance model based on mixed inte-

ger programming (MIP). The model decomposes end-to-end latency SLA constraints

into per-service latency constraints, and maps them to resource allocation thresholds

for individual services. In addition, the model supports specifying different SLAs for

different request classes and priorities. To speed up exploration while reducing SLA

violations, Ursa explores as many independent services across different request paths,

47

R0 S0 R1

Client

Upstream

Downstream

R0 S0 R1 R0 S0

MQ

(a) Nested RPC (b) Event-driven RPC (c) Message queue

Figure 3.1: Inter-service communication methods.

and swiftly stops exploration when violations occur or the resource utilization reaches

the backpressure-free thresholds.

To better reflect modern microservices, we re-implement the DeathstarBench [66]

using Dapr [5], a popular microservice framework developed and used by major cloud

providers. The re-implemented benchmarks use both RPCs and MQs, and implement

different request classes and priorities, executing more diverse business logic than be-

fore. We compare Ursa to two representative ML-driven systems, Sinan [142] and Firm

[113] as well as traditional autoscaling. Ursa reduces the required sample size by more

than 16×, and the SLA violations during exploration by more than 96×, making on-

line exploration using real user data possible. During online deployment, Ursa’s control

plane is 43× faster than prior work, and Ursa reduces the SLA violation rate by 9.0% to

49.9%, and the CPU allocation by up to 86.2% compared to ML-driven approaches.

48

1 2 3 4 5 6 7 8 910

1
2

3
4

5
Ti

er

Nested RPC

1 2 3 4 5 6 7 8 910
Time(m)

Event-driven RPC

1 2 3 4 5 6 7 8 910

Message queue

100

101

102

103

Figure 3.2: Backpressure effect in a service chain.

3.2 Backpressure Effect

Backpressure is one of the major challenges for microservice resource management, and

it refers to the phenomenon that the resource allocation of one service can affect the la-

tency of upstream services, in addition to its own. In the presence of backpressure, even

modeling the latency distribution of a single service is complicated, as it can be affected

by the resources of downstream services. In the presence of backpressure, modeling mi-

croservice latency requires modeling O(N2) dependencies with N services in the worst

case, as each service’s latency can be affected by the resources of its downstream ser-

vices. Many microservice resource management frameworks use a centralized perfor-

mance model that requires global information about all microservices to account for the

inter-service dependencies, at the cost of scalability [142, 65, 51]. To achieve scalable

resource management for microservices, we first conduct a case study to understand how

backpressure propagates through different communication methods, including RPC and

MQ.

We study three types of chains connected by nested RPC, event-driven RPC, and

message queues, respectively. Nested RPC, as shown in Figure 3.1(a), is a synchronous

system where, upon receiving the client request (R0), the upstream service forwards the

request to the downstream service (S 0) via RPC, blocks until the response is received

49

Workload
Generator Proxy

RPC Tested
Service

RPC

Figure 3.3: Backpressure profiling engine architecture.

(R1), and then returns the result to the client. Event-driven RPC [140], as shown in

Fig. 3.1(b), is more asynchronous in that upon receipt of a client request, the upstream

service dispatches the request to another thread and returns immediately (S 0), while the

dispatched thread contacts the downstream service via RPC and waits for the response

(R1). Message queue, on the other hand, is completely asynchronous. Unlike RPC, MQ

mostly uses a publish-subscribe paradigm, where publishers publish messages to topics

hosted by the MQ and subscribers consume messages by subscribing to the topics. As

shown in Figure 3.1(c), the upstream service sends the client request to the MQ, and the

downstream service gets new requests by polling the MQ.

Characterizing backpressure. We implement the RPC service chains with gRPC [10]

and the MQ with Redis streams [18]. Each chain is configured to include 5 tiers, with

each tier implementing a CPU-intensive loop as the request handler. We record the

per-tier response time (S 0 − R0), which is closely related to the resource allocation of

the tier itself. We stress test each service chain for 10 minutes, injecting performance

anomalies into the leaf tier (tier 5) by throttling its CPU limit between minutes 3 and 6.

The resulting backpressure behaviors are shown in Figure 3.2, where each column on the

x-axis represents a one minute interval, each row on the y-axis corresponds to a tier (tier

1 is client-facing), and the color of each cell highlights the per-tier 99th response time

during that minute. For both nested and event-driven RPC, significant backpressure is

observed, especially for tier 4, the parent of the throttled leaf tier, and the backpressure

rapidly diminishes up the call chain and becomes negligible above tier 3. In contrast,

MQ shows no backpressure behavior, even on tier 4.

50

0 1 2 3
0

500

1000

1500
La

te
nc

y
(m

s)
post service

0.0 0.5 1.0 1.5 2.0
0

100

200

300

400

timeline-read service

0

20

40

60

0

20

40

60

80

CP
U

ut
iliz

at
io

n

CPU limit

service 99th proxy 99th CPU util threshold

Figure 3.4: Profiling CPU threshold for no backpressure.

Determining conditions for negligible backpressure. Backpressure complicates re-

source management because the latency of a service also depends on resources of down-

stream services, in addition to its own. To simplify resource management, a natural ap-

proach is to determine safe CPU utilization thresholds to avoid backpressure in the sys-

tem, as the performance of microservices is most sensitive to CPU utilization [92, 66].

To this end, we use a profiling engine with the 3-tier architecture shown in Figure 3.3,

where the proxy acts as the parent service and simply forwards the request to the tested

service via RPC. The engine gradually increases the CPU limit of the tested service,

and monitors the latency of the proxy and the CPU utilization of the tested service, until

the latency of the proxy converges. The convergence of proxy latency is determined by

comparing the latency recorded under the last two CPU limits with Welch’s t-test [139],

a classical hypothesis testing method for identifying whether the means of the two sets

of samples are equal. The CPU utilization just before the convergence of the proxy

latency is then recorded as the threshold for not triggering back-pressure.

Figure 3.4 shows the profiling process for two microservices in a social network

application similar to [66]: the post service and the timeline-read service. The x-axis

51

corresponds to the CPU limit of the tested service. The left and right y-axis corresponds

to latency and CPU utilization, respectively. The blue and green lines show the average

99th percentile latency of the proxy and tested service under different CPU limits, and

the error bars represent the standard deviation. The red line indicates the CPU utilization

of the tested service. The orange line highlights the point that proxy latency converges,

and the corresponding CPU utilization is recorded as the threshold, which are 46.2%

for post service and 60.0% for timeline-read service. When significant backpressure is

observed, the 99th percentile latencies of the proxy and the tested service have already

increased by more than 5× and 10×.

Main insights. The study brings out the following insights.

1. Backpressure complicates resource management because the latency of a service

depends on resources of downstream services, in addition to its own. Backpres-

sure is common in RPC but negligible in MQ.

2. Backpressure diminishes along the invocation chain. Of all the upstream services

of the culprit, the parent service shows the most significant increase in latency.

3. The backpressure-free resource utilization threshold of a service can be profiled

by monitoring the latency of an upstream proxy. By operating within the thresh-

olds, backpressure can be avoided in the microservice system.

4. By eliminating backpressure, the number of dependencies required to model ser-

vice latency becomes O(N) with N services, because a service’s latency is a func-

tion of its own resources. Otherwise the number is O(N2) in the worst case, as a

service’s latency may depend on resources of all its downstream services.

52

3.3 Performance model

The latency distribution of a microservice becomes mainly a function of its own re-

sources when the system has negligible backpressure. We then build a performance

model for mapping SLAs to resources using two main steps: First, decomposing each

end-to-end latency constraint to a set of per-service latency constraints. Second, map-

ping each per-service constraint to resources for that individual service. In this section

we develop the performance model based on mixed-integer programming.

Decomposing end-to-end latency. Without loss of generality, we consider the end-to-

end latency of a chain that handles a single type of request, which is the basic structure

of microservice DAGs and to which other topologies can be transformed. For examples,

a tree consists of multiple chains from the root service to leaf services, and similarly,

fan-in and fan-out can be considered as multiple chains from the source service to the

sink service.

Theorem 1: Consider a chain of services S 1 to S n, and their response time distri-

butions t1 to tn, where ti(xi) is the xth
i percentile latency of service S i, xi ∈ [0, 100].

Similarly, we define te to be the end-to-end latency distribution, and te(xe) to be the xth
e

percentile end-to-end latency, xe ∈ [0, 100]. Then,

te(xe) ≤
n∑

i=1

ti(xi), if 100 − xe ≥

n∑
i=1

100 − xi (3.1)

The theorem holds true regardless of the joint distribution of service latencies (i.e.,

if services are independent or correlated), and it suggests that the sum of per-service

latencies provides an upper bound for the end-to-end latency at an arbitrary percentile,

as long the sum of residuals of per-service percentile is no greater than the residual of

the end-to-end percentile. The proof can be found in the supplementary material.

53

Theorem 1 proposes a method to verify the end-to-end latency SLA by examining

latency of individual services. For example, in a chain consisting of two services S 1

and S 2, with the SLA defined at the 99th percentile latency, Theorem 1 suggests that the

actual 99th percentile is less than the sum of xth
1 percentile latency of S 1 and xth

2 percentile

latency of S 2, as long as 100 − x1 + 100 − x2 ≤ 1, and in other words, (x1, x2) can be

(99.1, 99.9), (99.5, 99.5), (99.7, 99.3), etc. Since all such combinations of xi are upper

bounds of the actual end-to-end latency, the end-to-end SLA must be satisfied as long

as the corresponding sum of the per service latency for one combination is less than the

SLA target. More generally, given the end-to-end latency SLA of xth
e percentile latency

less than T in a chain of length n, the end-to-end SLA is satisfied if

∃[x1...xn] s.t.
n∑

i=1

ti(xi) ≤ T & 100 − xe ≥

n∑
i=1

100 − xi (3.2)

Mapping per-service latency to resource. For the end of optimizing resource alloca-

tion, the per-service latency distributions ti need to be associated with resource alloca-

tions, so that a model that maps SLA to resources can be derived. In addition, the model

should be able to handle multiple classes or priorities of requests instead of one single

class as in Theorem 1.

In cloud-native frameworks such as Kubernetes [13, 4, 9], dynamic resource tuning

is typically achieved by the changing the number of replicas, each with a predefined re-

source configuration (CPU and memory). Therefore, we use load per replica (LPR) as

the metric to relate resources to latency, where load is measured in requests per second

(RPS). Considering a service S i that handles c classes or priorities of requests (v1 to vc),

the load per replica yi can be represented as a vector [a1
i ...a

c
i] in which ac

i is the load for

request class vc. If the load per replica vector yi is used as the resource allocation thresh-

old and the total load to S i is [A1
i ...A

c
i], the resource consumed by S i can be conceptually

calculated with Equation 3.3, in which ui is the resource consumption per replica.

54

ri(yi) = max
1≤ j≤c
⌈
A j

i

a j
i

⌉ · ui (3.3)

On the other hand, since the latency distribution of request v j in S i is a function

of LPR yi, the xth
i percentile latency of v j can be denoted as t j

i (yi, xi). Then the ti(xi)

items in Equation 3.2 can be replaced by t j
i (yi, xi), transforming the latency constraint

to a resource allocation constraint. Albeit t j
i (yi, xi) can be fitted with profiling data, the

resource-latency function can be an arbitrary non-increasing function that is not neces-

sarily convex, which makes it hard to be used in convex optimization models. Instead,

we can discretize the variables and use the function in MIP, which can be efficiently

solved by modern optimization solvers using heuristics such as branch-and-bound algo-

rithm [87]. Specifically, we discretize the percentile variable xi and LPR yi, and repre-

sent the latency distributions under different LPRs as a matrix D j
i , where each element

of D j
i is the latency that corresponds to a certain pair of LPR and percentile. For exam-

ple, assuming that S i is profiled under m different LPRs Yi = [y1
i ...y

m
i] and the latency

distribution is discretized into h different predefined percentiles P = [p1...ph], D j
i will be

a m×h matrix where D j
i [α, β] is the latency at percentile pβ under LPR yαi . As a result of

the discretization, the LPR variable yi can be represented by a one-hot vector δi of length

m, indicating which LPR is chosen as the resource allocation threshold. Similarly, the

percentile variable can be presented by one-hot vector γ j
i of length h, indicating which

percentile contributes to sum of per-service latency for request class or priority v j. With

the two one-hot decision variables, the latency of request class or priority v j in service

S i can be expressed as δT
i D j

iγ
j
i , and the resource consumption can be expressed as δT

i Ri,

in which Ri is a 1-D vector corresponding to resource consumption under the profiled

LPRs, computed with Equation 3.3.

Resource optimization model. Given that we can provide an upper bound on the

55

end-to-end latency using the sum of per-service latency and map per-service latency to

resource allocation thresholds, we can eventually design an optimization model that re-

lates end-to-end SLAs to resources, and calculates the most efficient resource allocation

threshold. Specifically, the inputs to the model include the load of the application, SLAs

for different request classes and priorities, and per-service latency distributions under

different LPR thresholds. The output of the model is the most efficient per-service LPR

threshold that satisfies SLAs, of all given LPR thresholds. With the described nota-

tions summarized in Table 3.1, we derive the following solvable mixed-integer program

model that yields optimal resource configuration given a set of end-to-end constraints:

for each request class or priority v j, the xth
j percentile latency should be less than T j.

Description

δi Resource (LPR) one-hot vector
γ

j
i Latency percentile one-hot vector

Ri Resource consumption under different LPRs
P Discretized percentile values
D j

i Latency distribution matrix
T j End-to-end SLA target value
x j End-to-end SLA target percentile
1 1-D vector whose elements are all 1

Table 3.1: Notations in the MIP.

minimize
∑n

i=1 δ
T
i Ri,

subject to
∑

i δ
T
i D j

iγ
j
i ≤ T j,∀ j (1)∑

i 100 − PTγ
j
i ≤ 100 − x j,∀ j (2)

1
Tδi = 1,∀i (3)

1
Tγ

j
i = 1,∀i, j (4)

variables δi (0 ≤ δi ≤ 1 & δi ∈ Z)

γ
j
i (0 ≤ γ j

i ≤ 1 & γ j
i ∈ Z)

(MIP 1)

The objective of MIP 1 is to minimize the total resource consumption. Constraint

1 specifies that for each request class or priority, the sum of per-service latency must

56

be smaller than the SLA target, and constraint 2 specifies that the sum of per-service

latency in the constraint 1 is an upper bound of the actual end-to-end latency. The rest

of the constraints enforce the decision variables to be one-hot vectors. For each service,

the LPR one-hot vector δi produced by MIP 1 corresponds to the most efficient resource

allocation threshold among all profiled LPRs, which allows resource allocation of each

service to be decided independently, by simply checking the load of the service.

Mitigating latency overestimation. The quality of the solution of MIP 1 is related

to the tightness of the upper bound given by Theorem 1, as a loose upper bound well

above the actual latency can lead to overprovisioning of resources. An intuitive way to

tighten the upper bound is to record the ratio of the upper bound to the actual value and

use that ratio to refine the SLA constraint in MIP 1. For example, if the overestimation

ratio of request class or priority v j is α j and its expectation is E(α j), constraint 1 in

MIP 1 can be refined to
∑

i δ
T
i D j

iγ
j
i ≤ E(α j)T j. With a fixed resource allocations denoted

by δ∗i , for service S i,∀i, the upper bound on the latency of request class or priority v j

can be solved using MIP 2. The objective value is the tightest upper bound, because

any percentile combination satisfying constraint 1 in MIP 2 establishes a upper bound

on latency, and the objective is the smallest among all these upper bounds. Thus, the

overestimation ratio α j is the ratio of the objective and the actual latency, and E(α j) is

the average of α j with different resource allocations.

minimize
∑

i δ
∗T
i D j

iγ
j
i ,

subject to
∑

i 100 − PTγ
j
i ≤ 100 − x j,∀ j (1)

1
Tγ

j
i = 1,∀i, j (2)

variables γ
j
i (0 ≤ γ j

i ≤ 1 & γ j
i ∈ Z)

(MIP 2)

Discussion. In this work we use the performance model to find the most efficient re-

source allocation given latency SLA constraints, but the model can be extended to other

57

cases with minor modifications. For example, the model can handle end-to-end latency

minimization under resource constraints, by replacing the objective of MIP 1 with the

sum of per-service latencies, and using the total available resource as a constraint. In

addition, the model can handle SLAs defined in terms of request failure rates. The fail-

ure rate of an end-to-end request is no greater than the sum of request failure rates of

the services it goes through, and the service’s request failure rate is related to its re-

sources, since insufficient resources will cause requests to time out and fail. The sum of

per-service failure rate can be then used as a constraint to strengthen MIP 1. The model

can also support dynamic request paths by adding recorded paths to the model during

deployment. In the case of a service being accessed multiple times in a dynamic path,

the model can be simplified by considering the total time spent in each service. We plan

to investigate these potential use cases in future work.

3.4 Proof of Theorem 1

We first introduce a lemma and use it to prove the theorem.

Lemma 1. Given random variables X, Y and Z, where X = Y + Z.

P{X ≥ y + z} ≤ P{Y ≥ y} + P{Z ≥ z}

Proof:

{X ≥ y + z} ∧ {Y < y} ∧ {Z < z} = ∅

{X ≥ y + z} ⊂ ¬{{Y < y} ∧ {Z < z}} = {Y ≥ y} ∨ {Z ≥ z}

P{X ≥ y + z} ≤ P{Y ≥ y} + P{Z ≥ z}

58

In the last step we leverage union bound. With Lemma 1, we prove Theorem 1, and for

ease of explanation, we rephrase it as follows .

Theorem 1. Consider a chain of services S 1, ..., S k, and their latency t1, ..., tk, where

ti(x) is the latency of the (100x)th percentile, i.e., P(ti ≤ ti(x)) = x, and te is the end-

to-end latency, with te =
∑k

i=1 ti for each request. Assuming that end-to-end latency

constraint is defined at xe (xe ∈ [0, 1]), and decomposed per-service latency constraints

are defined at xi (xi ∈ [0, 1]). Then,

te(x) ≤
k∑

i=1

ti(xi), if 1 − xe ≥

k∑
i=1

1 − xi

Proof: By iteratively applying Lemma 1 to the first service and the rest of the

services combined, we obtain

P{te ≥

k∑
i=1

ti(xi)} ≤
k∑

i=1

P{ti ≥ ti(xi)} =
k∑

i=1

1 − xi ≤ 1 − xe

xe ≤ 1 − P{te ≥

k∑
i=1

ti(xi)}

te(xe) ≤ te(1 − P{te ≥

k∑
i=1

ti(xi)}) =
k∑

i=1

ti(xi)

In the last step we leverage the fact that te(xe) is non-decreasing.

3.5 Allocation Space Exploration

The task of allocation space exploration is to collect input data for the MIP model, in-

cluding the potential resource allocation thresholds and the corresponding latency distri-

bution for each service. Exploration should cover the most efficient resource allocation

thresholds while triggering the minimum possible SLA violations. In a service chain,

59

these requirements can be satisfied by exploring one service at each time. All other ser-

vices are provisioned with sufficient resources, so that the latency slack between SLA

target and normal latency is assigned only to the profiled service to determine its min-

imum feasible resource allocation. The LPR threshold profiling algorithm is shown in

Algorithm 1, in which we gradually reduce the replicas of the profiled service to increase

the load on each replica and record the corresponding latency distributions. Profiling is

terminated when the frequency of SLA violations exceeds a user-defined threshold. Ad-

ditionally, profiling is also terminated when the CPU utilization of the service exceeds

the service’s backpressure-free threshold to preserve the independence assumptions of

the performance model. Then we restore sufficient resources for the profiled service,

and continue to profile the next service.

Algorithm 1: LPR threshold profiling algorithm.
Input: Initial replica R, SLA violation threshold Fsla, backpressure-free
threshold CPUbp, profiling time T ;

Output: Mapping from LPR to latency distributions;
Variable: Replica r, replica tuning step step, Load L, SLA violation frequency

fsla, CPU utilization cpu, latency distribution dlat;
Initialize r ← R, map← {};
while r > 0 do

wait(T);
if cpu ≥ CPUbp —— fsla ≥ Fsla then

r = R and terminate;
else

map[L
r] = dlat, r = r − step;

end
end
return map

In a DAG topology with multiple end-to-end request paths, the most straightforward

way for exploration is to profile one service at a time, but such exploration can take a

long time. Instead, we can speed up the exploration by profiling services in different

paths in parallel. Given a DAG topology and specifications of end-to-end request paths,

we use the graph coloring algorithm in Algorithm 2 to identify groups of services that

60

can be profiled in parallel. The algorithm produces a mapping from the round ID to the

group of services that can be profiled simultaneously in that round. The algorithm ap-

plies depth-first search (DFS) to the DAG to ensure that an upstream service is assigned

an ID greater than that of its downstream services to be profiled later. In addition, the

algorithm ensures that only one service is profiled at a time in each request path, by

keeping track of the maximum ID in each path and assigning each service an ID greater

than any path through the service. The exploration is then performed in rounds, where

in each round all services of that round are profiled in parallel. Only after all services in

the previous round have been profiled does the exploration move to the next round.

Algorithm 2: Graph coloring algorithm.
Input: entry entry service;
Output: Map from ID to the group of services;
Variable: Service s, path p, map from path to ID C, all paths through the
service s Ps;

Function DFS(s):
if s.id == 0 then

for c ∈ s.childs do
s.id = max(s.id, DFS(c));

end
s.id = max(C[p] ∀p ∈ Ps, s.id) + 1;
map[s.id].insert(s);
for p ∈ Ps do

C[p] = max(C[p], s.id)
end

return s.id;
Initialize s.id ← 0,∀s, C[p]← 0,∀p, map← {};
DFS(entry);
return map

There are also situations where only a fraction of the services need to be explored,

for example when only a few services have undergone business logic updates or load

changes. In this case, we use the same order generated by Algorithm 2 and skip the

unaffected services during exploration.

61

3.6 Design and Implementation

We now present the design and implementation of Ursa, a resource management frame-

work based on the proposed performance model and allocation space exploration mech-

anism. Ursa is built on top of Kubernetes [13], a popular container orchestration frame-

work adopted by major cloud providers [2, 4, 9, 1], and leverages Kubernetes’s APIs

to dynamically allocate resources by tuning the number of replicas. Ursa requires the

user to provide the topology and the end-to-end SLAs of the microservice application,

including request paths, percentiles, and target latencies.

Ursa aims to make resource management decisions fast and scalable. Instead of

using ML models to make every resource management decision, Ursa simplifies re-

source management decisions to threshold-based scaling by implementing the perfor-

mance model from Section 3.3. In addition, Ursa reduces exploration overhead through

the exploration process in Section 3.5. Ursa is implemented in Python with around 10K

lines of code. The components of Ursa are shown in Figure 3.5, and the functionality of

each component is described below.

1. The tracing framework is implemented with Prometheus [16], a time-series

database for metrics monitoring. It collects the CPU and memory usage data, as well as

the request counts and latency distributions of each service.

2. The exploration controller implements the allocation space exploration mech-

anism. It first determines the backpressure free CPU utilization thresholds for RPC-

connected services (Section 3.2). Then, it explores feasible resource allocation thresh-

olds (Section 3.5), by generating the order of service profiling using Algorithm 2, and

profiling each service using Algorithm 1.

62

GatewayClient

Microservice
Tracing Module

Tracing
Framework

1

Resource
Controller

4

2

DAG Coloring

LPR Profiling

Exploration Controller

Optimization Engine3

Anomaly Detector5
Re-explore

Re-compute

Perf Metrics
Latency Dist

Exploration Data LPR Threshold

Micoservices
Deployment

Anomalies

Load

Ursa Framework

Figure 3.5: System Architecture of Ursa.

3. The optimization engine then determines the resource allocation threshold for

each service using the performance model in Section 3.3, using exploration data and

user load information collected by the tracing framework. The optimization engine is

implemented with Gurobi [11]. During deployment, the optimization model is only

occasionally computed when the business logic of services is updated or the mix of

requests changes significantly, otherwise the results can be reused.

4. Using the load per replica threshold calculated by the optimization engine, the

resource controller dynamically adjusts the number of replicas as the load changes,

ensuring that for any class or priority of request, the average load on each replica does

63

not exceed the threshold. Specifically, the resource controller determines whether the

average load in one replica exceeds the threshold using Welch’s t-test [139] to accom-

modate the noise of load fluctuation. Since the calculation only requires the total load

per service as input, resource control can easily scale to complex topologies consisting

of many services, by having each service managed by a separate resource controller.

5. During deployment, the anomaly detector periodically checks for anomalies

in load and latency, and triggers recalculation of resource allocation thresholds or re-

exploration, if necessary. Load anomalies refer to drastic changes in the ratio of differ-

ent classes or priorities of requests that may lead to resource over-provisioning, in which

case resource allocation thresholds are recalculated to improve resource efficiency. The

anomaly detector identifies changes in request ratios by monitoring the request ratio

deviation of each service, which measures the difference between load of the service

and the load per replica threshold for scheduling. The metric is denoted by maxi
li
ti

∑
i ti∑
i li

,

where li and ti are the total load and per-replica load threshold for the ith request class or

priority. When the request ratio deviation exceeds a user-defined threshold, the anomaly

detector asks the optimization engine to recalculate the thresholds and update the re-

source controllers. If the re-calculated thresholds still fail to mitigate the request ratio

deviation, indicating that the load pattern is not covered by previous exploration, the

anomaly detector asks the exploration controller to re-explore the affected service.

On the other hand, latency anomalies refer to SLA violations, which indicate that

the latency distribution recorded during exploration needs to be updated. Similar to load

anomalies, users can specify an end-to-end SLA violation threshold that triggers the

re-exploration process if the SLA violation exceeds the threshold during deployment.

64

3.7 Benchmarks

Conventional microservice benchmarks [66, 126, 144] have several limitations. First,

conventional benchmarks use RPCs as the only method for inter-service communication,

whereas MQs are increasingly becoming more common in practice [92]. Second, the

business logic of conventional benchmarks involves only lightweight text processing,

whereas a modern microservice handles different user request classes performing tasks,

such as image processing and ML workloads [122, 94, 117], and even different request

priorities, making resource management more challenging. To address these limitations,

we implement three benchmark applications using Dapr [5], a popular microservice

framework developed and used by major cloud providers, as described below. For all the

applications, we implement the business logic in Golang and Python, and use gRPC [10]

for RPCs, Redis streams [18] for message queues and Redis [17] for data stores.

Social network. The social network application is a re-implementation of the Death-

StarBench [66] application. In addition to original features including uploading text

posts and reading timelines, the re-implemented version includes several new features,

including uploading images, sentiment analysis of texts, and object detection of images.

Sentiment analysis and object detection are implemented with machine learning models

from Hugging Face [12], and are connected to other services via MQs.

Media service. The media service is also a re-implementation of the DeathStarBench

application. In addition to the original features including reviewing and rating videos,

the re-implemented version additionally allows users to upload and download actual

videos, and includes video-processing tasks, such as transcoding to different resolutions

and generating thumbnails via FFmpeg [8]. The video transcoding and thumbnail ser-

vices are connected to other services via MQs.

65

Video processing pipeline. Video processing pipeline consists of three stages: The first

stage extracts video metadata, the second stage takes snapshots from the video at fixed

intervals, and the third stage performs face recognition on the video snapshots. The first

two stages use FFmpeg, the third stage uses OpenCV [15], and stages are connected

with MQs. The application handles two request priorities. High-priority requests are

always processed immediately when worker threads are available, while low-priority

requests are processed only when there is no high-priority request waiting in the queue.

Previous work typically handles a single SLA and only manages synchronous re-

quests. For example, Sinan [142] handles a single SLA of 500ms for the 99th percentile

latency of upload-post, read-timeline, and update-timeline in social network. However,

different request classes have diverse latencies. For example, in social network, it takes

tens of milliseconds to upload a post, hundreds of milliseconds to update timelines, and

a few seconds to perform object detection. To reflect these latency ranges, we assign an

SLA per each request class and priority. We stress test the applications with high user

loads and use the latency before saturation as the SLA. The SLAs of social network, me-

dia service, and video processing pipeline are listed in Table 3.2, 3.3, 3.4, respectively.

The SLAs are mostly defined as the 99th percentile, except for the low-priority requests

in the video processing pipeline, which is defined as the 50th percentile latency.

Request type 99th latency (ms)

upload-post/comment 75
read-timeline 250
update-timeline 500
upload-image 200
download-image 75
sentiment-analysis 500
object-detect 10000

Table 3.2: SLAs of the social network.

66

Request type 99th latency (ms)

upload-video 2000
download-video 1500
get-info 250
rate-video 400
transcode-video 40000
generate-thumbnail 2000

Table 3.3: SLAs of the media service.

Request type Percentile Latency (ms)

high-priority 99th 20000
low-priority 50th 4000

Table 3.4: SLAs of the video processing pipeline.

3.8 Evaluation

We aim to answer the following questions:

1. What is the overhead of Ursa’s online exploration process? (Section 3.8.3)

2. How accurate is Ursa’s performance model in capturing end-to-end latency (Sec-

tion 3.8.4)?

3. How effective is Ursa in reducing resource usage and maintaining SLAs? (Sec-

tion 3.8.5)

4. What is the latency required for Ursa to make resource allocation decisions? (Sec-

tion 3.8.6)

5. Is Ursa able to adapt to business logic changes of microservices? (Section 3.8.7)

67

3.8.1 Experimental Setup

We use the benchmarks in Section 3.7 and use Locust [14] to generate input load fol-

lowing a Poisson arrival process. The applications are deployed on a local Kubernetes

cluster consisting of 8 machines with 40-88 CPUs and 126-188 GB of memory each,

with a NIC bandwidth of 10 Gbps. To reduce interference between containers colo-

cated on the same server, we set the CPU management policy of Kubernetes to the static

policy [85], which allows each container to access exclusive CPUs, as long as it is con-

figured with an integer number of CPUs. The CPU configuration of each microservice’s

container is determined by monitoring the CPU usage of the container at low RPS and

rounding it to the nearest integer, and similarly, the memory configuration is set to the

maximum profiled memory usage to avoid OOM errors. During online deployment, we

adjust the resource allocation for each microservice by changing the number of replicas.

3.8.2 Competing Approaches

We compare Ursa to the following systems.

Sinan. Sinan [142] is a model-based ML-driven resource management framework for

microservices. It uses a CNN and boosted trees model, to predict the end-to-end latency

of a microservice topology given a certain resource allocation for all services, and we

modify the models to adapt to the topologies of our applications. Sinan is implemented

as a centralized scheduler that periodically queries the model with different resource

allocations, and chooses the one using the least amount of resources, while meeting the

SLA. The training data of the models are collected with a process designed to explore

unseen resource allocations and keep the ratio of violating to meeting SLAs at 1 : 1, so

that the trained models are not biased towards either predicting SLA violation or SLA

68

satisfaction.

Firm. Firm [113] is a model-free, ML-driven framework for microservice resource

management. Unlike Sinan that trains models to predict latency, Firm assigns a rein-

forcement learning agent to each service that directly adjusts the resource allocation for

the service, given its resource usage and end-to-end SLA status. The reward for each

agent is designed to be the weighted sum of the reduced resource usage and the SLA

violation status after applying the resource allocation decision. The agents are trained

by injecting performance anomalies during online deployment.

Autoscaling. Autoscaling [19] is a widely adopted resource management method.

The autoscaling controller relies on manually configured resource utilization thresh-

olds based on expert knowledge to dynamically adjust resource allocation. In our ex-

periments, we configure the autoscaling controller according to [19], which increases

resources when CPU utilization exceeds 60%, and reduces resources when the CPU

utilization is below 30%.

3.8.3 Online Exploration Overhead

We now compare the online exploration overheads of Ursa, Sinan and Firm. During

exploration, the user load for each application is the same across the three approaches.

Specifically, for the social network application, the RPS averages 1000 and the ratios

of post, comment, download-image and read-timeline are approximately 1:75:15:25,

adopted from [142, 86, 69]. For the media service application, the RPS averages 300 and

the ratios of upload-video, get-info, download-video, and rate-video are approximately

1:100:25:25. For the video processing pipeline, we experiment with four different ratios

of high and low priority requests, including 5:95, 25:75, 50:50, and 75:25, with an

69

average RPS of 10. Across all approaches, the sampling frequency is set to once per

minute and the number of SLA violations is the number of samples with at least one

request class or request priority violating the SLA.

We run Ursa’s online exploration process (as described in Section 3.5). The average

number of services that can be profiled in parallel (essentially the speedup compared to

profiling one service at a time), as determined by the graph coloring algorithm (Algo-

rithm 2), is 2.3, 2.3, and 1.0 for social network, media service, and video processing

pipeline, respectively. The initial replica of each service to be profiled is determined by

an autoscaling controller that keeps CPU utilization below 10% to reduce SLA viola-

tions. Each service is profiled using Algorithm 1, and in each iteration we reduce the

number of replicas by 1 and collect 15 samples, until the frequency of SLA violations

exceeds 10%, or the CPU utilization exceeds the backpressure-free threshold. For Sinan

and Firm, we run their data collection algorithm and online training process separately

and collect 10k samples for each application, matching the order of magnitude in Sinan

for DeathStarBench [142].

Table 3.5 summarizes the number of samples collected and the SLA violations dur-

ing online exploration. Compared to the ML-driven approaches, Ursa reduces the re-

quired sample size and exploration time by a factor of 16.7 up to 35.1, and the number

of SLA violations by a factor of 96.8 up to 431.8. Ursa’s SLA violation rates during

exploration range from 4.2% to 9.0%, while the ML-driven approaches result in SLA

violation rates of 38.4% to 61.6%.

The online exploration overheads of ML-driven approaches result from the nature of

deep neural networks, which require a large amount of data to generalize, due to their

large parameter space. The collected training data also needs to include a large number

of SLA violations, which is crucial for ML models to learn which resource allocations

70

violate SLA. Otherwise, a classifier predicting whether an SLA is violated can naively

predict that the SLA is met in a training dataset dominated by SLA satisfaction and

achieve high training accuracy, while failing to identify SLA violations during actual

deployment. Sinan [142] also demonstrates that an imbalanced dataset, i.e., dominated

by meeting SLAs or violating SLAs, will lead to a model that constantly underestimates

or overestimates latency, and thus fails to manage resources correctly. In contrast, Ursa’s

analytical model inherently contains fewer parameters than deep neural networks. The

model calculates end-to-end latency as the sum of per-service latencies, and foresees

end-to-end SLA violations when the latency of individual services increases rapidly. As

a result, Ursa’s exploration algorithm just needs to trigger SLA violations occasionally

to find the the most efficient resource allocation thresholds. Notably, despite the small

sample size and the low SLA violation rate during exploration, Ursa still maintains SLA

and achieves high efficiency during deployment, as shown in Section 3.8.5.

App System Samples Time(h) #Viol Viol Rate

Social
Ursa 360 6.0 18 5.0%
Sinan 10000 166.7 4551 45.5%
Firm 10000 166.7 3843 38.4%

Media
Ursa 285 4.8 12 4.2%
Sinan 10000 166.7 5181 51.8%
Firm 10000 166.7 4237 42.4%

Video
Ursa 600 10.0 54 9.0%
Sinan 10000 166.7 6156 61.6%
Firm 10000 166.7 4226 42.3%

Table 3.5: Online exploration overheads.

3.8.4 Model Accuracy

As described in Section 3.3, the performance model estimates the end-to-end latency by

multiplying the latency upper bound with the expected overestimation rate. To evaluate

71

the accuracy of the estimated latency, we record the per-service and end-to-end latency

distributions every 5 minutes for a total of 150 minutes during online exploration with

dynamically changing resource allocations, and calculate the estimated latency for each

type of request.

Figure 3.6 shows the measured and estimated latency of four representative re-

quest types in the social network application, including post, update-timeline, object-

detection, and sentiment-analysis. The blue line indicates the measured 99th percentile

latency and the red line indicates the estimated 99th percentile latency. For each class of

request, the estimated latency closely follows the measured latency, with the average ra-

tio of estimated to measured latency ranging from 0.97 to 1.05. Additionally, Figure 3.7

shows the measured and estimated latency of the video processing pipeline which in-

cludes two request priorities, with SLAs defined at the 50th and 99th percentiles, for low

and high priority requests, respectively. For both request priorities, the estimated latency

is close to the measured latency, with the average ratio of estimated to measured latency

being 0.96 and 1.00 for low and high priority requests, respectively.

3.8.5 Performance Comparison

We now compare resource usage and SLA violations during deployment between Ursa

and prior work, with Ursa and ML-driven systems using exploration data from Sec-

tion 3.8.3. In addition to the three applications described in Section 3.7, we also show

the results for the vanilla social network, by disabling the newly added ML services.

For each application, we experiment with three types of user loads; constant load,

dynamic load, and skewed load. Constant load refers to Poisson arrival processes with

constant RPS, with RPS of 250 to 1000, 100 to 350, and 5 to 10 for Social network,

72

0 50 100 1500

20

40

60

80

P9
9

la
te

nc
y

(m
s)

post

0 50 100 1500

100

200

300

400

500 update-timeline

0 50 100 1500

2000

4000

6000

8000

10000

P9
9

la
te

nc
y

(m
s)

object-detect

0 50 100 1500

100

200

300

400

500 sentiment-analysis

Time (m)

Measured Estimated

Figure 3.6: Estimated vs. measured latency for social network.

Media service, and Video processing pipeline, respectively. In contrast, dynamic load

has time-varying RPS, including diurnal patterns where the RPS first gradually increases

and then gradually decreases, and burst patterns where the RPS increases sharply by

50% to 125%. The ratio of different types of requests for constant and dynamic loads is

the same as in online exploration. On the other hand, in skewed load, the ratio of request

types differs from that in the online exploration. For social network and media service,

we experiment with two other request combinations, the first doubling the frequency of

update requests, including post and comment for social network, and upload-video and

rate-video for media service, and the second halving the frequency of update requests.

The user load patterns are the same for both versions of social network. For the video

73

0 50 100 1500

10

20

30

40
P9

9
la

te
nc

y
(s

)
high-priority

0 50 100 1500

1

2

3

4

P5
0

la
te

nc
y

(s
)

low-priority

Time (m)

Measured Estimated

Figure 3.7: Estimated vs. measured latency for the video processing pipeline.

processing pipeline, the ratios of high-priority to low-priority requests include 40:60 and

60:40, which do not exist in online exploration. For Ursa specifically, the skewed load

stresses the case where the request mix changes, and the optimization engine needs to

calculate load per replica thresholds using available exploration data that do not include

the current request mix. For each type of load, Ursa calculates the optimal load-per-

replica thresholds once, at the beginning of the experiment.

Figure 3.8 shows the SLA violation rate, and Figure 3.9 shows the average CPU

allocation. Compared to ML-driven systems, Ursa significantly reduces SLA violation

rates, achieving 0.1% to 8.5% SLA violation rates under constant and dynamic loads,

and 0.5% to 2.0% SLA violation rates under skewed load, whereas ML-driven systems

incur 9.1% to 29.2% SLA violation rates under constant and dynamic loads, and 14.2%

to 51.9% SLA violation rates under skewed load. ML-driven systems cause higher SLA

violation rates for the new social network than for vanilla social network, because the

latency of ML services is less stable and more challenging for resource management,

compared to lightweight text processing. In terms of resources, Ursa reduces CPU allo-

cation by 2.3% to 86.2% for constant and dynamic loads. For skewed loads, Ursa uses

74

0
20
40
60

0.1 1.6 2.010.8 9.1
20.015.9 15.3

46.241.9
56.1

42.0

Vanilla Social network
Ursa Sinan Firm Autoscaling

0
20
40
60
80

1.9 4.5 2.0
21.1 26.8

42.0
22.6 24.9

51.957.5 63.8 66.0
Social network

0
20
40
60
80

3.3 8.5 0.5

28.5 22.4 26.030.8 29.2 34.6

59.3 66.3 62.0
Media service

const dynamic skewed0
20
40
60

0.8 6.4 0.5
16.7 15.1 14.2

25.0 25.9 26.2

49.2 42.3
50.8

Video processing pipeline

SL
A

vi
ol

at
io

n
ra

te
(%

)

Figure 3.8: SLA violation rate.

an average of 8.2% more CPUs, but the ML-driven systems result in SLA violation rates

significantly higher than Ursa. The autoscaling controller uses the least resources but

results in SLA violation rates of over 60%. Ursa may use more resources under skewed

loads because it prioritizes maintaining SLAs and makes conservative decisions with

the available exploration data. As a conceptual example, assume a service handles two

classes of requests, and its total load is (4, 6), where each element of the vector is the

load of one class of requests. If the service’s exploration data only includes one feasible

LPR threshold (3, 2), Ursa will provision 3 replicas for the service to ensure that the

load of any request class is below the threshold, while in reality the actual per-replica

75

load will be (1.3, 2), which is below the (3, 2) threshold. Figure 3.10 shows the load and

CPU allocation for four representative services in the social network under a diurnal

load when managed with Ursa, where the left Y-axis represents the RPS of load and the

right Y-axis represents the CPU allocation. For each service, Ursa is able to scale out

and scale in promptly as the load increases and decreases.

Ursa outperforms ML-driven systems with much lower exploration overheads, be-

cause Ursa’s analytical model accurately decomposes the end-to-end latency to per-

service latencies, which can be mapped directly to per-service resource allocation. How-

ever, the ML-driven techniques need to learn the relation between resource allocation

and SLA from scratch in a much larger parameter space, requiring more data and leading

to lower accuracy. Specifically, Sinan’s SLA violation predictor can only achieve 80%

to 85% accuracy due to the presence of multiple request classes with different SLAs

in an application, resulting in more SLA violations and higher resource usage. On the

other hand, in addition to the issue of large parameter space, Firm does not always prior-

itize preserving SLAs because its agent’s reward function is a weighted sum of the SLA

violation rate and the resource utilization, which makes Firm prioritize resource savings

over SLA if the savings are significant, and results in more violations.

3.8.6 Control Plane Latency

The latency of resource allocation decisions determines how quickly the system adapts

to load fluctuations, and also determines the scheduling throughput, i.e., the number of

services that can be managed, according to Little’s Law. Resource allocation decisions

are fast in Ursa because the critical path only includes the resource controller, which

calculates the number of replicas, based on the load-per-replica thresholds. In contrast,

76

0
20
40
60

40
31

5954
45 5244 39 47

28 23
42

Vanilla Social network
Ursa Sinan Firm Autoscaling

0
50

100
150

92 76

128127
92

111113 97 114
72 63

109

Social network

0
50

100
150 116

73 93
129

84 78

144
96 116

67
45 59

Media service

const dynamic skewed0
50

100
150
200

131

50

156152
122

151138
89

133
86 82

108

Video processing pipeline

CP
U

Co
re

s

Figure 3.9: Average CPU allocation.

ML-driven systems typically need to wait for the ML models to predict performance

metrics or make decisions. There are also situations where the mix of user requests

changes significantly, or the business logic of a service is updated, requiring an updated

performance model. In this case, Ursa needs to recompute the optimization models, and

ML-driven approaches also need to update the model parameters. Table 3.6 shows the

average control plane latency (in milliseconds) across the different approaches, in the

case of deployment and model update. In the comparison, the control planes are always

allocated 4 CPUs. Autoscaling is undoubtedly the fastest, as it involves only a single

threshold check. In terms of deployment, Ursa is on average 691.6× faster than Sinan

77

0 10 20 30 40 50 60
0

200

400

600

800

1000
Frontend Service

0

10

20

30

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8
Object Detection Service

0

10

20

30

40

50

0 10 20 30 40 50 60
0

200

400

600

800

Post Service

0

10

20

30

0 10 20 30 40 50 60
0

2

4

6

8

10
Sentiment Analysis Service

0

10

20

30

Time (m)

RP
S

CP
U

Co
re

s

RPS CPUs

Figure 3.10: Ursa’s CPU allocation under diurnal load.

using a centralized ML model, and 43.4× faster than Firm, which uses per-service RL

agents. In terms of model updates, Sinan’s retraining time is linear to the size of the

dataset, and takes minutes even on a dedicated GPU. Firm can adapt to load changes

gradually by updating the RL agent online, but is still slower than Ursa by 4.4× even

for a single iteration. The RL agent may require thousands of iterations to update its

weights and fully learn new resource usage patterns, whereas Ursa only needs to solve

the optimization problem once to fully adapt to the changes.

Ursa Sinan Firm Autoscaling

Deploy 0.5 345.8 21.7 0.1
Update 271.7 N/A 1.2 ×103 0.1

Table 3.6: Control plane latency (ms).

78

3.8.7 Adapting to Service Changes

The logic of microservices can be updated frequently. We now conduct a case study

to demonstrate Ursa’s ability to adapt to such business logic updates. Specifically, we

modify the object-detection service in the social network application, and change the

model to more lightweight Mobilenet [73]. The exploration controller performs a partial

online exploration to profile only the modified object-detect service. It collects a total

of 75 samples in 1.25 hours, during which 4 SLA violation are triggered, resulting in

an SLA violation rate of 5.3%. Then the optimization engine recalculates the LPR

threshold of each service. We deploy the modified social network application under

various RPS, and Figure 3.11 shows the distribution of the 99th percentile latency of the

end-to-end object-detect requests for the original and the updated object-detect service.

The red line represents the SLA and the blue line represents the cumulative distribution

function, with SLA violation rates of 0.62% and 0.50% for the original and updated

microservice, respectively.

3.8.8 Summary

Compared to ML-driven approaches, Ursa reduces the required sample size by 16×

to 35× during exploration, and achieves SLA violation rates of no more than 9.0%,

making online exploration with real user data possible. Ursa also achieves good per-

formance, maintaining low SLA violation rates of 0.1% to 8.5% during deployment,

9.0% to 49.9% lower than ML-driven approaches, and reducing resource allocation by

up to 86.2%. In addition, Ursa’s control plane is 43× faster than ML-driven approaches

during deployment, enabling faster and more scalable management decisions. Finally,

we demonstrate that Ursa is able to adapt to service changes and maintain SLAs while

79

0 2 4 6 8 10 12
Latency (s)

0

20

40

60

80

100

CD
F

(%
)

Original
SLA
Updated

Figure 3.11: 99th latency distribution of object-detect.

incurring low exploration overheads.

3.9 Conclusion

We present Ursa, a lightweight resource management framework for microservices.

Ursa uses an analytical model to decompose the end-to-end SLA into per-service SLAs,

and maps them to resource allocations. During exploration, Ursa explores as many inde-

pendent services as possible across different request paths, and swiftly stops exploration

in the case of SLA violations to keep SLA violation rate low. Using benchmarks imple-

mented with popular microservice frameworks, we demonstrate that Ursa outperforms

ML-driven approaches in both SLA maintenance and resource efficiency, with signifi-

cantly lower exploration overheads.

80

In brief summary of Chapter 2 and 3, we aim to tackle the problem of allocating

the minimal resources while preserving the SLAs, and we investigate the use of ML

and analytical models to achieve the goal. While our proposed approaches are primarily

geared towards microservice workloads, they can also be extended to serverless work-

flows, which typically have simpler DAG topology and resource usage patterns. Our

study leads to two key findings.

First, although ML, particularly DNNs, is effective in solving blackbox problems,

its use for resource management and control can come at a significant cost. This is par-

ticularly true if exploration is time-consuming or performance disruptive, resulting in

substantial exploration overhead. In such cases, ML necessitates the use of cheap sam-

pling techniques, such as accurate simulation, which is commonly utilized in robotics or

autonomous driving, to rapidly obtain large amounts of training data at little cost. Alter-

natively, ML can be a good fit when datasets are already available, such as in predicting

user loads.

Second, analytical models can be effective in resource management. This is primar-

ily because computer systems are inherently less complex than natural problems, such

as computer vision or natural language processing, where DNNs are currently the only

viable solution. Analytical models usually have a much smaller parameter space, en-

abling them to achieve high accuracy with a small dataset, and they are also more robust

to overfitting or distribution shift. Furthermore, designers have more control over ex-

plainable analytical models than blackbox ML models. For instance, Ursa is designed

to prioritize SLA maintenance under skewed loads, which is challenging to encode in

DNNs.

81

CHAPTER 4

FASTER AND CHEAPER SERVERLESS COMPUTING ON HARVESTED

RESOURCES

4.1 Introduction

Orthogonal to the preceding two chapters which seek to reduce operational expenses by

providing the minimum amount of resources necessary without impacting performance,

this chapter takes a different approach to cost reduction by utilizing less expensive but

less dependable resources. Our focus in this chapter is on serverless workloads, which

are the most suitable for leveraging harvested resources to their full potential.

Serverless computing is becoming an increasingly popular cloud programming

paradigm, especially in the form of Functions as a Service (FaaS), with offerings from

several commercial providers [99, 35, 71]. These FaaS platforms offer intuitive event-

based interfaces for application development. The interface obviates the need for users

to explicitly configure resources, such as the number and size of virtual machines (VMs)

or containers to run the functions. FaaS is also cheaper for users, as they only pay for

the exact amount of resources they use during function execution. This is in contrast

to Infrastructure as a Service (IaaS), where users pay for long-term reserved resources

in the form of VMs. FaaS is an ideal candidate for applications with high data-level

parallelism and/or intermittent activity (e.g., online sites that are driven by fluctuating

user load). However, the serverless provider still needs to provision, manage, and pay

the IaaS provider for the VMs hosting its platform. This ties the cost of serverless to the

cost of the underlying VMs. Worse, the serverless provider must pre-provision a large

amount of VM capacity to provide fast elasticity and the illusion of infinite resources,

while the FaaS users pay only for the resources their functions actually use.

82

Harvested resources. Fortunately, IaaS providers offer their surplus resources as VMs

at a much lower price (and relaxed guarantees), such as Spot [42, 38] and Burstable

VMs [40, 39]. Along similar lines, Harvest VMs [36] are an even cheaper and more

efficient alternative. Each Harvest VM is evictable and has a minimum size, but it grows

by harvesting unallocated CPU cores in its host server beyond this minimum. When a

new “regular” (non-evictable) VM is placed on the server, the Harvest VM shrinks. The

IaaS provider only evicts Harvest VMs when their minimum size is needed for a regular

VM.

Serverless functions, which are mostly single-threaded and short-running [122], are

a natural fit for running on harvested resources. Despite their low cost, Harvest VMs

introduce two challenges: workloads can be evicted, and VMs have dynamic variations

in terms of compute and/or memory resources. Not only do Harvest VMs have the

potential to reduce the cost of hosting FaaS platforms, but they can also provide better

performance at the same cost.

Our work. This chapter tackles the challenges of running serverless platforms on

Harvest VMs. To understand the impact of evictions and of the variability in harvested

resources on a FaaS platform, we first characterize both a FaaS offering (Azure Func-

tions) and the resources available to Harvest VMs using production traces from Azure.

We contrast the duration of function executions with the lifetime of Harvest VMs and

the durations over which resources are available for harvesting. Our characterization

suggests a good match between FaaS platforms and Harvest VMs. Thus, we next study

how to adapt a FaaS platform to run on harvested resources.

To address Harvest VM evictions, we explore the space of regular and Harvest VMs

mixes, for short- and long-running functions, and quantify the trade-off between cost

and reliability. Using detailed simulations combining FaaS and Harvest VM traces, we

83

find that when running FaaS solely on Harvest VMs, evictions cause at most 0.0015%

of invocations to fail.

To make this practical, we must address resource variations inherent to Harvest VMs.

To this end, we design and implement a load balancer for FaaS platforms that places

functions in VMs according to the availability of harvested resources. Our load balancer

reduces resource contention while keeping the function cold start rate low.

Our implementation modifies OpenWhisk [107], a widely-used open-source FaaS

platform, to monitor the availability of harvested resources and balance the load ac-

cordingly. Our experimental results demonstrate the performance improvement over

the existing OpenWhisk load balancer and other widely used policies, achieving 22.6×

throughput than vanilla OpenWhisk. We finally demonstrate the performance improve-

ment and cost savings of serverless computing on Harvest VMs, compared to regular

and Spot VMs. Under the same cost budget, serverless platforms hosted on Harvest

VMs are able to achieve 2.2× to 9.0× throughput than regular VMs. When provisioned

with the same amount of resources, serverless platforms hosted on Harvest VMs are

45% to 89% cheaper than regular VMs and 0% to 44% cheaper than Spot VMs.

4.2 Background and Related Work

Serverless and FaaS. Serverless computing, especially Functions as a Service (FaaS),

is gaining popularity as the way to deploy applications on the cloud [120]. The FaaS

programming model offers simplicity of just uploading application code without hav-

ing to manage resources or configurations. In the FaaS platform we study, functions

are logically grouped to form applications and the application is the unit of scheduling

and resource allocation. The platform provides elasticity by automatically scaling up re-

84

sources with increasing load and scaling down to zero during idle periods. The user only

gets billed for the resources consumed during function executions. All these properties

make FaaS a compelling option for programming the cloud from the user’s perspective.

The serverless provider faces the challenge of ensuring high performance while min-

imizing cost. To provide the illusion of always-on and infinitely scalable resources to

the user, the provider needs to have the resources ready whenever a function is invoked.

Shahrad et al. [122] show that 50% of functions execute for less than 1s and about 90%

execute for less than 10s on average. A function can start quickly when the code is

already in memory (warm start) and does not have to be brought in from persistent stor-

age (cold start). Since these function executions are generally short lived, cold starts can

dominate the overall execution time if the resources are not available at invocation time.

To mitigate this, providers typically set a keep-alive threshold for which the function

container is kept available after the invocation completes in anticipation of an upcoming

invocation to the same function.

There has been a wealth of research on serverless computing, both to expand the

set of applications that can use the model, and to improve the serverless infrastruc-

ture. Broadly, it spans: (a) scheduling policies for making serverless platforms cost-

effective and performant [122, 78]; (b) performance-aware and cost-effective stor-

age [83, 84, 103, 117]; (c) secure and light-weight container infrastructure [34, 106,

102, 137, 133, 125, 33]; (d) characterization of existing serverless workloads [122]; and

(e) enabling applications to run in a serverless-native manner, including data processing

and analytics [75, 112], video processing [63], ML training [46], DNA sequence visu-

alization [88] and compilation [62]. We show that mindfully using cheaper resources

without performance/reliability degradation is the right way to minimize the hosting

cost of FaaS.

85

Harvest VMs. Harvest VMs were proposed in [36]. Users select and deploy them

as they do any other VM. Each Harvest VM is defined by its minimum size (in terms

of physical CPU cores, memory, disk space, and network bandwidth) and how many

harvested physical cores they are capable of using. While the number of physical cores

assigned to a Harvest VM may change dynamically, the other resources do not. The

workload running on the Harvest VM can query the number of physical cores assigned

to it in /proc in Linux and the registry in Windows. The Harvest VM receives a 30-

second notice before an eviction happens. These mechanisms allow the workload to

take appropriate actions.

Users pay for the minimum size at a heavy discount, like those for Spot VMs, com-

pared to regular VMs. For example, Spot VMs are 48% to 88% cheaper than the same

size regular VMs in Azure [41]. The additional harvested cores are even cheaper be-

cause they vary over time. The total cost for the users is the sum of the minimum cost

and the harvested one.

Despite offering a large amount of resources at low price, evictions and resource

variation can impact the system reliability and performance [36]. This chapter addresses

those issues.

Cluster scheduling and load balancing. A large body of work [44, 61, 67, 70, 74, 77,

111, 132, 55, 80, 110] has focused on cluster scheduling frameworks, such as Kuber-

netes [13] and Apache YARN [134]. However, these works assumed that the underlying

resources (VMs or bare-metal servers) are constant over time.

In contrast, Harvest VMs may experience significant variation in their number of

cores over their lifetime. Ambati et al. did adapt YARN to run on Harvest VMs [36].

However, the batch and Big Data analytics workloads common of YARN deployments

86

are quite different than those of FaaS platforms [115, 122]. For example, function exe-

cutions are typically substantially shorter than data analytics tasks, so FaaS workloads

can more easily adjust to the frequent changes in the numbers of cores. On the other

hand, each function typically consumes fewer resources (e.g., memory) than an analyt-

ics task, meaning that many of them can be packed on the same VM so an eviction may

affect more computations.

4.3 Characterization

While previous work has studied some production characteristics of Harvest VMs [36]

and FaaS workloads [122], in this section we take a closer look with the goal of un-

derstanding how they might interact. We are interested in the impact of Harvest VM

evictions and core variations on function executions. In particular, we look at the dis-

tribution of Harvest VM lifetimes and the distribution of intervals between Harvest VM

core changes. Before each eviction, the Harvest VM receives a 30-second grace period,

which can be used to stop sending new invocations to the VM, and to finish ongoing

function executions. Invocations that last longer than 30 seconds are at risk of being

killed, and below we pay particular attention to these long invocations. Compared to the

previous characterization of FaaS workloads [122], we feature a new analysis address-

ing the issues involved in hosting FaaS on Harvest VMs: the impact of VM evictions

and the capacity needed to host the FaaS workloads.

87

1min 10min 1h 1d 1mo 5mo
Harvest VM lifetime

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Figure 4.1: Distribution of the Harvest VM lifetime [36].

4.3.1 Harvest VMs

Evictions. To study Harvest VM evictions, we use a trace of the private cluster de-

scribed in [36]. The trace includes 1075 Harvest VM instances deployed between Oc-

tober 8th 2019 and March 28th 2020. We include both evicted and not evicted Harvest

VMs, and remove from the VM lifetime the 10 minutes required to install the FaaS plat-

form and dependencies. Despite this overhead, 96.7% of all Harvest VMs are suitable

for hosting FaaS. Figure 4.1 shows the lifetime distribution of these Harvest VMs. The

average lifetime is 61.5 days, with more than 90% of Harvest VMs living longer than 1

day. More than 60% survive longer than 1 month.

Resource variability. To study the resource variation patterns of Harvest VM, we look

at a smaller and more detailed trace of 37 Harvest VMs running in Azure production

clusters between January 1st and February 24th 2021. To match the memory size of the

88

1s 10s 1m 10m1h 1d 1mo
Harvest VM CPU change interval

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Figure 4.2: Intervals between Harvest VM CPU changes.

smallest Harvest VM (i.e., 16 GB), the maximum CPUs of each Harvest VM is limited

to 32. Figure 4.2 shows the distribution of intervals between changes in Harvest VM

CPUs. The expected interval is 17.8 hours, with around 70% of them being longer

than 10 minutes, and around 35% longer than 1 hour. 62.2% of the studied Harvest

VMs experienced at least one CPU shrinkage and 54.1% experienced at least one CPU

expansion. 35.1% VMs never experienced any CPU changes.

Figure 4.3 shows a histogram of individual CPU changes for the studied Harvest

VMs. Positive numbers represent expansions and negative numbers represent shrinkage.

The points at 0 represent the VMs that did not change during the period covered by the

traces. The distribution tends to be symmetric with most of CPU changes falling within

20 CPUs. The average and maximum CPU change size are 12 and 30 for both shrinkage

and expansion. Considering the maximum CPUs of the profiled Harvest VMs is 32, the

size of the changes has a significant impact on instantaneous capacity of Harvest VMs.

89

−30 −20 −10 0 10 20 30
VM CPU change size

0

2

4

6
Pr

ob
ab

ilt
y

(%
)

Figure 4.3: Distribution of Harvest VM CPU change sizes and correlation of change
sizes and change interval.

Trace FLarge FS mall

Duration Data Percentiles Start/End Times
Granularity Per App Per Invocation
Dates 2021-01-31 2021-01-31 to 2021-02-13
#Apps 20,809 119
Invocations 910M 2.2M

Table 4.1: Details on the two FaaS traces used in the chapter.

We did not find a significant correlation between the size of the change and the change

interval.

4.3.2 Serverless Functions

We now study the duration of function invocations. We obtained two traces (Table 4.1)

of invocations from Azure Functions: FLarge is a coarse 1-day trace with invocation

90

duration percentiles for a subset of a cloud region, and FS mall is a detailed trace of a

small cluster with precise invocation timings. We look at the overall trends with FLarge,

and use FS mall for deeper analysis, including trace-driven simulations.

Duration per application. Figure 4.4 shows the distribution of maximum invocation

durations per application from the FLarge trace, as well as those of the mean and other

duration percentiles. The invocations are generally short. The graph shows the 30-

second grace period of Harvest VM eviction. Invocations shorter than this are safe

from evictions, while longer invocations could be terminated. 20.6% of the applications

have at least one invocation (maximum) longer than 30 seconds. We refer to these

applications as “long” applications. 16.7% and 12.3% of applications have 99.9th and

99th percentile durations longer than 30 seconds, respectively.

Figure 4.5 compares the same distributions between the two traces. The traces are

similar with respect to the tails of the per-application invocation durations, with the

applications in the FS mall trace having higher fractions of longer invocations. This is

acceptable for our purposes, as it makes our analysis more pessimistic. We base our

analysis in the remainder of the chapter on the FS mall trace.

Durations per invocation. The FS mall trace allows us to look at the duration of ev-

ery invocation. Figure 4.6 shows the latency distribution of all considered invocations.

The vast majority are short, with more than 85% of invocations shorter than 1 second,

and 96% of the invocations shorter than 30s. The longest recorded invocation is 578.6

seconds.

Long applications. In terms of sensitivity to Harvest VM evictions, only 4.1% of the

invocations are ‘long’, but these long invocations take over 82.0% of the total execution

time of all invocations. At the granularity of application, 58 applications (48.7% of

91

1ms 10ms100ms 1s 30s 10m 1h
Invocation duration

0
10
20
30
40
50
60
70
80
90

100

%
 o

f A
pp

s w
ith

 d
ur

at
io

n≤
 x Max

P99.9
P99
P95
P90
Mean

Figure 4.4: CDFs of the average and top percentiles of the invocation durations per
application in the FLarge trace.

all) are long applications. These long applications take up 67.5% of all invocations

and 99.68% of the total invocation time. These long invocations (and applications) are

vulnerable for evictions if placed on a Harvest VM. As we see in §4.4, naı̈vely allocating

the long applications to regular VMs, and running the others on Harvest VMs may be

too conservative a strategy, with very modest gains.

Looking closer, Figure 4.7 shows the duration distribution of the long applications,

where each point on x-axis corresponds to one application, and the error bar shows the

standard deviation of the durations. There are big gaps between the max and mean

duration of long applications, especially for applications with max duration longer than

100 seconds, indicating that long applications fall under this category mainly due to a

small fraction of invocations in the tail of their duration distribution. We use this to our

advantage in the next section.

92

1ms 100ms 1s 30s 10m 1h0

20

40

60

80

100

%
 o

f A
pp

s
wi

th
 d

ur
at

io
n≤

 x FLarge Max
FSmall Max

1ms 100ms 1s 30s 10m 1h

FLarge P99.9
FSmall P99.9

1ms 100ms 1s 30s 10m 1h
Invocation duration

0

20

40

60

80

100

%
 o

f A
pp

s
wi

th
 d

ur
at

io
n≤

 x

FLarge P99
FSmall P99

1ms 100ms 1s 30s 10m 1h
Invocation duration

FLarge P95
FSmall P95

Figure 4.5: Invocation durations per app for FLarge and FS mall.

4.3.3 Implications

Combining the characteristics of Harvest VMs (Section 4.3.1) and serverless workloads

(Section 4.3.2) shows that, intuitively, FaaS workloads are a good fit for Harvest VMs.

The short duration of the majority of the invocations (only 4.1% are longer than 30 sec-

onds) and the relatively much longer Harvest VM lifetime (more than 90% of Harvest

VMs live longer than 1 day) make serverless workloads unlikely to be affected by Har-

vest VM evictions. Based on this intuition, in Section 4.4 we use trace-drive simulations

to more precisely characterize the reliability of serverless compute on Harvest VMs.

Resource variation on Harvest VMs is much more common than evictions, but com-

pared to the short duration of most invocations, the number of CPUs of Harvest VMs

can be considered relatively stable: 70% of CPU change intervals are longer than the

93

1ms 10ms 100ms 1s 30s 10m
Invocation duration

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Figure 4.6: Durations of all invocations in the FS mall trace.

Figure 4.7: Durations of long applications invocations.

94

longest invocation in the studied serverless workload trace (578.6 seconds). However,

because of the frequency and magnitude of resource changes (Figure 4.3), Harvest VM-

aware load balancing is essential to guarantee system performance. In addition to this,

even if mostly stable, Harvest VMs tend to be more heterogeneous than regular VMs,

reinforcing the importance of proper load balancing.

4.4 Handling Evictions

In this section, we study the impact of Harvest VM evictions when running serverless

workloads. When an eviction occurs, any function running at the time fails. What is the

best strategy to eliminate or minimize these failures?

4.4.1 Methodology

While the comparison of the distributions in the previous section provides bounds on

the failure rates, the interaction of evictions and long executions is not trivial, and we

resort to trace-driven simulations to answer this question.

We used the Harvest VM trace from Figure 4.1 and the FS mall functions trace (§4.3).

Since the Harvest VM trace (173 days) is longer than the serverless workload trace

(14 days), we select a 14-day period from the Harvest VM trace which aligns with

the serverless workload trace. Figure 4.8a shows, for the 14-day period starting at each

Sunday (dotted vertical lines), the total number of VMs, and the number of VM creations

and evictions. We use the Harvest VM eviction rate defined as number of VM evictions

over the number of existing VMs, as the metric to categorize the Harvest VM trace

periods. The average eviction rate of all 14-day periods is 13.1%. We select two periods:

95

(1) one with the max VM eviction (86.4%), as worst case, and (2) one with an eviction

rate close to average (8.4%), as the typical case. Starting days of the worst and typical

cases are marked as Worst and Typical in Figure 4.8a.

We simulate the serverless framework as a global pool of containers; an invocation

is able to use any existing container of the same application and randomly chooses one

if there are multiple candidates. Invocations have a keep-alive time set to 10 minutes

(the default in OpenWhisk [107]). A container is removed if it does not execute any

invocations for the entire keep-alive period. Each container is randomly allocated to

VM that has not been warned of eviction. The number of concurrent invocations that

each container can host is set to 1. Since our traces do not record CPU usage, we assume

that the CPU usage of all applications is identical.

For Harvest VMs, when we receive the 30-second eviction warning for a VM, the

load balancer stops sending new invocations to it. Pending invocations continue to ex-

ecute on the VM and fail if they do not complete before the VM eviction. In the event

that resources start to decline below a pre-configured threshold, it spins up additional

VMs.

For each 14-day Harvest VM trace snippet, we run the simulation 1000 times and

show the aggregated results. Our simulation models the key components of server-

less frameworks, including container pool and keep-alive. It can model potential future

workload changes by simply acquiring new traces, assuming no changes to the server-

less framework.

96

0 20 40 60 80 100 120 140 160
Time (day)

0

100

200

300

400

500

600
Nu

m
be

r o
f V

M
s

Evict
Deploy
Existing
Sunday
Worst
Typical

(a) 14-day period in the entire trace.

2 4 6 8 10 12 14
Time (day)

400

450

500

550

600

650

Nu
m

be
r o

f V
M

s

Worst
Typical

(b) Selected 14-day periods for simulation.

Figure 4.8: Harvest VM creations and eviction patterns.

97

4.4.2 Combining Regular and Harvest VMs

Strategy 1: No failures. We start with the most conservative provisioning where

all long applications (i.e., those with at least one invocation longer than 30 seconds) are

allocated in regular VMs and the rest in Harvest VMs. This guarantees that no invocation

longer than 30s will run on Harvest VMs, but is the least efficient provisioning strategy.

Section 4.3.2 showed that long applications take up to 67.5% of all invocations but

99.7% of the invocation time. However, we also need to account for the keep-alive

period to prevent cold starts. We ran a simpler version of our simulation here to estimate

the computation capacity taken by the two application types, while accounting for their

arrival times and keep-alive behavior.

For 10-minute keep-alive, the simulation shows that only 12.0% of computation

capacity can be hosted by low-cost Harvest VMs. While this is much higher than the

fraction of execution time for short applications (0.32%), it is significantly lower than

the fraction of invocations that corresponds to short applications (32.5%). This is due

to their shorter invocation times on average, and to their inter-arrival times. Figure 4.9

shows that a larger fraction of the inter-arrival times for short applications is below

10s, and multiple close invocations reduce the wasted idle time due to keep-alive. We

verified that these results do not change significantly for different keep-alive periods

ranging from 1 minute to 24 hours. Ultimately, this strategy is too conservative, and

94% of the invocations that run on the regular VMs are still short.

Strategy 2: Bounded failures. Given the high operational cost of Strategy 1, we study

a relaxation of the bound on failures caused by eviction. If we are willing to tolerate a

small fraction of eviction failures, we can allocate more applications to Harvest VMs,

and trade reliability for efficiency.

98

1ms 1s 10s1m10m1h 1d5d
Invocation inter-arrival time

0
10
20
30
40
50
60
70
80
90

100

CD
F(

%
)

Long Apps
Short Apps

Figure 4.9: Inter-arrival times for short vs. long apps.

We can provide an upper bound (100− x)% (say, 1%) on the per-application eviction

failure rate by allocating to regular VMs applications with the xth (say, 99th) percentile

duration longer than 30s, instead of the maximum. In effect, some long applications

from Strategy 1 are allocated to Harvest VMs in this strategy, but only those where

(100 − x)% of the invocations are longer than 30s.

To characterize the trade-off between reliability and efficiency of the policy, we per-

form the same trace-driven simulation as in §4.4.2, and sweep the percentile x from 95

to 99.9, with increments of 0.1. Figure 4.10 shows the results, with the decision per-

centile in the x-axis, and the resulting fraction of computing capacity used by Harvest

VMs.

In summary, bounding the failure rate to less than 0.1% allows 28% of computation

to be hosted by Harvest VMs. A rate lower than 1% allows 45.7% of computation to

be hosted by regular VMs. Although efficiency improves compared to Strategy 1, it is

99

95.0 95.5 96.0 96.5 97.0 97.5 98.0 98.5 99.0 99.5 99.9
Acceptable percentile of long running invocations

0

10

20

30

40

50

60

%
 C

om
pu

ta
tio

n
ca

pa
cit

y
ho

st
ed

 o
n

Ha
rv

es
t V

M
s

Figure 4.10: Fraction of Harvest VM capacity versus acceptable percentile of per-app
long invocations.

still pessimistic, as most invocations that run in regular VMs are still short, and even

the long invocations would only fail if they run in a Harvest VM and start less than 30s

before an eviction.

4.4.3 Running on Harvest VMs

Strategy 3: Live and Let Die. We next examine running a full serverless workload

solely on Harvest VMs. We ran the full simulation described in §4.4.1. For the Worst

period in the Harvest VM trace (i.e., max VM eviction rate), the average invocation

failure rate is 0.0015% (99.9985% success rate). The Typical period has a failure rate of

3.68 × 10−8 (i.e., “7 nines” of reliability).

Intuitively, failures caused by VM evictions are rare because they require two low-

100

probability events to happen simultaneously: a Harvest VM gets evicted while it is run-

ning a long invocation. VM evictions are also correlated and frequently happen in bursts,

with a large number of VMs evicted within a few seconds, as shown in Figure 4.8b.

Cold starts are also minimal when the workload runs on Harvest VMs. The average

simulated cold rate is 1.1967% in the Typical period, and 1.1981% in the Worst period,

increasing by 0.0084% and 0.1254% compared to regular VMs.

4.4.4 VM Migration/Snapshotting

An alternative, or even complementary approach, to increase the reliability of the server-

less framework hosted on Harvest VMs is to use VM live migration [52] or snap-

shot/restore [60, 133]. The idea is to run serverless applications in nested VMs hosted

by Harvest VMs, and migrate the nested VMs that correspond to long invocations when

the Harvest VM is warned of eviction. The main metric, however, is not the downtime

of the application, but the total time for which the source VM must be available. Be-

cause of the low invocation failure rate from Strategy 3, we leave using VM migration

to improve system reliability as future work.

4.4.5 Conclusion

When running solely on Harvest VMs, the failures caused by VM evictions are rare

while fully utilizing the cheap harvested resources. This is caused by the low joint

probability of a rare long-running execution during a Harvest VM eviction. As a result,

in the rest of the chapter, we assume all applications are hosted on Harvest VMs.

101

4.5 Handling Resource Variability

In this section, we develop a resource variation-aware load balancing policy for server-

less frameworks on harvested resources. We start with the well-known algorithm join-

the-shortest-queue (JSQ) [72], which aims to minimize the resource contention caused

by CPU variation. Based on that, we then present our min-worker-set (MWS) algorithm,

which aims to reduce the container cold start rate for serverless workloads while reduc-

ing resource contention.

4.5.1 Join-the-Shortest-Queue (JSQ)

JSQ is a CPU-aware load balancing algorithm. The load balancer monitors the com-

pute load of each backend VM and allocates an invocation to the VM that has the least

amount of pending work. This effectively reduces queueing time and resource con-

tention, leading to shorter end-to-end latencies.

Since the ground truth of pending compute work is unknown in advance, we ap-

proximate it with a weighted sum of CPU and memory utilization wc
cpuused
cpuavail

+ wm
memused
memavail

,

with wc > wm to reflect the scarcity of allocated CPUs. We show that the weighted

utilization of CPU and memory is a better usage metric than the number of pending

invocations (queue length) at an invoker, or the sum of expected resource usage of pend-

ing invocations (weighted queue length). This is because queue length does not account

for varying function resource needs, and weighted queue length can deviate from the

ground truth, due to insufficient samples and different function inputs. The utilization

metric also captures the variation of allocated CPUs of Harvest VMs, and avoids star-

vation by stopping assigning invocations to VMs that suffer from excessive resource

102

shrinkage. In terms of overhead, the complexity of each scheduling operation is O(N),

where N is the number of backend VMs in the system. The scheduling overhead can

be reduced by randomly sampling a subset of d backend VMs and choosing the least

loaded one [45, 136, 110], although at the expense of scheduling quality.

4.5.2 Min-Worker-Set (MWS)

In serverless computing, the end-to-end latency of an invocation includes cold start time,

queueing time and execution time. Although JSQ can reduce queueing time by prevent-

ing long queues and execution time by alleviating resource contention, it can potentially

increase the cold start rate and harm the end-to-end latency. Assuming that a function

has a Poisson arrival process with arrival rate λ, and the serverless platform has N back-

end VMs, JSQ will distribute the invocations across all N backend VMs. The resulting

invocation arrival rate on each backend VM will be λN . In a large system (i.e., large N),

the expected inter-arrival time N
λ

is more likely to be larger than the container keep-alive

time of serverless platform, increasing the chance of cold starts.

We design the MWS algorithm to jointly reduce queueing time, execution time, and

cold starts. This is inspired by the intuition that, in the common case, where the compute

resources of the system are not overloaded, slight imbalance of invocation assignment

among invokers is unlikely to cause resource contention and queueing leading to in-

creased latency. MWS consolidates each function to a minimal set of k backend VMs

that have adequate resources to accommodate all invocations of the function. The invo-

cation arrival rate on individual backend VMs becomes λk . With k ≪ N, the invocation

inter-arrival time in MWS is much shorter than JSQ. Thus, it is very likely to be shorter

than the container keep-alive time, enabling warm starts. The sketch of MWS is shown

103

in Algorithm 3. For each function f , the load balancer assigns it a home VM as the

beginning of the search process, and estimates its resource usage u f as the product of

requests per second (RPS), expected resource usage, and expected duration. The load

balancer keeps adding new VMs to the worker set s until the total usable resources r of

all VMs in the set s exceeds the estimated usage of the function u f . Finally, the load

balancer picks the least loaded VM in the worker set s to execute the invocation, where

the load is defined as the weighted sum of CPU and memory utilization as in JSQ.

Algorithm 3: Min-worker-set (MWS) algorithm
Input: Function f ;
Function: Expectation E; Consistent hashing CH;
Variable: Requests per second RPS f ;
Variable: CPU usage CPU f ;
Variable: Invocation latency lat f ;
u f = RPS f · E(CPU f) · E(lat f);
r = 0, s = ∅;
V M = CH(f);
while r < u f do

r = r + usable resources(V M);
s = s ∪ V M;
V M = next(V M);

end
return argminV M{load(V M) | V M ∈ s}

In the common case that the system is not overloaded, MWS is more scalable than

JSQ, with minimum scheduling overhead. For each invocation, the controller only needs

to search for the least loaded invoker in the worker set of the function (i.e., usually

a small number) rather than searching among all invokers. In the worst case that the

system is running at full utilization, the scheduling overhead increases with the load of

the system and converges to JSQ as MWS spans all backend VMs. Compared to JSQ,

MWS can also reduce the number of functions allocated to each VM, thus reducing the

storage space occupied by function images.

Dealing with VM evictions. Harvest VM evictions can be detrimental to the perfor-

104

mance of the MWS algorithm, because VM failure and redeployment lead to variation

in the number of VMs in the system, and thus reshuffling of home VMs for all func-

tions, making cold starts dominant. To minimize the number of functions that need to

be reshuffled and thus minimize cold starts, we use consistent hashing. Thus, whenever

the number of VMs changes, home VMs are only reshuffled for a minimal number of

functions.

In consistent hashing [81], all VMs in the system are assigned a hash ID within [0, I]

where I is much larger than the number of VMs in the system, so that VMs are uniformly

distributed in the ID space. Conceptually, all VMs in the system are organized into a

ring with VM IDs increasing clockwise, except VM I, whose next VM in the ring is VM

0. Functions are mapped to and uniformly distributed in the same ID space [0, I] and

are assigned next VM in clockwise direction (to the ID of the function) as home VM.

As the VM IDs are uniformly distributed, the expected number of functions assigned to

each VM are identical. When an existing VM crashes or a new VM joins the system,

only functions originally assigned to the crashed VM or the new VM are reshuffled.

4.6 Implementation

We implement our proposed resource-variation-aware load balancing scheme on Open-

Whisk [107], a popular open source serverless platform developed by IBM. In this sec-

tion we first describe the architecture of OpenWhisk and then the changes we made for

Harvest VM-aware load balancing.

105

Controller

Kafka

Function-1
Container

Invoker
Harvest Monitor Harvest Monitor Harvest Monitor

Invoker Invoker

Function-2
Container

Function-3
Container

NGINX

Controller

Harvest VM Harvest VM Harvest VM

Resource Monitor

Figure 4.11: Architecture of our resource-variation-aware load balancing solution on
OpenWhisk. The dotted lines show our modifications and components not present in
vanilla OpenWhisk.

4.6.1 OpenWhisk Architecture

Figure 4.11 shows the architecture of OpenWhisk including the modifications we have

made represented by in dotted lines. NGINX acts as a reverse proxy of the system and

exposes a public HTTP endpoint to clients and forwards user requests to Controllers.

The Controller performs load balancing and selects an Invoker instance to execute the

function invocation. OpenWhisk by default implements memory bin packing: the Con-

troller keeps track of memory usage of all pending invocations that are issued and iter-

atively directs all incoming invocations to one Invoker until the memory quota of that

Invoker is exhausted. Controllers do not communicate with each other, and each Con-

troller has access to all Invokers. The message delivery system between Controllers and

Invokers is implemented using Kafka [3]. Invokers are usually deployed per VM and

106

each manages a pool of containers, which are Docker containers by default. Depending

on whether a suitable container exists, a function invocation is assigned to an existing

container (warm start), or a newly created one (cold start). Existing containers are re-

moved after a fixed keep-alive period (10 minutes by default) and when usable memory

is inadequate to allocate a new container. Invocation results are stored in CouchDB for

later retrieval.

4.6.2 Harvest VM-Aware Load Balancing

We modify both the Invoker and the Controller to implement the resource variation-

aware MWS load balancing algorithm.

Invoker. We modify the Invoker so it can efficiently use the dynamically changing

number of available CPUs. We introduce a module called Harvest Monitor in each

Invoker that is responsible for periodically gathering: (a) the latest number of CPUs

allocated to the Harvest VM using Hyper-V Data Exchange Service [43]; (b) the cumu-

lative CPU time using cpuacct.usage interface from cgroups [89]; and (c) any scheduled

deallocation event for the VM using Azure Metadata Service [100]. This information is

embedded into the health pings that the Invoker sends to the Controller every second.

All function containers for the same user run in the same cgroup so that we can

gather CPU utilization statistics. For each function invocation, the Invoker collects its

(a) execution duration and (b) CPU usage by querying the cgroup for its container. The

Invoker embeds the information in the invocation response message back to the Con-

troller. In addition, the Invoker performs admission control by computing the current

utilization as (cpuusage

cpuavail
); if this is higher than a predefined threshold, new function invoca-

tions are delayed.

107

Controller. We modify the Controller to receive the additional information collected

by the Harvest Monitors through the Invoker health pings. The Controller updates its

local data structures with this information (off the critical path, using Scala Actors). It

maintains (a) CPU usage, (b) available CPUs, and (c) eviction notifications events for

each Invoker. If an Invoker has an eviction notification, the Controller stops sending

new invocations to it. The Controller maintains local per-function histograms of the ob-

served execution times and CPU usage. Each Controller independently constructs these

histograms which eventually converge to similar values as more samples are collected.

The Controller also maintains a per-function invocation arrival rate which is periodically

updated. We multiply the arrival rate observed locally with the number of Controllers in

the system (available at startup) to get an estimated total invocation arrival rate.

We use the expected values computed from the execution time and CPU usage his-

tograms along with the estimated total invocation arrival rate as inputs to execute the

MWS algorithm for the function. To mitigate the potential user load oscillation and

smooth the worker set size changes, we set a minimal interval of 30 seconds between

worker reductions.

Finally, the Controller also maintains the mapping of functions to their hash ID

(used in assigning home VM based on consistent hashing) and hash IDs to list of

functions (used for function to home VM assignment update in the face of Invoker ar-

rival/departure) as described in Section 4.5.2.

Resource Monitor. We introduce a separate module per deployment, called Resource

Monitor, to track the resource variation in our system. It periodically queries for the

total available resources (e.g. CPUs) and spins up new VMs to maintain a minimum

pool of available resources, if they fall below a pre-configured threshold. As mentioned

in Section 4.4.1, this is important because reduction in the CPUs or eviction of Harvest

108

VMs reduces the available resources and can adversely impact service quality.

4.7 Evaluation

We first demonstrate the benefits of the MWS algorithm compared to JSQ and the default

load balancing algorithm of OpenWhisk. Then we demonstrate the benefits and cost

savings of Harvest VMs for hosting serverless workloads.

4.7.1 Experiment Setup

For this evaluation, we deploy OpenWhisk (PR#4611) [108] on Azure with Ansi-

ble [37]. We use one controller VM and a variable number of invokers with their

own VMs. The controller VM contains core OpenWhisk components, including two

controllers, NGINX and CouchDB. In this section, we use cluster size to refer to the

number of invoker VMs.

We port multiple Python serverless functions from FunctionBench [82] to Open-

Whisk as the benchmark (Table 4.2). We create a Docker image for each function for

a total of 401 functions. We use Locust [14] to generate the workload with a Poisson

arrival process, and MinIO [101] as the object store to serve the input data. We use the

99th percentile latency denoted P99 as the SLO metric and set it to 50 seconds, which

clearly indicates saturation for our benchmarks.

The experiments use actual Harvest VMs (where we cannot control how their re-

sources vary) and Harvest VM traces. When using traces, each trace corresponds to

a Harvest VM. To emulate the CPU changes from the trace on a regular VM, we use

109

Functions Description

Floatop Sine, cosine & square root
Matmult Square matrix multiplication
Linpack Linear equation solver
Chameleon HTML table rendering
Pyaes AES encryption & decryption
Image processing Flip, rotate, resize, filter

& grayscale images
Video processing Grayscale video
Image classification MobileNet inference
Text classification Logistic regression

Table 4.2: The examined serverless functions from FunctionBench [82] and their de-
scription.

cgroups to set the CPU limit of the parent Docker group of all user invocations. Each

experiment runs for 20 minutes unless otherwise stated.

4.7.2 Impact of Load Balancing

First, we compare three load balancing algorithms: min-worker-set (MWS), join-the-

shortest-queue (JS Q), and vanilla OpenWhisk (Vanilla). We deploy OpenWhisk with

10 invokers, each hosted by a regular VM with 32 CPUs and 128 GB of memory. The

CPUs of the invokers are asymmetric, with the maximum of 28 and the minimum of

5, to mimic the resource heterogeneity in Harvest VM clusters. Figure 4.12 depicts the

P99 latency of the three algorithms.

Throughput. We evaluate the throughput without breaking the SLO of each policy.

MWS achieves a throughput 22.6× higher than the vanilla OpenWhisk load balancing.

Vanilla has the worst throughput because it only considers memory and keeps allocat-

ing invocations to an invoker until the memory capacity of the invoker is exhausted.

However, because of the scarcity of CPUs on some Harvest VMs, CPU tends to satu-

110

0 5 10 15 20 25 30
Requests per second

20

40
50
60

80

100

120

P9
9

la
te

nc
y

(s
ec

)

MWS
JSQ
Vanilla

Figure 4.12: P99 latency across load balancing algorithms.

rate at much lower load than memory. The CPU saturation caused by vanilla is also

exacerbated by the heterogeneity of VM CPUs in the test cluster because even if there

are additional CPU resources in the cluster, the invoker with the least CPUs will always

saturate at low loads. MWS has a throughput 1.6× higher than JSQ because it improves

locality.

Cold starts. Better locality reduces the cold start rate. Figure 4.13 compares the cold

start rate of MWS and JSQ at their non-saturating loads. At the same input loads, MWS

reduces cold starts between 56.0% and 75.9%. Figure 4.14 compares the latency of both

policies. It shows that reducing cold starts, we also reduce the latency. With our strategy,

we can provide the same latency with fewer VMs.

111

0 5 10 15 20 25
Requests per second

0

20

40

60

80

100

Co
ld

 st
ar

t r
at

e
(%

)

MWS
JSQ

Figure 4.13: Cold start rate of MWS vs. JSQ.

4.7.3 Impact of Resource Variability

We use Harvest VM traces that have frequent CPU changes with large change sizes

to show the worst-case performance. Although CPUs of Harvest VMs are relatively

stable in the normal case, they can also experience frequent and significant resource

changes as depicted in Figure 4.3. Frequent CPU changes are challenging to handle

since they require the load balancer to detect the changes and adjust task assignment

promptly. Significant CPU shrinkage has a direct impact on system performance since

pending activations on the Invoker that experiences significant shrinkage are prone to

severe resource contention, especially at high loads.

To study the worst-case performance of Harvest VMs, we select a set of Harvest VM

traces that have both extremely frequent and significant CPU changes. Specifically, we

choose 8 real Harvest VM traces among the traces with the highest change frequency

and large change size, and also synthesized 2 traces to control the total capacity of the

112

0 5 10 15 20 25
Requests per second

1

2

3

4

5

6

7

8

P9
9

la
te

nc
y

(s
ec

)

P25 MWS
P25 JSQ

P50 MWS
P50 JSQ

P75 MWS
P75 JSQ

Figure 4.14: Low percentile latency of MWS vs. JSQ.

cluster. The average CPU change interval in the set of 10 traces is 3.6 minutes, orders of

magnitude shorter the expected CPU change interval for the common case as discussed

in Section 4.3.1. The traces also include significant CPU shrinkage, with the maximum

shrinkage size being 26 CPUs, meaning that 81.3% of all CPUs are suddenly taken away

from an Invoker.

We compare the performance of this actively changing Harvest VM cluster (“Ac-

tive”) to two clusters: “Normal”, a Harvest VM cluster with normal variations, and

“Dedicated”, a cluster with dedicated resources using regular VMs. All three clusters

have 180 CPUs total. The “Normal” harvest cluster has stable per-VM CPUs, but the

size of each Harvest VM varies, with the largest VM having 28 CPUs and the smallest

VM having 5 CPUs. The “Dedicated” cluster has both stable and homogeneous per-VM

CPUs.

We compare the performance of these three clusters in Figure 4.15. “Active”

113

0 5 10 15 20 25 30
Requests per second

20

40
50
60

80

100

120

P9
9

la
te

nc
y

(s
ec

)
Active MWS
Normal MWS
Dedicated MWS
Active vanilla
Dedicated vanilla

Figure 4.15: Performance of harvest clusters in normal case (“Normal”), under frequent
and significant CPU changes (“Active”), and of the “Dedicated” cluster.

achieves 73.1% throughput of the “Normal” harvest cluster and 61.2% of the “Dedi-

cated” cluster. The frequent and significant CPU changes result in a higher cold start

rate for the “Active” harvest cluster compared to “Normal” harvest cluster at similar

loads as shown on the left side of Figure 4.16. The “Dedicated” cluster achieves 19%

higher throughput than the “Normal” cluster because the small VMs in “Normal” are

more prone to saturation at high loads. We also experiment deploying vanilla Open-

Whisk on the “Active” and “Dedicated” clusters. Vanilla OpenWhisk only achieves

39.0% throughput on “Active” compared to “Dedicated” cluster. This demonstrates that

MWS can better handle active resource variations. Even with the 26.9% performance

loss for the worst case, we show in the next section that running serverless comput-

ing workloads on Harvest VMs significantly outperforms running them on regular VMs

under the same cost budget.

114

0 5 10 15 20 25 30
Requests per second

0

10

20

30

40

Co
ld

 st
ar

t r
at

e
(%

) Active
Normal
Dedicated

0 10 20 30
Requests per second

0

10

20

30

40
Baseline
Lowest
Typical

High
Best

Figure 4.16: Cold start rate against load for fixed budget.

Discount devict(%) dharv(%) #VMs

Baseline (dedicated) 0 0 2
Lowest 48 48 6
Typical 70 80 12
High 80 90 18
Best 88 90 21

Table 4.3: Number of Harvest VMs with the same budget, based on the discount level.

4.7.4 Cost vs Performance

Cost. To evaluate the benefits of using harvested resources, we set a fixed budget

and compare how many Harvest VMs we can provision and the load we can serve. As

the budget baseline, we use two regular VMs with 16 CPUs and 64 GB of memory.

We use the cost model introduced in Section 4.2 where the minimum resources and

the harvested cores have a discount of devict and dharv respectively. Table 4.3 shows the

impact of the discounts. With the most pessimistic discount, we obtain 6 Harvest VMs,

and up to 21 with an optimistic discount configuration.

Performance. Figure 4.17 compares the performance of each of these cluster config-

urations. These harvest clusters have 1.9×, 4.6×, 7.8× and 9.7× more CPUs than the

baseline with 2 regular VMs. The throughput is 2.2×, 4.6×, 7.7× and 9.0× better as a

115

0 5 10 15 20 25 30 35
Requests per second

20

40
50
60

80

100

120
P9

9
la

te
nc

y
(s

ec
)

Baseline
Lowest

Typical
High

Best

Figure 4.17: Regular vs Harvest VMs with same budget.

result of cheaper harvested CPUs.

Cold start rate. The improvement in throughput is also reflected with lower cold start

rates for each load value as depicted in Figure 4.16 (right side). Notice that at very low

loads, all clusters have high cold start rates since the function invocations are spread

across many VMs but without significant impact on latency. As the load increases,

the cold start rate initially decreases in all configurations, and then increases as load

approaches system capacity (around 25% at saturation).

4.7.5 Harvest VMs vs Spot VMs

Harvest VMs and Spot VMs are both evictable VMs that leverage surplus resources. In

this section, we compare hosting serverless workload on Harvest VMs and Spot VMs

116

via simulation, and focus on reliability and cost.

Experiment setup. For a fair comparison, we create synthetic Spot VM and Harvest

VM traces with the idle resources of the same physical cluster (described in the charac-

terization of resource variability in Section 4.3.1). For Harvest VMs, we place one VM

on each node as long as the node can accommodate its base size, and the VM can harvest

all idle resources on the node. For Spot VMs, we place as many as VMs as will fit on

each node. Both Harvest VM and Spot VM are given a 30-second grace period before

eviction. We use the same serverless workload trace as in Section 4.3.2, and pick the

5-day snapshot with aligning weekdays as the VM traces. We also extend the simulation

framework in Section 4.4.1 to incorporate CPU usage: each invocation consumes one

CPU and an invocation is buffered when the cluster runs out of CPUs. New containers

are created on the VM with the least CPU utilization.

Sensitivity analysis. We analyze Harvest VMs with base size of 2, 4 and 8 CPUs

(referred to as H2 to H8), and Spot VMs with size of 2, 4, 8, 16, 32 and 48 CPUs

(referred to as S2 to S48), and the results are shown in Figure 4.18. CPUs × time is

normalized against the idle CPUs× time of the physical cluster, and price is normalized

against regular CPUs under the Typical configuration in Table 4.3.

Reliability. H2 achieves the lowest invocation failure with 4.31 × 10−6 (i.e., “5 nines”

of reliability). For Harvest VMs, the invocation failure rate increases with base size,

reaching 3.54 × 10−5 at H8. For Spot VMs, invocation failure rate reaches its minimum

of 1.00 × 10−4 at S2, but is significantly higher than Harvest VMs, being at least 23.2×

higher than H2. The invocation failure rate on Spot VMs reaches the maximum at S16

and decreases with VM size afterwards. This is because the fragmentation caused by

large VMs creates a larger buffer of unused resources that prevents VM eviction upon

shrinkage of idle resources. Cold start rates show similar trends for the same reason.

117

4.3e-4

3.5e-3

1.0e-2
1.3e-2
1.6e-2

In
vo

ca
tio

n
fa

ilu
re

 ra
te

 (%
)

0.0

0.5

1.0

1.5

Co
ld

 st
ar

t r
at

e
(%

)
H2 H4 H8 S2 S4 S8 S16S32S48

VM type

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
CP

U
s

×
tim

e

H2 H4 H8 S2 S4 S8 S16S32S48
VM type

0.0

0.1

0.2

0.3

No
rm

al
ize

d
pr

ice

Figure 4.18: Harvest VMs vs Spot VMs. Hx refers to Harvest VMs with base size of x
CPUs, and Sx refers to Spot VMs with x CPUs.

Cost. To calculate the price, we incorporate the additional per-VM cost incurred by

the framework installation as in [36]. Assuming an installation time of 10 minutes as in

Section 4.3.1, we use the following equation:

base core time × devict + harvest core time × dharv

base core time + harvest core time − install core time

With the same idle resources, Harvest VMs also provide more effective compute

power (CPUs × time) than Spot VMs at cheaper prices. H2 can utilize 99.62% of the

total idle compute power, and S2 can only utilize 91.67%. H2 offers an amortized per-

CPU price of 0.211$/hour, while the lowest per-CPU price of Spot VM is 0.313$/hour

(offered by S48). Harvest VMs are cheaper for two reasons: dharv being smaller than

devict, and less installation overhead as a result of less VM evictions. For Spot VMs, the

effective compute power decreases with VM size as a result of fragmentation.

118

VM type Base CPUs Max CPUs Memory

Harvest 2 6 16GB
Regular 8 8 32GB
Spot-4 4 4 16GB
Spot-48 48 48 192GB

Table 4.4: Characteristics of the Harvest VMs, regular VMs, and Spot VMs used in the
experiment in §4.7.6.

4.7.6 Running on Real Harvest VMs

We now demonstrate executing snapshots of the function traces on real Harvest VMs.

For this experiment, we cannot control the number of available CPUs and just report the

organic numbers.

Experiment setup. To reproduce the invocations from the function trace, we use CPU-

intensive loops with the same duration. Because the maximum number of concurrent

running invocations in the function trace is too high to fit in the size of our cluster, we

combine multiple 2-hour snapshots with fewer concurrent running invocations, making

it feasible to replay the function trace.

Figure 4.19 reports the number of concurrent running invocations (the peak is 120

invocations), and we provision a cluster with 150 CPUs so that its CPU utilization is

below 80%.

We test four clusters, consisting of Harvest VMs, baseline regular VMs, Spot-4 VMs

and Spot-48 VMs (Table 4.4). We deploy MWS OpenWhisk on the Harvest VM and

Spot VM cluster and the vanilla OpenWhisk on the regular VM cluster.

Utilization and performance. Figure 4.20 shows the total number of CPUs and the

utilization for the Harvest, regular and Spot clusters. All clusters show similar CPU

utilization patterns and the Harvest and Spot-48 clusters run all the functions with no

119

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (hours)

0

25

50

75

100

125

Co
nc

ur
re

nt
 in

vo
ca

tio
ns

Figure 4.19: Invocations in the combined function trace.

Percentile Harvest Spot-4 Spot-48

25th 56% 53% 53%
50th 47% 43% 52%
75th 32% 4% 38%
90th 41% 15% 55%
95th 74% 35% 83%
99th 62% 16% 81%

Table 4.5: Latency reduction at multiple percentiles of Harvest and Spot VM clusters
over regular VM clusters.

failure. Figure 4.21 shows the invocation latency distribution of the tested clusters.

Table 4.5 lists the latency reduction of Harvest and Spot VM clusters over the regular

VM cluster at different percentiles. Harvest VMs outperform other alternatives except

Spot-48 VM, because large VMs are less likely to be saturated, both in terms of CPUs

and memory. However, using large Spot VMs leads to lower resource utilization and

higher failure rate, as discussed in Section 4.7.5.

120

0

30

60

90

120

150

CP
Us Harvest total CPUs

Harvest CPU usage

0

30

60

90

120

150

CP
U

us
ag

e

Regular total CPUs
Regular CPU usage

0.0 0.5 1.0 1.5 2.0
Time (hours)

0

30

60

90

120

150

CP
Us Spot-4 total CPUs

Spot-4 CPU usage

0.0 0.5 1.0 1.5 2.0
Time (hours)

0

30

60

90

120

150

CP
U

us
ag

e

Spot-48 total CPUs
Spot-48 CPU usage

Figure 4.20: CPU number and cluster CPU utilization for Harvest VMs (upper left),
regular VMs (upper right), and Spot VMs with 4 CPUs (lower left) and 48 CPUs (lower
right).

Cost. We now compare the cost of Harvest VMs against regular VMs and Spot VMs,

and we assume that the Spot VM cluster has the same configuration as the regular VM

cluster. We analyze the four configurations of devict and dharv from Table 4.3. Com-

pared to regular VMs, Harvest VMs are 49%, 77%, 83% and 89% cheaper, respectively.

Compared to their Spot-4 VMs counterparts, they are 0%, 22%, 45% and 11% cheaper,

respectively. The worst case achieves no savings compared to Spot VMs because it

pessimistically assumes harvested CPUs have the same price as evictable CPUs. This

pricing is unlikely to happen in practice.

121

1ms 10ms 100ms 1s 10s 1m 10m
Invocation latency

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Harvest w. MWS wsk
Regular w. vanilla wsk
Spot-4 w. MWS wsk
Spot-48 w. MWS wsk

Figure 4.21: Response latency comparing MWS on harvested resources to vanilla Open-
Whisk running on dedicated resources.

4.7.7 Summary

We demonstrate the performance benefit of MWS load balancing. It achieves 22.6×

higher throughput than vanilla OpenWhisk, as it addresses resource variations. It also

improves locality, resulting in lower cold start rates. With MWS, we realize the ben-

efits of running serverless platforms on harvested resources, achieving lower cost and

better performance: Under the same cost budget, running serverless platforms on har-

vested resources achieves 2.2× to 9.0× higher throughput compared to using dedicated

resources; and with the same amount of provisioned resources, running serverless plat-

forms on harvested resources achieves 48% to 89% cost savings, with lower latency due

to better load balancing.

122

4.8 Conclusion

In this chapter, we propose to host serverless platforms on harvested resources. We

quantify the challenges of using harvested resources for serverless invocations, includ-

ing Harvest VM evictions and resource variation by characterizing the serverless work-

loads and Harvest VMs of Microsoft Azure. We demonstrate the reliability of hosting

serverless workloads on harvested resources with trace-driven simulation. We also de-

sign and implement a harvesting-aware serverless load balancer on OpenWhisk, with

which we demonstrate the performance and economic benefits of hosting serverless

platforms on harvested resources.

123

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary and Contributions

In this dissertation, we have presented three resource managers for cloud-native systems,

including both microservices and serverless. In particular, we have made the following

contributions:

1. ML-based resource management of microservices: In the realm of microser-

vice resource management, the dependencies induced by inter-service communi-

cation, or backpressure effect, as well as the diverse resource requirements of

individual microservices, pose significant challenges. Sinan demonstrates the

effectiveness of Machine learning (ML) models in addressing these challenges.

Specifically, Sinan (Chapter 2) shows that ML models can capture both the spa-

tial and temporal correlations between per-service performance metrics, leading

to accurate predictions of end-to-end performance and Service Level Agreement

(SLA) violation status. The prediction can then be used to guide resource alloca-

tion decisions. Moreover, Sinan highlights the importance of a balanced dataset

that includes an equal share of SLA violation and satisfaction, for the effective-

ness of ML models. To create the balanced dataset, Sinan proposes the use of an

exploration algorithm designed to trigger the corner cases of SLA violations.

2. Lightweight models with better performance and minimal overhead: Despite

outperforming traditional approaches, ML-driven approaches require a lengthy

exploration process that triggers to a high number of SLA violations, hindering

their practical use. To reduce the complexity of modeling microservice perfor-

124

mance, we further investigate the backpressure-free conditions which guarantee

that each service can considered independent for the purpose of resource manage-

ment. With the backpressure-free conditions, we proposes Ursa, which uses an

analytical model to decompose the end-to-end SLA into per-service SLAs, and

maps them to resource allocations. Ursa outperforms ML-driven approaches with

a more lightweight model while significantly shortening the exploration process

and reducing the exploration-induced SLA violations. Ursa highlights the bene-

fits of domain specific analytical models: compared to deep neural networks that

can fit arbitrary function but requires large amounts of training data, analytical

models designed with expert knowledge can be more performant, efficient and

lightweight.

3. Efficiently and safely hosting serverless with harvested resources: In order

reduce the infrastructure provisioning cost and deliver a better serverless product,

we propose to host serverless platforms on harvested resources. We demonstrate

the reliability of hosting serverless workloads against Harvest VM evictions, and

design a harvesting-aware load balancer to handle Harvest VM resource variation

while minimizing cold start. We also demonstrate the performance and economic

benefits of Harvest VMs, and its superiority to other type of resource harvesting

VMs.

5.2 Open Problems

Despite the research contributions presented in the thesis, there are still open problems

regarding efficient resource management for cloud native systems.

Transparently reducing network stack overhead. Network stack contributes a

125

substantial portion of latency and computation to microservices and is often a bottleneck

for increasing resource utilization. This is due to frequent interrupts and switches be-

tween user and kernel space that are required for network processing. While user space

networking technologies such as DPDK [26] and RDMA [79] have shown promise in

reducing network stack latency and boosting resource utilization for network-intensive

applications, they require substantial modifications to the applications and present addi-

tional challenges in multi-tenant scenarios. Therefore, developing user space network-

ing technologies that are compatible with the socket interface and can operate effectively

in multi-tenant environments would represent a significant advance in the performance

and resource utilization of microservices. This area requires further research and engi-

neering efforts.

Resource management for blackbox services. In the thesis we assume a rela-

tively transparent setting where operators have access to information such as microser-

vice topologies, user loads, and service latency. However, in some cases, microservice

topologies may be unknown, and real-time latency measurements may be difficult to ob-

tain. Furthermore, in some situations, only resource utilization at the VM level may be

available. Managing resources and maintaining SLAs in these blackbox scenarios can

be particularly challenging, and further research is needed to develop effective strategies

for resource allocation and SLA enforcement in these contexts.

Fast VM checkpointing and migration. Fast VM checkpointing and migration

techniques are essential to eliminate invocation failures caused by VM evictions. Al-

though such failures are rare in practice as demonstrated in the thesis, a theoretical

guarantee on failure rate is lacking. To completely eliminate invocation failure caused

by VM eviction, the culprit VM should be checkpointed and migrated within the evic-

tion grace period. To achieve this, further research and engineering efforts are required

126

on lightweight VM technologies that can support fast checkpointing and migration. By

developing such techniques, we can ensure that serverless workloads are always robust

and reliable in the face of Harvest VM evictions.

5.3 Future Work

We believe our contributions open up several directions for future work

1. Unified framework for microservices and serverless: Microservices and

serverless are similar and share much of the infrastructure. For the stateless

part, the difference can be attributed to event-driven or RPC-connected long-

running containers versus event-driven ’one-off’ containers. There are trade-offs

to be made between performance and cost when using both approaches, so a uni-

fied framework is needed that can automate these trade-offs and minimize cost

while providing good performance. The framework should keep the program-

ming model as simple as serverless and dynamically adapt the underlying imple-

mentation to serverless or microservices depending on load patterns and function

execution times. For the stateful part, serverless frameworks typically offer fault

tolerance by persisting intermediate results, and provide commit guarantees such

as causally consistent commit, whereas microservices require user to implement

such guarantees themselves. A unified framework should provide an interface for

user to specify desired commit guarantees and provide default options for both

serverless and microservice implementations.

2. Hosting microservices with harvested resources: Hosting microservices with

Harvest VMs also has the potential of significant cost savings, but there are sev-

eral challenges. Microservice containers are long-running, which makes them

127

more susceptible to failures caused by Harvest VM evictions. The orchestration

framework should be able to predict the lifetime of Harvest VMs, and migrate

or gracefully terminate microservice containers in advance. Furthermore, long

running containers are also more susceptible to performance instability due to

Harvest VM resource variation. The orchestration framework also needs to antic-

ipate resource variation and adjusts load balancing decisions in advance to avoid

performance degradation.

3. Overcoming backpressure: The backpressure effect in RPC-connected mi-

croservices increases the complexity of resource management and also limits re-

source utilization. Backpressure is mainly caused by queuing in the network stack

when the system runs out of resources such as connections. Accelerated networks,

particularly user-level networking techniques such as DPDK and RDMA, have the

potential to help alleviate this phenomenon. The challenge, however, is to apply

these techniques transparently to the microservices framework.

4. Optimal resource allocation for serverless workflow: We demonstrate the per-

formance benefit of applying ML or analytical models to microservice resource

management. The proposed techniques can also be applied to serverless work-

flows which also have topologies and are subject to SLA constraints.

128

BIBLIOGRAPHY

[1] Alibaba Cloud Container Service for Kubernetes. https://www.
alibabacloud.com/product/kubernetes.

[2] Amazon Elastic Kubernetes Service. https://aws.amazon.com/eks/.

[3] Apache Kafka. https://kafka.apache.org/.

[4] Azure Kubernetes Service. https://azure.microsoft.com/en-us/
products/kubernetes-service/#overview.

[5] Dapr: APIs for building portable and reliable microservices. https://dapr.
io/.

[6] Decomposing twitter: Adventures in service-oriented ar-
chitecture. https://www.slideshare.net/InfoQ/
decomposing-twitter-adventures-in-serviceoriented-architecture.

[7] Docker Container. https://www.docker.com/.

[8] FFmpeg: A complete, cross-platform solution to record, convert and stream audio
and video. https://ffmpeg.org/.

[9] Google Kubernetes Engine. https://cloud.google.com/
kubernetes-engine.

[10] gRPC: A high performance, open source universal RPC framework. https:
//grpc.io/.

[11] Gurobi Optimization. https://www.gurobi.com/.

[12] Hugging Face. https://huggingface.co/.

[13] Kubernetes: Production-Grade Container Orchestration. https://
kubernetes.io/.

[14] Locust: A modern load testing framework. https://locust.io/.

[15] OpenCV Face Recognition. https://opencv.org/.

129

[16] Prometheus. https://prometheus.io/.

[17] Redis. https://redis.io/.

[18] Redis streams tutorial. https://redis.io/docs/data-types/
streams-tutorial/.

[19] Step and simple scaling policies for amazon ec2 auto scaling. https:
//docs.aws.amazon.com/autoscaling/ec2/userguide/
as-scaling-simple-step.html.

[20] The evolution of microservices. https://
www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference, 2016.

[21] Advantages of Cloud Computing. https://cloud.google.com/learn/
advantages-of-cloud-computing, 2023.

[22] Azure blob storage. https://azure.microsoft.com/en-us/
products/storage/blobs, 2023.

[23] Azure: what is cloud native? https://learn.microsoft.com/en-us/
dotnet/architecture/cloud-native/definition, 2023.

[24] Benefits of Cloud Migration. https://azure.microsoft.
com/en-us/resources/cloud-computing-dictionary/
benefits-of-cloud-migration/#benefits, 2023.

[25] Containerd: an industry-standard container runtime with an emphasis on simplic-
ity, robustness and portability. https://containerd.io/, 2023.

[26] Data plane development kit (dpdk). https://www.dpdk.org/, 2023.

[27] Istio: simplify observability, traffic management, security, and policy with the
leading service mesh. https://istio.io/latest/, 2023.

[28] Koordinator: QoS based scheduling system for hybrid workloads orchestration
on Kubernetes. https://koordinator.sh/, 2023.

[29] Open Container Initiative. https://opencontainers.org/, 2023.

[30] Podman (Pod Manager tool). https://podman.io/, 2023.

130

[31] Zipkin. https://zipkin.io/, 2023.

[32] Microservices workshop: Why, what, and how to get there.
http://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[33] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight
Virtualization for Serverless Applications. In NSDI, 2020.

[34] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards High-
Performance Serverless Computing. In USENIX ATC, 2018.

[35] Amazon Web Services. AWS Lambda. https://aws.amazon.com/
lambda/, 2021.

[36] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,
Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, and Ri-
cardo Bianchini. Providing SLOs for Resource-Harvesting VMs in Cloud Plat-
forms. In OSDI, 2020.

[37] Ansible. Ansible is Simple IT Automation. https://www.ansible.com/,
2023.

[38] AWS. Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/
spot, 2021.

[39] AWS. AWS Burstable performance instances. https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/
burstable-performance-instances.html, 2021.

[40] Azure. Azure Burstable VMs. https://docs.microsoft.com/en-us/
azure/virtual-machines/sizes-b-series-burstable, 2021.

[41] Azure. Pricing - Linux Virtual Machines — Microsoft Azure .
https://azure.microsoft.com/en-us/pricing/details/
virtual-machines/linux/, 2021.

[42] Azure. Use Azure Spot Virtual Machines. https://docs.microsoft.
com/en-us/azure/virtual-machines/spot-vms, 2021.

131

[43] Microsoft Azure. Hyper-V Integration Services. https:
//docs.microsoft.com/en-us/virtualization/
hyper-v-on-windows/reference/integration-services.

[44] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping
Qian, Ming Wu, and Lidong Zhou. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In OSDI, 2014.

[45] Maury Bramson, Yi Lu, and Balaji Prabhakar. Randomized Load Balancing with
General Service Time Distributions. 2010.

[46] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
A case for serverless machine learning. In Workshop on Systems for ML and Open
Source Software at NeurIPS, 2018.

[47] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.
Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):1–26, 2008.

[48] Shuang Chen, Christina Delimitrou, and José F Martı́nez. Parties: Qos-aware
resource partitioning for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 107–120. ACM, 2019.

[49] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA,
2016. ACM.

[50] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and ef-
ficient machine learning library for heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015.

[51] Ka-Ho Chow, Umesh Deshpande, Sangeetha Seshadri, and Ling Liu. Deeprest:
deep resource estimation for interactive microservices. In Proceedings of the
Seventeenth European Conference on Computer Systems, pages 181–198, 2022.

[52] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migration of Virtual
Machines. In NSDI, 2005.

132

[53] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fon-
toura, and Ricardo Bianchini. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles, pages 153–
167. ACM, 2017.

[54] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[55] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel.
Hawk: Hybrid datacenter scheduling. In USENIX ATC, 2015.

[56] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Houston, TX, USA, 2013.

[57] Christina Delimitrou and Christos Kozyrakis. Quality-of-Service-Aware
Scheduling in Heterogeneous Datacenters with Paragon. In IEEE Micro Spe-
cial Issue on Top Picks from the Computer Architecture Conferences. May/June
2014.

[58] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and
QoS-Aware Cluster Management. In Proceedings of the Nineteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), March 2014.

[59] Peter J Denning. The working set model for program behavior. Communications
of the ACM, 11(5):323–333, 1968.

[60] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In ASPLOS, 2020.

[61] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. Jockey: Guaranteed Job Latency in Data Parallel Clusters. In EuroSys,
2012.

[62] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. From Laptop to Lambda: Out-
sourcing Everyday Jobs to Thousands of Transient Functional Containers. In
USENIX ATC, 2019.

133

[63] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasub-
ramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter,
and Keith Winstein. Encoding, Fast and Slow: Low-latency video processing
using thousands of tiny threads. In NSDI, 2017.

[64] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. Above the clouds: A
berkeley view of cloud computing. Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, 28(13):2009, 2009.

[65] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage:
practical and scalable ml-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 135–151, 2023.

[66] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Yuan He, and Christina De-
limitrou. An open-source benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 3–18. ACM, 2019.

[67] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant Resource Fairness: Fair Allocation of Multiple Re-
source Types. In NSDI, 2011.

[68] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit alloca-
tion indices. John Wiley & Sons, 2011.

[69] Kristina Gligorić, Ashton Anderson, and Robert West. How constraints affect
content: The case of twitter’s switch from 140 to 280 characters. In Twelfth
International AAAI Conference on Web and Social Media, 2018.

[70] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and Steven
Hand. Firmament: Fast, centralized cluster scheduling at scale. In OSDI, 2016.

[71] Google. Google cloud functions. https://google.com/functions/,
2023.

[72] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. Analysis of

134

Join-the-Shortest-Queue Routing for Web Server Farms. Performance Evalua-
tion, 64(9-12):1062–1081, 2007.

[73] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[74] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. Quincy: fair scheduling for distributed computing clusters. In
SOSP, 2009.

[75] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
Occupy the Cloud: Distributed Computing for the 99%. In SoCC, 2017.

[76] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. Cloud programming simplified: A berkeley view on serverless
computing. arXiv preprint arXiv:1902.03383, 2019.

[77] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo
Goiri, Subru Krishnan, Janardhan Kulkarni, et al. Morpheus: Towards automated
slos for enterprise clusters. In SOSP, 2016.

[78] Kostis Kaffes, Neeraja J Yadwadkar, and Christos Kozyrakis. Centralized Core-
Granular Scheduling for Serverless Functions. In SoCC, 2019.

[79] Anuj Kalia, Michael Kaminsky, and David G Andersen. Design guidelines for
high performance {RDMA} systems. In 2016 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 16), pages 437–450, 2016.

[80] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas, Kishore
Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya, Raghu Ramakr-
ishnan, and Sarvesh Sakalanaga. Mercury: Hybrid centralized and distributed
scheduling in large shared clusters. In USENIX ATC, 2015.

[81] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In STOC, 1997.

135

[82] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for
serverless cloud function service. In CLOUD, 2019.

[83] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. Understanding ephemeral storage for serverless analytics.
In USENIX ATC, 2018.

[84] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless analyt-
ics. In OSDI, 2018.

[85] Kubernetes. Kubernetes cpu management policy. https:
//kubernetes.io/docs/tasks/administer-cluster/
cpu-management-policies/, 2023.

[86] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,
a social network or a news media? In Proceedings of the 19th international
conference on World wide web, pages 591–600. AcM, 2010.

[87] Ailsa H Land and Alison G Doig. An automatic method for solving discrete
programming problems. In 50 Years of Integer Programming 1958-2008, pages
105–132. Springer, 2010.

[88] Benjamin D Lee, Michael A Timony, and Pablo Ruiz. DNAvisualization.org: A
Serverless Web Tool for DNA Sequence Visualization. Nucleic acids research,
47(W1):W20–W25, 2019.

[89] Linux. Cgroups. https://www.kernel.org/doc/Documentation/
cgroup-v2.txt, 2023.

[90] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. Towards energy proportionality for large-scale latency-critical work-
loads. In Proceedings of the 41st Annual International Symposium on Computer
Architecuture (ISCA). Minneapolis, MN, 2014.

[91] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. Heracles: Improving resource efficiency at scale. In Proc.
of the 42Nd Annual International Symposium on Computer Architecture (ISCA).
Portland, OR, 2015.

[92] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. Characterizing microservice dependency

136

and performance: Alibaba trace analysis. In Proceedings of the ACM Symposium
on Cloud Computing, pages 412–426, 2023.

[93] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang,
and Chengzhong Xu. The power of prediction: microservice auto scaling via
workload learning. In Proceedings of the 13th Symposium on Cloud Computing,
pages 355–369, 2022.

[94] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, So-
mali Chaterji, and Saurabh Bagchi. {ORION} and the three rights: Sizing,
bundling, and prewarming for serverless {DAGs}. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages 303–320,
2022.

[95] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer,
Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My vm is lighter
(and safer) than your container. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles, pages 218–233, 2017.

[96] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting al-
gorithms as gradient descent. In Proceedings of the 12th International Confer-
ence on Neural Information Processing Systems, NIPS’99, pages 512–518, Cam-
bridge, MA, USA, 1999. MIT Press.

[97] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich We-
ber, and Thomas F. Wenisch. Power management of online data-intensive ser-
vices. In Proceedings of the 38th annual international symposium on Computer
architecture, pages 319–330, 2011.

[98] Dirk Merkel et al. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux j, 239(2):2, 2014.

[99] Microsoft Azure. Azure functions. https://microsoft.com/en-us/
services/functions/, 2023.

[100] Microsoft Azure. Azure metadata service: Scheduled events for
linux vms. https://docs.microsoft.com/en-us/azure/
virtual-machines/linux/scheduled-events, 2023.

[101] MinIO. Minio - high performance, kubernetes native object storage. https:
//min.io/, 2023.

137

[102] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren
Nayak, and Vadim Sukhomlinov. Agile Cold Starts for Scalable Serverless. In
HotCloud, 2019.

[103] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel
Hagimont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. OFC: An
Opportunistic Caching System for FaaS Platforms. In EuroSys.

[104] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay
Agrawal, Srikanth Kandula, Stephen Boyd, and Matei Zaharia. Solving large-
scale granular resource allocation problems efficiently with pop. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pages
521–537, 2023.

[105] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Presented as part of the 10th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 13), pages 385–398,
2013.

[106] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid Task Provisioning
with Serverless-Optimized Containers. In USENIX ATC, 2018.

[107] OpenWhisk. Apache OpenWhisk Open Source Serverless Cloud Platform.
https://openwhisk.apache.org/, 2023.

[108] OpenWhisk. OpenWhisk Pull Request 4611. https://github.com/
apache/openwhisk/pull/4611, 2023.

[109] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Dis-
tributed, low latency scheduling. In Proceedings of SOSP. Farminton, PA, 2013.

[110] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Dis-
tributed, Low Latency Scheduling. In SOSP, 2013.

[111] Jun Woo Park, Alexey Tumanov, Angela Jiang, Michael A Kozuch, and Gre-
gory R Ganger. 3sigma: distribution-based cluster scheduling for runtime uncer-
tainty. In EuroSys, 2018.

138

[112] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In NSDI, 2019.

[113] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravis-
hankar K Iyer. Firm: An intelligent fine-grained resource management framework
for slo-oriented microservices. arXiv preprint arXiv:2008.08509, 2020.

[114] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and Michael
Kozych. Heterogeneity and dynamicity of clouds at scale: Google trace anal-
ysis. In Proceedings of SOCC. 2012.

[115] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. Heterogeneity and dynamicity of clouds at scale: Google
trace analysis. In SoCC, 2012.

[116] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust
you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1135–1144, 2016.

[117] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
arXiv preprint arXiv:2104.13869, 2023.

[118] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-
active graph analytics and visualization. In AAAI, 2015.

[119] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Prze-
myslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witu-
sowski, Steven Hand, and John Wilkes. Autopilot: workload autoscaling at
google. In Proceedings of the Fifteenth European Conference on Computer Sys-
tems, pages 1–16, 2020.

[120] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. What Serverless Computing is and Should Become: The
next Phase of Cloud Computing. Communication of the ACM, 2021.

[121] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
Omega: flexible, scalable schedulers for large compute clusters. In Proceedings
of EuroSys. Prague, Czech Republic, 2013.

139

[122] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 205–218, 2020.

[123] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:
elastic resource scaling for multi-tenant cloud systems. In Proceedings of SOCC.
Cascais, Portugal, 2011.

[124] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina Delim-
itrou, Robbert Van Renesse, and Hakim Weatherspoon. X-containers: Breaking
down barriers to improve performance and isolation of cloud-native containers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 121–135,
2019.

[125] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight Isolation for Efficient
Stateful Serverless Computing. In USENIX ATC, 2020.

[126] Akshitha Sriraman and Thomas F Wenisch. µ suite: a benchmark suite for mi-
croservices. In 2018 IEEE International Symposium on Workload Characteriza-
tion (IISWC), pages 1–12. IEEE, 2018.

[127] Akshitha Sriraman and Thomas F. Wenisch. µtune: Auto-tuned threading for
OLDI microservices. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 177–194, Carlsbad, CA, October 2018.
USENIX Association.

[128] Ion Stoica and Scott Shenker. From cloud computing to sky computing. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems, pages 26–32,
2023.

[129] Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin Ciucu. Dis-
tributed resource management across process boundaries. In Proceedings of the
2017 Symposium on Cloud Computing, pages 611–623. ACM, 2017.

[130] Apache thrift. https://thrift.apache.org.

[131] Tony Mauro. Adopting microservices at Netflix: Lessons for
architectural design. https://www.nginx.com/blog/
microservicesat-netflix-architectural-best-practices/.

140

[132] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-
Balter, and Gregory R Ganger. TetriSched: global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In EuroSys, 2016.

[133] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. Benchmarking, Analysis, and Optimization of Serverless Function Snap-
shots. 2021.

[134] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache Hadoop YARN: Yet Another Resource Negotiator. In SoCC,
2013.

[135] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. Large-scale cluster management at Google with
Borg. In Proceedings of the European Conference on Computer Systems (Eu-
roSys), Bordeaux, France, 2015.

[136] Nikita Dmitrievna Vvedenskaya, Roland L’vovich Dobrushin, and
Fridrikh Izrailevich Karpelevich. Queueing system with selection of the
shortest of two queues: An asymptotic approach. Problemy Peredachi
Informatsii, 32(1):20–34, 1996.

[137] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. Peeking Behind the Curtains of Serverless Platforms. In USENIX ATC,
2018.

[138] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, KK Ramakrishnan, Yangfei
Zheng, Meng Yan, Xiaohong Zhang, and Alex X Liu. Deepscaling: microser-
vices autoscaling for stable cpu utilization in large scale cloud systems. In Pro-
ceedings of the 13th Symposium on Cloud Computing, pages 16–30, 2022.

[139] Bernard L Welch. The generalization of ‘student’s’problem when several differ-
ent population varlances are involved. Biometrika, 34(1-2):28–35, 1947.

[140] Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for well-
conditioned, scalable internet services. ACM SIGOPS operating systems review,
35(5):230–243, 2001.

[141] Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang, and Ja-
son Mars. Powerchief: Intelligent power allocation for multi-stage applications
to improve responsiveness on power constrained cmp. In Proceedings of the

141

44th Annual International Symposium on Computer Architecture, ISCA ’17, page
133–146, New York, NY, USA, 2017. Association for Computing Machinery.

[142] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Edward Suh, and Christina
Delimitrou. Sinan: Ml-based and qos-aware resource management for cloud mi-
croservices. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
167–181, 2023.

[143] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu,
Beng Chin Ooi, and Junfeng Yang. Overload control for scaling wechat mi-
croservices. In Proceedings of the ACM Symposium on Cloud Computing, pages
149–161. ACM, 2018.

[144] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding.
Fault analysis and debugging of microservice systems: Industrial survey, bench-
mark system, and empirical study. IEEE Transactions on Software Engineering,
47(2):243–260, 2018.

142

