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A biologically inspired algorithm is presented to route messages in mobile wire-

less ad-hoc networks. Such computer networks are primarily characterized by

their quickly changing topologies due to frequent node mobility. The principles

of swarm intelligence are used to define a probabilistic algorithm for which rout-

ing through paths of maximum utility is an emergent property. This adaptive

algorithm, dubbed Termite, uses stigmergy to reduce the amount of control traffic

needed to maintain performance. Strong routing robustness is achieved through

the use of multiple paths; each packet is routed randomly and independently. Once

the basic operation of Termite is verified, alternative metric estimation techniques

are tested via simulation. Optimal system parameters are selected by testing over

orders of magnitude. A simple analytical model is built in order to explain the

simulation results. The model also used to propose two heuristics for determin-

ing the optimal pheromone decay rate. All of the enhancements to Termite, now

known as ReTermite, are consolidated and tested against Ad-hoc On-demand Dis-

tance Vector (AODV), a leading ad-hoc routing algorithm. ReTermite is shown to

be superior in many primary metrics and the reasons for this explained. Previous

heuristic models are also compared to simulation results.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis introduces, analyses, and develops a method for routing in mobile

wireless ad-hoc networks (MANETs) which is designed following the principles of

swarm intelligence. Packets are used to passively disseminate information about

the network while choosing each next-hop probabilistically according to local link

utility estimates. The routing algorithm is known as Termite.

The work is introduced with a review of all necessary background and previous

work in the general fields of swarm intelligence and network routing. This devel-

ops an understanding of the foundations upon which Termite is built and how it

extends the state-of-the-art. The Termite algorithm is introduced as a complete

solution to the MANET routing problem, along with a discussion of the merits of

a probabilistic routing approach and simulations to demonstrate its viability. The

algorithm contains many parameters and it is not generally known what values

will yield the best performance. Following chapters are dedicated to an analytical

and simulation-based analysis of the parameter space in order to determine per-

formance and parameter tradeoffs. The thesis is concluded with a resimulation of

Termite updated with all of the knowledge gained from the preceding chapters.

These simulations are compared against the Ad-hoc On-demand Distance Vector

(AODV) routing algorithm, a highly regarded solution from the state-of-the-art.

1
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1.1.1 Motivation

Current wireless communications technology is an advanced form of a basic con-

cept which has existed for several decades. The basic model includes a single

transceiver pair communicating over some distance. For example, the current cel-

lular communications systems which are extensively deployed have a number of

wire networked base stations, each of which services a specific area of wireless ter-

minal (cellular telephone) users. If users should happen to move outside of the

network’s coverage area then all service is lost. Ad-hoc technology seeks to remove

this constraint and extend the range of computer communications far beyond the

range of a single access point. This will be accomplished by allowing nodes to act

as routers in addition to their usual role as terminals. The promise of this technol-

ogy is great, however no standard exists to facilitate the deployment of production

ad-hoc networks. One of the greatest difficulties in reaching this goal is that the

ad-hoc environment offers a number of challenging situations which network de-

signers have not yet been able to overcome or even properly characterize. The

most serious of these is node mobility. Because users are able to move freely, the

topology of the network can change significantly over a short period of time. It is a

serious technical challenge for the network to recognize changes and automatically

adapt. Oftentimes so much control traffic is generated to determine the state of

the network that it is unable to successfully deliver any user data.

There exists an interesting analogy to the world of biology which may shed

some light on more applicable solutions to the network routing problem. Social

insect colonies exhibit many of the characteristics that networks should ideally

have. For instance, they are completely distributed in their operation, they are

robust against interference and component misfunction, they are adaptable, and
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they are composed of simple individuals. One might think of the relation between

an ant and an ant colony, as well as how an ant colony is able to adapt to its

surroundings in order to find food or to protect against predators.

By making simple analogies between ants and nodes, and ant colonies and

computer networks, a formalism can be created in order to study how the charac-

teristics of the former may be transferred to the latter. The work presented in this

thesis develops the formalism of the biological analogy beyond previous work. The

results progress engineering efforts in the field of mobile wireless ad-hoc networks.

1.2 Swarm Intelligence

Swarm Intelligence (SI) is a framework for designing systems of simple interacting

individuals. It is often coupled with the study of biological systems exhibiting the

characteristics of swarm intelligence, such as social insect societies. Characteristics

of interest include the interaction of many individuals following a predetermined

set of simple rules. Chapter Two provides a description of SI’s four design princi-

ples and demonstrates qualitatively how they can be used to structure solutions to

various problems. The principles are positive feedback, negative feedback, multiple

interactions, and randomness. The use of stigmergy and emergence are also re-

viewed. Examples of behavior by social insects, such as ants, social bees, termites,

or social wasps, are used to illustrate the use of the design principles. Once an

understanding is established of how swarm intelligence works on an intuitive level,

several engineering applications are given. SI has been most famously applied to

the fields of optimization, robotics, and artificial intelligence. The optimization

applications will be discussed in some detail. Their formalism will be reused to

solve the MANET routing problem.
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1.3 Mobile Wireless Ad-Hoc Networks

Mobile wireless ad-hoc networks (MANETs) are a collection of mobile computers

which are able to wirelessly communicate with each other. Each computer forwards

messages, or packets, in order to deliver them across distances larger than the range

of a single communications link. This field encompasses a large range of topics,

including many of those of its fifty year old parent, computer networks. One of the

most pressing is the routing problem; which nodes should forward a data packet on

its way to the destination? The problem is compounded because nodes are mobile;

the network topology changes often and requires the routing algorithm to be able

to find new routes quickly.

A large number of proposed routing algorithms have been published. They are

generally based on traditional routing solutions to wired networks. Both proactive

and reactive protocols are proposed. Examples of both types are given in order

to provide a good understanding of well-known approaches to the field. Swarm

intelligent solutions are then reviewed, both for wired and wireless networks. The

variety and similarities between approaches will be highlighted, and a general im-

plementation for SI routing is revealed as well.

Lastly, some approaches related to swarm intelligent routing are explained.

These are ideas which come close to SI routing, but are not quite the same. This

includes probabilistic routing, gossiping, routing with agents, and routing with

reinforcement learning. The end of Chapter Three concludes the review of previous

work. Future chapters will be concerned only with the development and analysis

of the Termite routing algorithm.
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1.4 Termite

Chapter Four introduces the subject of this thesis. Termite is a swarm intelligent

routing algorithm for mobile wireless ad-hoc networks. Based on previous work

in the field and the termite hill building analogy, Termite is designed to remedy

many of problems commonly associated with MANET routing algorithms. Pri-

marily, Termite aims to reduce the amount of control traffic necessary to maintain

acceptable performance in the network. The total number of transmissions neces-

sary to deliver a data packet should be minimized. One way in which this is done

is to institute a local route repair scheme where packets are simply forwarded to

another neighbor if the current communications link fails. If a node is entirely

unaware of a destination, then a route discovery process is initiated. Unlike the

traditional approach of flooding the network to search for a route, Termite takes

advantage of the broadcast communications environment and uses a random walk

to find routes. This approach manages to find routes to most destinations while

avoiding the cost of many packet transmissions.

There are many considerations when using a swarm intelligent algorithm such

as Termite for network routing. Termite’s probabilistic approach departs from

standard routing practice, which is based on deterministic algorithms on graphs.

Instead, Termite depends on a global routing solution as an emergent behavior,

the result of the interactions of many packets. Each of these packets collects

and distributes information about the network, known as pheromone, as it moves

through the network; exploring while traveling. A disadvantage of this approach is

that packets may lose themselves while exploring and die in the network. Termite

can only be considered a best-effort routing service and requires a reliable transport

layer implemented on top of it.
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Termite is shown to be an effective routing algorithm based on simple rules

following the principles of swarm intelligence. The pheromone update strategies

are controlled by positive and negative feedback, and the behavior of individual

packets is random and dependant on multiple interactions.

1.5 Pheromone Update in SI MANETs

Chapter Four shows that Termite can function effectively in the ad-hoc environ-

ment. There are many parameters and other procedural issues for which the op-

timal setting is unknown. This is like having a car without a steering wheel; the

algorithm works but it is not generally known how to control it. Chapter Five will

first offer some updates to Termite based on previous work. This includes true

continuous pheromone decay and source pheromone repel in the packet forwarding

equation. The new algorithm is then tested rigorously in order to determine the ef-

fect of various pheromone update techniques and parameter settings. No such com-

parison has been performed before. The results of this chapter will show that the

traditional method and its variants, generally known as pheromone filtering, per-

form the best out of a comprehensive list. The list includes techniques based on the

combination of many ideas including time-based and time-independent pheromone

decay, joint link pheromone estimation or link independent pheromone estimation,

pure random routing, and routing with perfect information. The pheromone sen-

sitivity and pheromone decay rate parameters are also varied in order to gain an

intuition on their relative effect on the global routing performance. In general,

high sensitivities and moderate decay rates are preferred. The results will set the

stage to improve the performance of Termite.
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1.6 Analysis of Pheromone Update in SI MANETs

With a host of empirical data from Chapter Five, the next step is to create an

analytical model which can reproduce the results of the simulation tests. An-

other interest is to be able to extend on those results and generalize with the

analytical models. Chapter Six develops a number of conclusions. The first is an

explanation for the performance of two of the best pheromone update techniques

tested in the previous chapter’s simulations, the γ pheromone filter and the nor-

malized γ pheromone filter. This is basically explained by the differing amounts of

pheromone maintained on active links. The second conclusion is the development

of two heuristics to determine the optimal pheromone decay rate. The pheromone

decay rate is a measure of how long network information is retained in order to

make routing decisions. The first model is based on the amount of time necessary

to decay the average amount of pheromone found on a link. The second model

determines this value based on a linear filtering perspective of the information

update procedure. A decay rate is determined from the cutoff frequency of the

pheromone filter.

1.7 ReTermite

All of the experience gained from working with Termite over the course of the the-

sis is brought together in order to update the routing algorithm and show how well

it can really perform. Termite is enhanced with source pheromone repel, the nor-

malized γ pheromone filter, probabilistic bellman-ford, true continuous pheromone

decay, and the optimal pheromone decay heuristics from Chapter Six. The new

algorithm is referred to as ReTermite and this chapter provides a complete rede-
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finition. It is tested against AODV, a leading standards-track MANET routing

algorithm. ReTermite is shown to be able to deliver more packets more efficiently,

especially at low speeds. However, it suffers from a larger end-to-end delay as it

spends more effort to bring hard-to-deliver packets to their destination. A com-

parison is also made to the decay rate heuristics with simulation results. These

show that ReTermite performance is heavily influenced by the proper parameter

selection, and also that the decay rate chosen for the majority of the simulations

was significantly suboptimal.

1.8 Conclusion

The final chapter will conclude the thesis with a discussion of the original con-

tributions to the state-of-the-art of the fields of swarm intelligence and ad-hoc

networking developed by this work. These are numerous and include the devel-

opment of Termite, the direct comparison of several different pheromone update

methods, the characterization of parameter influence, the extension of an analytical

model to analyze pheromone dynamics, the development of the pheromone filter

and associated pheromone decay rate heuristics, and the creation of ReTermite

and comparison with AODV.

Future work is discussed based on the development of Termite. Suggested are

additional effort on ReTermite to allows its use with asymmetric links, better de-

veloped and articulated parameter heuristics, new ideas for working on the network

routing problem with tools from linear systems, and also some trading of analysis

concepts with artificial intelligence, such as reinforcement learning.

The chapter and the thesis are concluded with some final remarks.



CHAPTER 2

SWARM INTELLIGENCE

2.1 Introduction

Swarm Intelligence (SI) is a framework for designing and analyzing large scale

systems composed of many simple locally interacting individuals [1]. The net result

of their actions is an emergent property of the system. The emergent behaviors

may be desirable or undesirable to the system designers, however they are the result

of the interactions between individuals, and not the result of a preprogrammed or

centrally controlled choreography.

This methodology is inspired and based upon observations of the behavior of

social insects such as ants, termites, social bees, or social wasps. These biological

systems embody many of the principles that man-made systems should have. They

are composed of a large number of simple and cheap components (workers), coop-

erating locally and independently to accomplish a global task that any individual

could not do alone. Colony behavior is often robust against a large number of

parameters such as individual misbehavior or loss. Such systems are also able to

adapt to the environment as is necessary.

Swarm intelligence is often considered a subfield to Artificial Life (AL) [2].

Artificial life is the study of designing machines with traits that mimic those of

biological counterparts. This is also referred to as biomimetics. Where SI is pri-

marily concerned with studying large systems of interacting individuals, AL is

broader and also looks at questions of self-replication, evolution, natural system

modeling, or borrowing ideas from nature in order to enhance engineering design.

Both SI and AL are generally thought to be subsumed by the even broader field

9
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of Artificial Intelligence (AI), which is ultimately concerned with understanding

“intelligent” behavior on all levels [3].

2.2 The Principles of Swarm Intelligence

There are four primary principles of the swarm intelligence design framework. They

describe how systems can be created to exhibit emergent properties by taking

advantage of the interactions of many individuals. The principles are positive

feedback, negative feedback, randomness, and multiple interactions. Each of these

principles describes a critical component of a swarm intelligent system, required to

elicit emergent behavior from a large group of simple individuals. An additional

principle, stigmergy, is also mentioned here due to its importance to the process,

however it is not explicitly required in all SI systems. The following paragraphs

introduce a qualitative explanation of each principle. Afterwards some examples

will be introduced in order to clarify the role of each.

Positive feedback is used to reinforce good solutions present in the system.

When a particular solution is found to be better than others, at least locally,

a positive feedback mechanism is needed in order to encourage the use of that

solution over all others.

Negative feedback is responsible for removing old or poor solutions from the

system. Coupled with the use of positive feedback, the system tends to use only

the best solutions available at any given time. It is important that positive and

negative feedback be carefully balanced. If the former outweighs the latter, too

many solutions will exist in the system and there will not be a clear indication

as to how a problem should be solved. If the latter outweighs the former, then

solutions will die out quickly and the problem cannot be solved at all.
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There is a need to test different solutions as they become available or change

in quality. The randomness principle enables this by allowing a swarm intelligent

algorithm to explore options at random. This is an effective strategy when the

number of possible solutions is large or the location and development of a good

solution is unpredictable.

Swarm intelligent algorithms rely on the multiple interactions of the individuals

in the system. Some amount of information that has been gathered locally may be

communicated in each interaction. Consequently, information from one portion of

the system may be transmitted to another. Multiple local interactions also allow

for events to be coordinated on a local scale. In an ad-hoc network, each node may

coordinate local routing information with neighbors during each communication.

Another perspective is to insist that swarm intelligence requires large popula-

tions of participating individuals. Because individual behaviors are often randomly

chosen, it is necessary to have many interactions in order to reliably determine the

information necessary to decide on a proper course of action. Having many individ-

uals will increase the interaction rate and make locally sensing system parameters

more reliable. Natural SI systems, such as social insects, often contain anywhere

from tens to millions of individuals.

Stigmergy is a method of indirect communication through effects on the envi-

ronment of the behavior of an individual, which another will use in deciding what

to do; it is the use of an outcome of previous work to guide current work. This

term was first introduced by Grassé in 1959 in order to describe a communication

mechanism of termites engaged in nest construction [4]. For instance, while ants

can communicate directly by feeling each other with their antennae, they also share

information via effects on their shared environment. This is often done through
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the use of an excreted volatile chemical compound called pheromone. Different

types of pheromone are used, varying concentrations of which will elicit different

behaviors. Another example is with bees, who may decide to gather nectar or store

food based on statistical information on the availability of food or food storers.

Stigmergy can become a useful communications channel as it offers a means

to eliminate possibly expensive or complex explicit and direct communication be-

tween individuals. Moving communications to the environment can oftentimes

maintain state for free and even increase the communications robustness; infor-

mation transfer can be made asynchronous between individuals. The environment

acts as a convenient broadcast medium for information, since all individuals exist

and interact with it.

There are two types of stigmergy, passive and active. The former is often asso-

ciated with the physical environment which will force a particular action despite

the agent’s intentions. The latter is the type of stigmergy that is considered in

this thesis; the environment simply influences an agent’s choice of behavior which

it then carries out [5].

Emergent behavior is often the intended product of a swarm intelligent system.

Individuals are intentionally simple, with the expectation that the net result of

their many interactions will produce the desired behavior of the system. Emergence

can be summarized by the intuition that “the whole is greater than the sum of the

parts.” A prime example of this principle is the behavioral differences in biological

examples such as between ants and ant colonies or bees and bee colonies. The

concept of emergence has also captured the attention of other fields, including

philosophy, mathematics, and music [6].
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2.3 Swarm Intelligent Models of Biological Behavior

This section will describe two common examples of natural emergent behavior

which can be explained with the swarm intelligent framework. In practice the

relationship is often reversed, where a natural system is analyzed and then modeled

using SI. The two examples are the path optimization behavior of ants and the

hill building behavior of termites. These examples will show how SI models can

be created, giving a strong foundation for putting engineering problems into the

SI framework. Examples of bees and wasps and further details may be found in

[1] and [7].

2.3.1 Ant Path Optimization

A classic SI model is that of the path optimizing behavior of ants. It is widely used

to motivate applications such as routing in computer networks and optimization.

Ants have been shown to adapt to their environment and always find the most

efficient path to their food source [8]. This is possible even when a shorter path

becomes available at a later time. The problem requires a global solution since all

paths must be continuously explored. These paths are often many meters long,

however each individual ant can only interact locally with its surroundings. Ants

must cooperate in order to find the shortest path. A solution to this problem is

explained below.

Consider a number of ants all traveling between their nest along a single avail-

able path to a food source (Figure 2.1a). As each ant returns with food, it deposits

a small amount of pheromone on the trail. Pheromone is a volatile chemical to

which ants are attracted. It evaporates over time, requiring that new pheromone
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be continuously laid or else it will disappear completely and the trail will vanish.

Ants leaving the nest are attracted to the pheromone trail laid by returning ants.

They are biased to follow it when they leave the nest looking for more food. This

example is uninteresting with only a single path. When an unevenly shaped ob-

stacle is placed between the nest and the food source, the ants are forced to choose

a way around it (Figure 2.1b). Because no pheromone exists around the obsta-

cle, ants travel in equal proportions around each side until resuming the original

pheromone trail. Since it takes longer for returning ants to travel around the longer

side of the obstacle, pheromone has more time to decay in between ant arrivals

(Figure 2.1c). The weakened pheromone trail along the longer route around the

obstacle is offset by the relatively strong trail on the shorter route; ants are able

to travel that route more frequently and thus reinforce the pheromone trail there

more often. Since ants are attracted to stronger pheromone trail, the shorter trail

is eventually favored by nearly all ants over the longer trail (Figure 2.1d). The

global optimization problem is solved. The ants adapt to a new environment and

are able to choose the shortest path.

(a) (b)

(c) (d)

Figure 2.1: Example of Path Optimization in Ant Foraging Behavior [9]



15

Swarm Intelligent Framework

The attraction of ants to pheromone represents the positive feedback in this swarm

intelligent system. A stronger pheromone trail is built on the shorter path, and

this allows ants to be drawn away from the suboptimal solution. As more ants

are attracted to the shorter path with the stronger pheromone trail, its intensity

grows even stronger, thereby attracting even more ants.

Conversely, pheromone evaporation limits the amount of pheromone that can

be placed on a trail. In the beginning of the example there are equal ants on both

routes around the obstacle, however the longer path is doomed to obsolescence

because the ants cannot possibly put enough pheromone on it fast enough to

overcome the bias of the shorter path. This effect is due to a combination of

the pheromone decay rate and the number of ants on that trail. Thus, pheromone

decay represents negative feedback. Old or unacceptable solutions, the longer path,

are slowly removed from the system.

This solution to the problem depends on both the many interactions of ants

over time and their random decisions. Many ants are required in order to test the

available paths to the food source. Each successive trip is a biased random choice

by each ant. Each ant may have a different experience as it travels between the

nest and the food source, and so these different experiences must be averaged out

over time. The pheromone decay mechanism helps in this regard, however it is

necessary for many ants to try the same path in order to accomplish this. Each

trip represents a statistical test of the system. The sum of all trips and decisions

by each ant is the eventual choice of the shortest path by the group.

The use of pheromone to communicate path quality is an example of active

stigmergy. There is no need for the ants to communicate directly. All of the
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necessary information needed to solve the shortest path problem is resident in the

pheromone laid on the ground.

Ultimately, the act of each outgoing ant choosing the stronger pheromone trail

yields an emergent shortest path algorithm. Ants are able to adapt to new envi-

ronments and then find the shortest path not by any sort of explicit instruction,

but simply by being biased towards the pheromone gradient.

2.3.2 Termite Hill Building

The hill building behavior of termites is another example of how a large population

of individuals can cooperate to solve global tasks. In this case, termites want

to gather pebbles spread over an area into one place in order to build a hill.

Individuals act independently and move only on the basis of the observed local

pheromone gradient.

Each termite follows four rules. It is biased towards the locally observed

pheromone gradient as are the ants. If no pheromone exists, a termite moves

uniformly randomly in any direction. Each termite may carry only one pebble at

a time. If a termite is not carrying a pebble and it encounters one, the termite

will pick it up. If a termite is carrying a pebble and it encounters one, the termite

will put the pebble down. The pebble will be infused with pheromone which then

evaporates and creates a gradient for others to follow. With these rules, a group

of termites can collect dispersed pebbles into one place.

Swarm Intelligent Framework

Positive feedback is represented by a termite’s attraction towards the pheromone

gradient. The termite is biased to add more pebbles to large piles. The larger the
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pile, the more pheromone it is likely to have, and more pebbles will be moved to

it. The greater the bias to the hill, the faster termites are likely to arrive, further

increasing the pheromone content of the hill.

As the pheromone evaporates, it consequently weakens and lessens the resulting

gradient. A diminished gradient will attract fewer termites as they will be less likely

to move in its direction according to the gradient. While this may seem detrimental

to the task of collecting all pebbles into one pile, it is in fact essential. As the task

begins, several small piles will emerge. Those piles that are able to attract more

termites will grow faster. As pheromone decays on lesser piles, termites will be

less likely to visit them again, thus preventing them from growing. Once all of

the pebbles in the small piles have been picked up (by chance, which may well

take a long time in this example), that pile will cease to exist and can never grow

again; larger piles will grow instead. Negative feedback, in the form of pheromone

decay, helps large piles grow by preventing small piles from continuing to attract

termites.

It is essential that many individuals work together at this task. If not enough

termites exist then the pheromone would decay before any more pebbles could be

added to a pile. Termites would continue their random walk without forming any

significant piles. Where and when piles are created or destroyed is determined en-

tirely by chance since each termite makes independent and probabilistic decisions.

As in the ant example, termites use pheromone to coordinate their activities.

This is an example of stigmergy. Termites are directed to the largest hill by the

pheromone gradient. There is no need for termites to directly communicate with

each other or even to know of each other’s existence. The rule set is greatly

simplified by allowing each individual to act independently of all others.
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2.4 Applications of Swarm Intelligence

The previous section has reviewed how biological systems can be cast into the

swarm intelligence design framework. This section will describe how these same

principles and observations can be used to engineer systems with similar charac-

teristics. Some examples include cellular automata, multi-agent systems, collective

robotics, and optimization algorithms. The latter example will be reviewed in de-

tail because its formalism will be used again to solve the network routing problem.

2.4.1 Ant Colony Optimization

The Ant System and the Ant Colony System are optimization techniques designed

with the swarm intelligence framework in mind. They work by issuing many in-

dependent individuals to solve single instances of an optimization problem. These

individuals communicate via the manipulation of a local metric in order to ulti-

mately reveal the best solution. This type of algorithm is generally referred to as

Ant Colony Optimization (ACO) [10].

Ant System

The Ant System (AS), first introduced in 1992 by Dorigo, Manziezzo, and Colorni,

is an optimization algorithm built to solve the Traveling Salesman Problem (TSP)

[11]. The TSP is a classic benchmark challenge for optimization algorithms because

it is exponentially difficult to solve; TSP is NP-hard. The traveling salesman

problem features a network of cities connected by roads and the shortest trip

connecting all cities must be found. The problem may feature links with symmetric

(TSP) or asymmetric (ATSP) costs. TSP is formalized as a graph G consisting of

vertices, or nodes, and edges (V, E). An edge from node i to node j has cost Ci,j.
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This cost may be thought of most simply as the euclidean distance between two

nodes, such as the distance between two cities.

The Ant System works in the following way to solve the TSP. During each

iteration t < tmax, up to m ants make a tour of the graph consisting of |V| steps.

Ideally, this will be a complete tour of the graph with minimum total cost. Each

ant decides on the next city to move to based on a random proportional transition

rule shown in Equation 2.1.

pk
i,j(t) =

τα
i,j(t) · η

β
i,j

∑

l∈J k
i

τα
l,j(t) · η

β
l,j

(2.1)

The probability for ant k to move from node i to node j in the tth iteration of

AS is pk
i,j(t). The parameter, ηi,j = C−1

i,j , is called visibility and defines a local

search heuristic determining the desirability of moving from node i to j. The set

J k
i contains all of the nodes that ant k has not yet been to when at node i; it

may be thought of as a taboo list. The amount of pheromone on an edge during

a particular iteration of AS, τi,j(t), is a global search parameter. The values of α

and β are used to balance the effects of the local and global heuristics. The rule

essentially defines a transition probability distribution on each unvisited neighbor

city. This distribution will be different for each visiting ant because each ant will

have visited a different set of cities before arriving at the current node i.

After each of the m ants has completed a tour, the pheromone on each link is

updated as described in Equation 2.2.
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20

Here, ∆τk
i,j(t) is the amount of pheromone added by an ant k to the link from i to j.

This is dependent on the total cost of the tour of ant k in iteration t, Lk(t), as well

if the ant actually used the particular link or not. Better (shorter) paths have more

added pheromone. T k(t) is the set of all links traversed by ant k during iteration

t. The parameter Q is a scaling constant. The total amount of pheromone added

to any one link is the sum of all pheromones added by each ant. And of course the

update equation would not be complete without accounting for pheromone decay,

which prevents random fluctuations from reinforcing bad solutions. The parameter

0 ≤ ρ < 1 accounts for pheromone decay. The pheromone decay equation models

the biological phenomenon.

The original Ant System proved useful for small test sets, while performance

on larger tests dragged.

Ant Colony System

The 1997 Ant Colony System (ACS) by Dorigo and Gambardella was introduced

in order to improve on the performance of the Ant System [12]. It has a similar

operation to its predecessor, although with some differences in the transition rule,

pheromone update rule, and exploration policy.

A parameter 0 ≤ q0 ≤ 1 is added to the transition rule in order to control

the random decision making that ants make while on a tour. When an ant must

decide the next city to go to, either it chooses to go directly to the best city with

a probability of q0, or else to randomly choose the next city according to a similar

bias as seen in AS. This will later be known as probabilistic determinism. The next

city j is chosen according to Equation 2.3. The parameter q is a random number
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uniformly distributed between zero and one.
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If q > q0, the next hop city is chosen probabilistically according to the distribution

given by Equation 2.4,

pk
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(2.4)

which is almost the same as the AS transition rule, save for the lack of the exponent

α. This system allows the algorithm to be tuned according to q0 in order to favor

the best known current solution or more exploration. The authors note that this

is very similar to the temperature in a simulated annealing optimization strategy.

After each ant has made a tour, pheromone must be added to the links. Unlike

AS, pheromone is added only to the edges belonging to the best tour to date

according to Equation 2.5.

∆τi,j(t) =
1

L+

τi,j(t + 1) = (1− ρ)τi,j(t) + ρ ·∆τi,j(t) (2.5)

Note that this equation is normalized with respect to the AS pheromone update,

Equation 2.2. L+ is the length of the best tour so far. There is no normalization

factor, Q, as there was in AS.

In addition to a global pheromone update, there is also a local pheromone

update shown in Equation 2.6. This rule applies to each link visited by an ant not

on the best tour.

τi,j(t + 1) = (1− ρ)τi,j(t) + ρτ0 (2.6)

τ0 is the initial pheromone on each link. The local pheromone rule causes the

pheromone on visited links to return to the nominal level. Less pheromone causes
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a more uniform distribution across next hop cities, thus encouraging exploration.

The ultimate purpose of this rule is to make sure that the same path is not followed

consistently between tours, and that different variations are tested.

With regards to the taboo list, Jk, only when it is empty will an ant consider

going to a city already visited.

2.4.2 Other Examples

Two other example applications of swarm intelligence are shown here. These are

cellular automata and collective robotics. The first is a classic mathematical model

which is capable of showing a wide variety of complex behavior despite its simplic-

ity. Collective robotics is currently a hot field in which the lessons learned from

social insect models are applied to social robots. These robot societies should be

able to self organize themselves and complete cooperative tasks.

Cellular Automata

Cellular automata were originally introduced to study the interaction of simple

computing elements. In the context of swarm intelligence, they are often used

to simulate groups of simple celled organisms such as bacteria or tissue. A large

number of independent locally interacting individuals produce an emergent be-

havior [13]. It has been shown that for a large variety of rule sets and starting

configurations, behaviors ranging from deterministic, periodic, random, to chaotic

can be produced. Some cellular automata are Turing machines that are able to

compute any Turing-computable quantity [14]. Of course, this property depends

on the proper selection of an underlying rule set which governs the operation of

each cell.
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Cellular automata are generally arranged on a regular grid. Each cell has some

independent state and uses the same state machine as all others. The state machine

is simply a table which tells each cell which state to move to in the next iteration

of the automata based on its own state and the states of the neighboring cells.

Each cell is initialized to a certain state and the system is iterated synchronously.

Early computer scientist John von Neumann originally began working with

cellular automata in the 1940s in an effort to describe self-replicating machine

code. Since then they have been used to study a diverse set of subjects, including

chemistry, air/water flow, chaos, traffic modeling, and artificial life, among many

others [15].

Collective Robotics

The area of collective robotics has also seen significant progress from the ideas of

swarm intelligence. Researchers are either trying to directly reproduce biological

behavior or trying to create swarm systems capable of accomplishing tasks useful

to humans [1]. This is sometimes known as a biologically inspired testbed. Some

of the many research directions include search and explore (to mimic foraging),

construction, metmorphics (a group of robots combines to change the functional

shape of the whole), or some other form of cooperative task. While the social

insect metaphor is very dominant in the field, other examples such as the schooling

behavior of fish [16] or the flocking behavior of birds [17] have also been explored.

A prime example of collective robotics is the SwarmBots project [18] in which

a number of S-bots cooperate to solve collective tasks. The collection is known as

a SwarmBot. The S-bots are wheeled robots with localized sensors and communi-

cations, and an extensible manipulator arm. They are designed to solve problems
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such as cooperative search, retrieval, and coordinated assembly to assist in over-

coming environmental obstacles. The SwarmBot project is the most ambitious of

its type. There is a large body of work by Japanese researchers in similar areas,

primarily in individual robotics.

Robot testbeds have also been used in order to test models of social insect ant

behavior in real-life settings, as well as to create coexistent robot-insect societies

[19].

2.5 Relationship to Artifical Intelligence

The field of Swarm Intelligence is a subfield of Artificial Intelligence (AI). As seen

in the last section, SI has been applied to many problems normally considered to

be within the domain of AI. This includes areas such as robot control and opti-

mization. There are a number of references available to highlight the similarities

between the two fields; SI is AI.

2.5.1 Reinforcement Learning

Reinforcement learning is an artificial intelligence technique used to train an agent

by only offering feedback upon the completion of a task [3]. The agent is required

to learn the utility of a number of discrete states by keeping track of the feedback it

has received after having visited each. There are many variations of this technique

depending on the problem, including when reinforcement is received, how much

knowledge of the environment exists, or whether the agent is required to actively

manipulate the environment or passively learn from it.

The type of reinforcement learning most interesting to the routing application

of swarm intelligence is known as temporal difference learning. In Equation 2.7,
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U(i) is the utility of being in state i, α is the learning rate, R(i) is the reward

received from being in state i, and U(j) is the utility of moving to neighboring

state j. The equation describes how to update the estimate of the utility of state

i after moving to state j.

U(i)← U(i) + α[R(i) + U(j)− U(i)] (2.7)

Equation 2.7 is reexpressed in Equation 2.8 in order to better show how utility es-

timates are averaged. Note that this expression has the same form as the averaging

formula of ACS’s Equation 2.5.

U(i)← (1− α)U(i) + α[R(i) + U(j)] (2.8)

In order to speed the convergence of the utility estimates on the true values, the

learning rate is reduced over time.

Reinforcement learning, and temporal difference learning specifically, have been

applied with great success to applications such as backgammon [20] and robotic

control [21]. Backgammon was one of the first “difficult” games to be conquered

by computers. The program TD-Gammon used reinforcement learning in order to

determine the utility of each state of the game, and how to move depending on

the dice roll is receives.

The technique described here assumes that the environment is stationary (in

the probabilistic sense). There must be time to apply enough tests to the system

in order to have a statistically significant number of samples which will be used to

make a good utility estimate. The following chapter will explain in detail how SI

can be applied to the routing problem in computer networks, and it will be shown

that the routing problem is most certainly not stationary. The statistics of the

environment are always changing. Because they do not converge, the learning rate
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cannot be sent to zero. It should be clear from the introduction of reinforcement

learning and the utility update equations (Equations 2.7 and 2.8), that reinforce-

ment learning and all of the swarm intelligent routing approaches presented earlier

are based on similar principles of statistically testing a state space. The learning

rate is the pheromone decay rate.

The SI justification for pheromone decay is to remove old information from

the system; to remove old solutions from the space of considered solutions. The

mathematical model used to implement this functionality is an exponential decay,

which is equivalent to the equation used by reinforcement learning to average many

sample tests of the environment. It can be shown that the pheromone update is

in fact a linear filter commonly used to average the input. Thus, the two systems

really are accomplishing the same thing. A statistical signal analysis can be made

of the averaging filter used in this application in order to characterize the statistics

of the output of the filter.

2.5.2 Neural Networks

A neural network based solution to the TSP has been proposed by Chen in 1997

which is very similar to ACO [22]. The two approaches were developed indepen-

dently during the mid 1990s. Since the TSP is a connected graph, similar to the

usual representation of a neural network, it is suggested that the utility of each

path between cities is represented by a synaptic strength which is changed over

time according to successive stochastic trials of tours of the graph and a learning

rate. The description of this process is nearly identical to the ACO. It is interesting

to note that these two approaches, inspired by different fields, are able to converge

on a unified algorithm for solving the same problem.
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2.5.3 Gradient Descent

The similarities between ACO and stochastic gradient descent (SGD) have also

been explored [23]. Gradient descent is a general optimization technique in which

the local error surface of a problem is computed, and the algorithm takes a step

in the direction which minimizes the error the most. A stochastic version of this

is possible when an explicit expression for the error surface is not available, only a

random sample. The stochastic gradient descent algorithm bases its decision either

on that available random sample of the surface, or averages over many samplings.

The ACO algorithms described earlier are easily described in this context. Each

ant makes a stochastic trip through the problem, such as making a tour around a

graph with probabilistic next-hop choices in TSP, and reports its results by laying

pheromone. An accurate view of the problem is not possible since there are a finite

number of ants that make a tour in each iteration; only a random sample of the

solution landscape is available. When all of the pheromone is accounted for and

updated at the end of each turn, future ants will be biased by this new gradient

which will hopefully lead in the direction of the optimal solution.

The similarities between ant colony optimization and stochastic gradient de-

scent are clear. It is always helpful to be able to cast new algorithms in the light

of more established ones. While it may not be fair to claim that ACO is simply a

rehash of SGD, principles used to improve and understand the latter can be easily

applied to the former.



CHAPTER 3

MOBILE WIRELESS AD-HOC NETWORKS

3.1 Introduction

This chapter will review the state-of-the-art of routing in computer networks. An

introduction is presented to the general area in order to establish well-known so-

lutions. These will then be developed in the context of mobile wireless ad-hoc

networks (MANETs), and several current solutions will be explained. Finally,

swarm intelligent MANET routing algorithms will be reviewed for both wired and

wireless networks. This will provide the necessary background in order to under-

stand the place of Termite in the field of network routing.

A network is traditionally formalized as a graph, G, containing a set of vertices,

or nodes, V, and edges, or links, E ; G = {V, E}. An edge is directional, starting at

a vertex x ∈ V and ending at a vertex y ∈ V. Thus, each edge may be described

by an ordered pair of vertices, e = {x, y} ∈ E . For the purposes of this discussion

we require that x and y are distinct. There are no reflexive links; x 6= y. Each edge

is also associated with a cost, or distance (or utility, depending on perspective),

cx,y; e = x
cx,y
→ y. A cost is generally assumed to be positive and finite. In some

applications it may be convenient to define a non-existant link as a link with infinite

cost. The neighbors of a node x are defined by the set N x containing all other

nodes for which an edge exists with x as the start point and the other node as the

end point; N x = {y ∈ V : {x, y} ∈ E}; x /∈ N x; N x ⊂ V. A pair of links between

two nodes can be thought of as a single bidirectional link if x ∈ N y and y ∈ N x. A

bidirectional link is symmetric if cx,y = cy,x and aymmetric if cx,y 6= cy,x. This work

assumes that there is at most one symmetric bidirectional between two nodes.

28
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A small example of such a network is shown in Figure 3.1. Each numbered

node might represent a computer, and each link between nodes represents a com-

munications channel.

Figure 3.1: Example Network Diagram [24]

3.2 Classic Network Routing

In any computer network, a critical piece of the infrastructure is the routing proto-

col. It determines which nodes will forward a message from source to destination.

There are two basic routing methods known as link state and distance vector. The

simplest type of routing is known as flooding and will be discussed first.

3.2.1 Flooding

Flooding is the most primitive routing algorithm. When a node receives a message,

it is rebroadcasted to all neighbors. All nodes in the network will receive the

message, including the destination. This feature can be especially useful in failure

prone networks or in situations where a message must be delivered network-wide.

Flooding incurs a substantial overhead due to the large number of transmissions.
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The network may not have enough communications resources, generally referred to

as bandwidth, to deliver all of the messages. Since most networks are bandwidth

constrained, flooding is usually only considered for network-wide announcements

or for finding routes to unknown destinations.

A common optimization to control the number of retransmitted packets is to

include a unique identifier in each packet. Nodes maintain a list of previously

transmitted packets and will drop any that have already been processed.

3.2.2 Distance Vector Routing

Distance vector routing was the first approach used for routing in ARPANET, the

primordial computer network. At each node, such algorithms maintain a next hop

neighbor for each known destination as well as the cost to arrive at that destination

via the neighbor. The distance to each next-hop neighbor is also assumed known.

Next-hop distance can be measured in a variety of ways, generally by periodically

sending a test short message. Distance and cost are interchangeable in the termi-

nology of computer networks. Early work assumed that the shortest path between

two nodes meant simply to minimize the number of intermediate nodes. The cost

of the path was the distance measured in hops. Later work used path cost in the

more general sense, taking into account factors such as throughput or delay. But

the word “distance” has remained.

The Routing Information Protocol (RIP) used on the internet today is a dis-

tance vector based protocol [26] [27].



31

Bellman-Ford Algorithm

The Bellman-Ford algorithm was developed during the late 1950s in order to find

optimal routes for logistical concerns (again, the concept of physical distance as

cost) [28] [29]. The application to computer networking soon became apparent.

The algorithm may be described simply as follows. Each router in the network

periodically advertises the cost of going to each destination in the network on a

path through itself. Upon receiving this information, each router updates its own

routing table with the minimum of the previously known cost to each destination

and the cost of using the neighbor in order to get to the same destination. For

example, suppose that x and y are neighbor nodes in the network. Suppose that

Cx
i is the minimum cost that x has in its routing table to get to some other node,

i. When y receives a routing update from x, it updates its table as shown in

Equation 3.1. The current neighbor node through which y is sending packets to i,

the current next-hop, is hy
i . If the path through x is found to be more favorable,

then y will store x as the next hop to i.

∀ i ∈ V, Cy
i ← min(cy,h

y
i
+ C

h
y
i

i , cy,x + Cx
i ) (3.1)

This algorithm requires a number of rounds of message passing equal to the diam-

eter of the network; information from all members of the network must be received

everywhere.

The Counting to Infinity Problem One of the disadvantages of this algorithm

is that it is not very fault tolerant. It is susceptible to the well known counting to

infinity problem. Consider a simple network topology such as, x ↔ y ↔ z. The

problem arises when node x unexpectantly leaves the network, leaving y without a

direct link. Node y will hear a routing update from z claiming a two hop distance
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to x. Not knowing that z’s route is in fact through itself, y will update its routing

table to reflect z’s supposed route to x. In the next round, z will update its routing

table to reflect y’s change, since y is z’s next-hop to x. Route distances will count

to infinity because a loop has been established that cannot be broken.

There exists a standard solution to the counting to infinity problem known

as split horizon with poisoned reverse [26]. This approach simply avoids sending

routing updates about destinations that a node learned about from a neighbor, to

that neighbor. The refers to the “split horizon.” If a route update is sent to that

neighbor, it may be sent with a distance of infinity. This refers to the “poisoned

reverse.”

3.2.3 Link State Routing

Link state routing is an alternative to distance vector routing. Instead of incre-

mentally computing routes and waiting for intermediate updates until all routing

information has been updated, the link state approach opts to broadcast the state

of each router’s local neighborhood to all other routers. All routers are then able

to compute routes based on complete knowledge of the network.

When a routing update is due, which can be determined either by a specific

period or by the occurrence of a significant event, each router floods its local

connectivity information into the network. Connectivity information includes a list

of neighbors and the cost to arrive at each. Each route update has a unique source

dependant sequence number. This is used to control the flood, but also determines

the relative age of a route update. A routing table should only be updated with

information from update packets that have a sequence number greater than what

is currently recorded. Only the newest route information is incorporated into the
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network. The requirement also highlights a problem with link state routing. If each

router is not using the same information to compute routes, suboptimal routing,

loops, or network disconnection may occur. Routers may not be aware of the

existence or disappearance of links, or simply use incorrect link costs.

The Open Shortest Path First (OSPF) routing protocol is the current routing

protocol used on the internet [30]. OSPF is a link state routing protocol.

Dijkstra’s Algorithm

Dijkstra’s algorithm is used for calculating the minimum cost path from one node

in a network to all others [31]. This is known as the minimum spanning tree

(MST). It requires complete knowledge of the network topology and all link costs.

This is in contrast to the Bellman-Ford algorithm which can be run in a distributed

fashion.

The algorithm starts by considering the source node of interest on the network

graph, x. Consider the cost to each of x’s neighbors. Add the neighbor with

minimum cost, y, to the minimum spanning tree and label it with the total cost

to x. This procedure is then continued. The neighbors of x and y are considered,

and that neighbor, z, with the minimum cost to x is added to the MST. Suppose

z is a neighbor of y, then since y is on the shortest path to x, and z is the closest

neighbor to y, then the path x↔ y ↔ z must be the shortest path between x and

z. The algorithm continues until all nodes in the network have been added to the

minimum spanning tree.
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3.2.4 Discussion

Flooding, distance vector, and link state routing protocols define the basis of all

routing in networks. Other methods do exist, but those reviewed here are by far

the most studied and used. The next section will introduce a specific type of

network known as a mobile wireless ad-hoc network in which nodes are mobile

and communicate over wireless links. The topologies of such networks can change

quickly and thus require a large number of routing updates. The basic routing

strategies presented in this section will be adapted to these needs.

3.3 Introduction to Ad-Hoc Networking

Computer networks are more relevant than ever in today’s Information Age [64].

Since the first computer network became operational in 1969 as ARPANET, the

number of computers connected to this network of networks has grown exponen-

tially from a mere handful to billions of machines. In nearly the same amount

of time, technology has progressed to allow wireless connectivity to the network

at large. This approach culminated with the proliferation of one-hop wireless net-

works such as cellular telephone systems or wireless LANs. Over the last ten years,

such wireless networks evolved to accommodate multi-hop wireless networks. Un-

like earlier systems in which radio links merely replaced wires for long-haul routes

or in difficult to develop terrain, modern multi-hop, or ad-hoc, networks assume

node mobility and mutable topology.

A mobile wireless ad-hoc network (MANET) is a collection of mobile comput-

ers, or nodes, using only wireless communications links in order to send messages

between themselves. Communications range is limited and thus each node has only
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a few neighbors. Node mobility causes dynamics on the topology of the network

as nodes move in and out of communications range. Information may be sent be-

tween one node in the network to another by having intermediate nodes forward

the message, exactly as in a typical wired network.

Ad-hoc networks represent a step forward in mobility, robustness, and avail-

ability of computer communications. Users are no longer restricted to a certain

area in order to maintain a data link. This is a common issue with older wireless

technologies such as cellular networks. MANET users are allowed to go where

they please as long as they remain within range of another participating node.

Ad-hoc networks are created and configured in real time, without the need for

installed infrastructure or system configuration. This feature allows for a great

deal of flexibility, and the same amount of effort is needed to create a network of

any size.

3.3.1 Applications

There are a number of sample applications used to motivate the development of

MANETs. Although there has not yet been any wide scale deployment of this

technology to date, additional opportunities are sure to rise. In general, MANETs

are used to extend computer communications range in areas where the deployment

of permanent infrastructure is difficult or too costly.

Search and Rescue

A search and rescue scenario generally exists in regions that have little or no

installed communications infrastructure. This may be because all of the equipment

was destroyed, or perhaps because the region is too remote. Rescuers must be able
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to communicate in order to make the best use of their energy and to maintain

safety. By automatically establishing a data network with the communications

equipment that the rescuers are already carrying, their job is made easier.

Battlefield Communications

The military is interested in MANET development in order to augment the commu-

nications capabilities of their forces. Battlefields are generally located in areas with

little installed or trusted communications infrastructure. Ad-hoc networks may be

established quickly between any number of cooperating forces. Communications

may be used to disseminate local information, or to send data to commanders.

Infrastructureless Networking

A civilian application for MANETs includes ubiquitous computing. By allowing

computers to forward data for others, data networks may be extended far beyond

the usual reach of installed infrastructure. Networks can be more widely available,

easier to use, and cost less to deploy.

Sensor Networks

Sensor networks are composed of a very large number of small sensors which can be

used to detect any number of properties of an area. Examples include temperature,

pressure, toxins, pollutants, etc. The capabilities of each sensor are very limited,

and each must rely on others in order to forward data to a central computer.

Individual sensors are limited in their computing capability and are prone to failure

and loss.
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3.3.2 Challenges

There exist a number of challenges facing the development and deployment of

ad-hoc networks [32]. Some examples include routing, scaling, energy efficiency

and conservation, MAC layer transmission strategies, and quality of service (QoS).

While each of these is critical to the performance of the network, this section will

focus on routing.

The primary challenge to face routing in MANETs is the dynamic network

topology. Some factors which influence the topology include mobility, node loss,

and variable link quality. Mobility is the primary cause for topological dynamics

in an ad-hoc network. As nodes move amongst each other, their limited commu-

nications range allows them to only send messages to their neighbors. These are

lost and gained as nodes move. New paths must be discovered and maintained as

the topology changes. The effort to do this can become prohibitive if the topology

changes too quickly. Increasing the mobility of the nodes is known as scaling with

respect to speed.

Node loss also has an effect on topology. If a node is removed from the network

it will no longer be able to forward data. This may occur because the node is

destroyed or because the machine is turned off. If too many nodes are lost there

will not be enough remaining participants to maintain an operational network.

There may be too few nodes between source and destination to send a message.

Because a wireless channel is used to communicate between nodes, each network

link has similar properties. Properties include range, data rate, and bit error rate

(BER). Link range determines a node’s neighbors, while the latter properties affect

the flow of traffic across those links. All of these attributes may also change over

time, leaving it up to the routing algorithm to adapt to the new environment.
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3.3.3 Routing Metrics

A variety of metrics may be used to optimize network performance. Some examples

include throughput, delay, path length, energy consumption, and link lifetime.

These are quantities that can be measured independently and locally at each node;

it is not necessary to use global information.

The former three are general metrics that can be applied to any type of network.

The latter two are more often used in MANETs due to the network’s special

characteristics. Throughput is the number of data bytes that can be delivered per

second between any two nodes in the network; it is to be maximized. Delay is the

number of seconds it takes for a message to arrive from a source to a destination;

it should be minimized. Path length is a first order approximation to delay. If the

number of transmissions, or hops, between source and destination is minimized,

then presumably the amount of time that the packet will spend in transit will also

be minimized.

Nodes in an ad-hoc network are often assumed to be energy limited; energy

consumption has become an important metric. Paths requiring the minimum of

energy to transmit packets should be found such that the network stays alive for

as long as possible. The longevity of a network is defined as either the time until

the first node dies, or the time until the network becomes disconnected due to

node death. The quality of individual links and that of entire routes has also

come under consideration. An example is link lifetime. Links which have been

established for a long time may break soon, or conversely may be considered more

reliable in the future. This depends on the mobility model used. The dynamics of

the link attributes is also a factor. If its properties are changing quickly, it may

be considered unreliable and avoided.
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Protocols must be designed to take these parameters into account. The inter-

actions between these parameters must be understood; the appropriate tradeoffs

must be made when designing a system with these metrics in mind.

3.3.4 Performance Metrics

A variety of performance metrics exist to measure the performance of MANET.

Some metrics may depend on a particular application, but the key measures are

data goodput and control overhead.

Data goodput is the fraction of successfully delivered data packets and is a

measure of the reliability of the network. This metric ranges between zero and

one, where values close to unity are desired.

Control overhead is the fraction of non-data packets to the total number of

packets transmitted in the system. A network should expend the majority of

its resources to deliver data packets; if these resources are used to move control,

or network management, packets instead, fewer data packets can be delivered.

Control overhead is a measure of amount of effort required by the network to

remain aware of its own state.

3.3.5 Medium Access

There is a specific terminology associated with the wireless communications en-

vironment and its capabilities. Oftentimes communications capabilities will be

dictated by the specific medium access technology being used. Radio is usually

used in MANETs, and transmissions are assumed to be omnidirectional.

The most common medium access (MAC) layer used in MANETs is the stan-

dard IEEE 802.11 [33], which is a Carrier Sense Multiple Access / Collision Avoid-
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ance (CSMA/CA) protocol. This widespread technology is primarily used for one-

hop wireless networking and is also known as “wireless LAN” or WiFi. Usually

communications are between an access point (AP) which acts as a bridge between

a wired network and the wireless medium. Participating nodes are within one hop

of the AP. The standard specifies two basic transmission modes, broadcast and

unicast. If a packet is broadcast, the transmitter sends the packet according to

the rules of CSMA. There is no destination for a broadcast packet and the trans-

mitter does not wait for an acknowledgement of reception. Each receiver can only

receive one packet at a time, so if another terminal transmits in range of a receiv-

ing node then a collision may occur; neither packet will be received. A unicast

packet is transmitted somewhat more reliably to a specific destination. The trans-

mitter first broadcasts a Ready-To-Send (RTS) packet to the intended receiver. If

the receiver successfully receives it and senses a free medium, it will reply with

a Clear-To-Send (CTS) message. Upon receiving the CTS, the transmitter sends

the data packet, to which the receiver replies with an acknowledgement (ACK)

packet. If this RTS/CTS/DATA/ACK exchange is not successful, it may be due

to a collision in the medium, a previously reserved medium, or because the receiver

is not within communications range of the transmitter. An unsuccessful unicast

exchange is generally used to indicate a lost neighbor to the routing layer.

3.4 Traditional Ad-Hoc Routing Solutions

Traditional ad-hoc routing solutions are naturally modeled on solutions to routing

in wired networks. After all, it is only because the classic solutions to wired routing

were found not to work in the ad-hoc domain does the field of ad-hoc routing exist

at all. Well known solutions such as OSPF are found to generate so much control
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traffic as to be unusable [34].

Ad-hoc routing algorithms are necessarily much more efficient in their use of

control traffic and network resources. They can be generalized into two categories,

proactive, or table-driven, and reactive, or on-demand. Proactive protocols main-

tain a route to every node in the network at any given time. When a route is

needed, it is immediately available. The proactive approach minimizes end-to-end

packet delay because a packet can be immediately transmitted without needing to

find a route first. A great deal of control traffic is also generated as the network

continually updates its routes, even if no data traffic is available. Reactive pro-

tocols only find routes to a destination when there is data available for it. They

often generate much less control traffic than a proactive protocol, but require that

a route to a destination is discovered before packets can be sent. Reactive protocols

incur greater end-to-end delay.

The following sections will provide some examples of currently available proac-

tive and reactive protocols for ad-hoc networks.

3.4.1 Proactive Routing

Proactive protocols were the first to be developed for ad-hoc networks. Well known

routing protocols designed for wired networks were adapted to the mobile setting.

The design methodology carried over as well, as it was felt that routes should be

on hand to any destination at any given time since traffic would always be present.

Traditional approaches such as the link-state or distance vector algorithms flood

their routing information to all routers in order to maintain a complete and current

snapshot of the network. It was in this spirit that the first proactive routing

protocols were designed for use in ad-hoc networks.
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Dynamic destination-Sequenced Distance Vector

The Dynamic destination-Sequenced Distance Vector (DSDV) routing protocol

proposed by Perkins and Bhagwat in 1994 is one of the first to solve the routing

problem in ad-hoc networks [35]. DSDV is modeled as a distance-vector protocol

in which each node periodically broadcasts its routing table to its neighbors. Each

neighbor then updates its own routing table with the new information, and if any

route has changed, that new information is subsequently broadcast. This procedure

allows route information to propagate throughout the network. Sequence numbers

are used for each destination route in order to determine its freshness. Routes are

not updated if the local route to a destination has a higher sequence number than

the advertised route.

DSDV does not make explicit a route discovery or route repair mechanism. It is

assumed that the route advertising procedure will maintain valid paths to all nodes

in the network. It is noted that route updates are broadcast when a link break or

a change in topology are noted. In order to prevent a flood of possibly large route

updates, each broadcast is delayed in order to anticipate any more updates which

may further update the table. This is a simple information aggregation scheme.

Optimized Link-State Routing

The Optimized Link-State Routing algorithm was introduced in 2001 by Jaquet,

Mühlethalter, Clausen, Laouiti, Qayyum, and Viennot as a proactive routing pro-

tocol for mobile wireless ad-hoc networks [36] [37] [38]. It optimizes the traditional

link-state protocol by reducing the amount of information in a route update, as

well as introducing an optimized flooding procedure. Both of these are based on

the use of multipoint relays (MPRs), which are a subset of the neighbors of each
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node. They are responsible for forwarding and compiling routing messages. The

timeliness and ordering of route information is guaranteed by sequence numbers.

OLSR works by having each node first designate a subset of its neighbors as

multipoint relays. MPRs are chosen such that if each MPR of a node n rebroad-

casts a message, then all two-hop neighbors of n will receive the message. Message

flooding is optimized in this way. In order to establish routes, each node periodi-

cally floods (via the use of MPRs) a list of its MPRs, similarly to other link-state

routing algorithms. Each node then has a list of everyone in the network and

their preferred neighbors. A complete path to any destination can be calculated

by chaining together node/neighbor pairs.

Multipoint relays are determined when a node broadcasts hello messages to

establish and verify a radio link with all of its neighbors. A received hello message

is always replied to. Thus, it is possible to generate a list of neighbors to whom a

bidirectional communications link exists. Each hello message also contains a list of

all neighbors of a node. In this way, information about the local two-hop topology

is collected. This information can be used for each node n to specify its set of

MPRs; MPR(n) ⊆ N n. This MPR list is included in subsequent hello messages so

that each node knows for which neighbors it should forward messages.

3.4.2 Reactive Routing

It was not long until even proactive solutions were found not to perform terribly

well in the ad-hoc environment [39]. Networks using proactive protocols could

not tolerate constant routing updates. In light of these failings, on demand, or

reactive, protocols discover routes to destinations only when they are needed. The

advantage of this approach is that control traffic is only generated when necessary,



44

releasing system resources for moving user data. The disadvantage is that there is

some delay associated with the route discovery procedure.

Anatomy of a Reactive MANET Routing Protocol

All reactive routing protocols have a general structure, including a mechanism

for routing to a known destination, for the discovery of a route to an unknown

destination, for handling an error in a route, and finally also some optimizations.

Routing to a known destination is straightforward because route information is

already available. When a packet arrives for an unknown destination, a route

discovery procedure is initiated. Since only reactive protocols are considered here,

this situation may often be the case. Usually the network will be flooded with

packets searching for the destination. These route request packets will collect

and establish route information. Once a route has been found, it is used until

it breaks again. A route error procedure is then initiated in order to update

the relevant nodes of the change in network structure. Some optimizations are

always implemented depending on the specifics of the previous mechanisms. Classic

optimizations include locally repairing broken routes instead of rediscovering the

route, or cleverly directing the route discovery process.

Ad-hoc On-demand Distance Vector

Originally based on the proactive DSDV, the Ad-hoc On-demand Distance Vector

(AODV) routing protocol is currently one of the most popular on demand routing

protocols for ad-hoc networks [40]. It is in the continuing stages of being standard-

ized by the Internet Engineering Task Force (IETF) MANET working group [41]

[42]. AODV was originally introduced in 1999 by Perkins and Royer, continuing
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in the footsteps of DSDV with the use sequence numbers to guarantee route fresh-

ness. It has seen extensive testing and development since its introduction, and is

used as a model for many new proposals.

When a data packet arrives at a node with no route to the destination, a route

request procedure is initiated. There are two variations of this. If a source node

has no route to the destination, an expanding ring search is started. A local flood

of route request (RREQ) packets is broadcast with a limited time-to-live. If no

route reply (RREP) packet is received within a timeout period, another local flood

is issued with a larger time-to-live, allowing it to search a larger area. This process

is retried a certain number of times until the destination is found or is declared

unreachable. Sequence numbers are embedded in the RREQs in order to distribute

current information about the source, and to specify a minimum freshness for the

information about the destination. Route metrics are also included in RREQ

packets in order to create reverse routes to the source. If an intermediate node

must search for a destination, this is known as a local repair and is comprised of

only a local RREQ flood. If the destination cannot be found, a route error (RERR)

is returned to the source to inform it that a new route must be discovered.

Route replies (RREP) are unicast from an intermediate node with an active

route to the requested destination or from the destination itself. An active route

is guaranteed back to the source since reverse routes are created by the RREQs.

An active route to the destination should include a sequence number at least as

large as that in the route request. Once a RREP is received, any packets that had

been buffered for the destination can be sent to the destination.

A route error (RRER) message is needed to inform the source that an irrepara-

ble break has occurred in the route to the destination; a new route should be found.
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The route error propagates from the node immediately upstream of the break back

to the source. The route to the destination is deactivated and each intermediate

node will require an equally fresh new route to the destination.

Dynamic Source Routing

The 1996 Dynamic Source Routing (DSR) protocol by Johnson and Maltz shares

the popularity of AODV [43]. There is also a continuing IETF standardization

effort [44]. It is a contemporary of AODV and approaches the problem from a

source routing perspective rather than a distance vector basis.

DSR stores the entire route to the destination in the routing table rather than

just the next hop as in AODV. Data packets contain their entire route to the

destination in their header. When a data packet is received at a node and a

route for the destination does not exist in the routing table, a route request is

initiated. As in AODV, the RREQ packets are flooded throughout the system.

RREQs record each visited node in their header in order to build a route to the

destination. Overheard RREQs may also be examined for new routes. A route

reply is generated by the destination itself or an intermediate node possessing a

valid route to the destination. The RREP is returned to the source using the

reverse route found in the RREQ header. Packets buffered at the source are

released once the RREP arrives and a destination route is made available.

If a node receives a packet and the next hop is found to be broken, an alternative

route may be chosen for the packet if it is available. This is known as salvaging

the packet. Alternative routes are discovered by overhearing RREQ broadcasts.

The packet is dropped if no route is available. In either case, a route error message

is returned to the source noting that the RRER originator no longer has a link
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to the lost neighbor. All intermediate nodes should update their routing tables

accordingly.

3.5 Swarm Intelligent Routing

The traditional routing solutions presented in the previous section can be generally

characterized as deterministic algorithms on graphs. Consider the mathematics of

the distance vector Bellman-Ford algorithm presented earlier in the chapter. The

algorithm will always find the same routes in the same network in the same way. In

contrast, the swarm intelligent (SI) routing algorithms presented in this section are

random algorithms on graphs. Such algorithms may not have the same properties

as their deterministic relatives, however they can oftentimes approximate the same

behavior with a variety of interesting savings elsewhere. SI routing does away with

firm rules and instead allows the system to self-organize on its own accord.

Swarm intelligent routing protocols for wired networks are first presented, with

ad-hoc protocols following.

3.5.1 Wired Networks

A number of proposals exist which apply the principles of swarm intelligence to

routing in wired networks. These include Ant-Based Control (ABC), AntNet,

Cooperative Asymmetric Forwarding (CAF), Virtual-Wavelength Path Routing

(VWPR), Multiple Ant Colony Optimization (MACO) [51], Mobile Ants-Based

Routing (MABR) [52], among others. ABC is the oldest with its introduction in

1996. AntNet is to be credited as the most well known due to its solid perfor-

mance and design by the inventors of the related and extremely successful Ant

Colony Optimization (ACO) algorithm. CAF optimizes some approaches used by
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AntNet and also extends a distance vector methodology. VWPR is included for its

introduction of the pheromone repel feature in routing, a vastly underappreciated

technique in this field borrowed from ACO. The Multiple Ant Colony Optimiza-

tion algorithm is a more straightforward adaptation of ACO to routing. It uses

the idea of having multiple ant colonies discover paths, each being repelled by the

pheromone of the other. This ensures that a larger search space will be covered

and thus better routes should be found faster. MABR is based on AntNet and

describe a hierarchical location-based routing scheme. The network topology is

broken into a regular grid by an abstraction layer, and pheromone based routing

is executed on the grid.

Ant-Based Control

Ant-Based Control (ABC) was introduced by Schoenderwood, Holland, Bruten,

and Rothkrantz in 1996 and is considered to be the first biologically inspired rout-

ing algorithm [45]. It is a routing algorithm for circuit-switched (eg. telephone)

networks which routes calls based on the local interaction of mobile agents. Mobile

agents (ant packets) traverse the network, updating routing tables at each node

depending on the observed path quality. Routing tables consist of next hop proba-

bilities for each destination. Ants traveling in one direction influence the placement

of calls in the opposite direction. Symmetric bidirectional links are assumed.

ABC follows the ant food foraging analogy very closely. Ant packets are routing,

or control, packets. Ants update the local pheromone table at each node they visit

according to Equation 3.2. Pheromone tables are routing tables, and contain the

probability of choosing a particular next hop to arrive at a certain destination.

Probability values are manipulated directly as shown; pheromone is not used as
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an intermediate value as it is in biology. The value pn
i,d is the probability at node

n for using the link to neighbor i to get to destination d. The source of a packet

is s, and the previous hop of the ant is r.

∀i ∈ N n − r, pn
i,s ←

pn
i,s

1 + ϕ

pn
r,s ←

pn
r,s + ϕ

1 + ϕ
(3.2)

The value ϕ is known as the learning rate. The fact that the used route is increased

and the others decreased in probability is an example of positive and negative

reinforcement in ABC.

ABC also describes a method for adjusting the learning rate based on the path

cost. Equation 3.3 shows how ABC accomplishes this in general [46].

ϕ =
k

f(cost)
(3.3)

Here, f is a non-decreasing function of the path cost, and k > 0 is a constant.

Since ABC optimizes for low delay routes, it is clear that routing probabilities

are adjusted less as the ant spends more time in the network. The age of a

packet includes not only the actual amount of time spent in the network, but

also the expected delay that the ant would experience if it were a call waiting to

be connected. The age of a packet includes network congestion.

Ant packets are launched on regular intervals by each node in the network to

a random destination. They are routed randomly according to the probabilities

present in the pheromone table for their particular destination. In order to encour-

age ants to try new paths, a noise factor is added to the routing decision. This is

necessary in case the network conditions should change or better routes become

available. If a high probability route exists, there is little incentive to stop using

it, even if its quality drops. The probability update equation only allows routing
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probabilities to be positively reinforced when a link is used. Probabilities cannot

decrease, no matter how bad the achieved path might be. The noise factor, on

the order of 5% in ABC, routes ants uniformly over all outgoing links rather than

according to the probabilities in the pheromone table.

Calls are routed such that they only follow the link with the highest probability

at each node.

AntNet

AntNet is an approach from 1997 by Dorigo and Di Caro to using the social

insect analogy to solve the routing problem in wired packet switched networks

[47]. Unlike ABC, AntNet assumes asymmetric bidirectional links. Routes from

destination to source, also known as reverse routes, cannot be influenced by an ant

moving from source to destination as was the case in ABC. An ant moving in the

forward direction will experience different costs than an ant moving in the reverse

direction.

The algorithm works as follows. At regular intervals, each node in the network

sends a forward ant packet to a randomly chosen destination. Forward ants are

routed probabilistically as in ABC. Each node contains a routing (pheromone) ta-

ble indicating the utility of a particular link to arrive at a destination. This utility

is described by a probability. In order to ensure that the entire network is explored

consistently, a forward ant chooses a next hop uniformly according to an explo-

ration probability. This feature serves the same purpose as that of noise in ABC.

As the forward ant is routed to its destination, it maintains certain information on

a stack, S which includes a list of all visited nodes as well as corresponding metric

information. The original AntNet description optimizes for low delay paths and so
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path costs are equal to the time necessary to travel between nodes. Forward ants

are routed with the same priority as data packets and experience the same traffic

conditions as the rest of the network that they are measuring. If the forward ant

travels in a loop (which can be detected based on the contents of its stack), those

nodes are popped and the packet continues. Upon arrival at the destination, the

stack is saved, the forward ant is killed, and a backward ant is created to return

to the source.

The purpose of the backward ant is to return the network information to the

forward node’s path. This is done simply by reversing the path on the stack. In

order to update the network as quickly as possible, backward ants are routed with

priority over data packets. They follow the forward ant’s reverse path determin-

istically. The backward ant updates the local routing table at each node with

information about the trip time from the source to the current node.

For example, if the forward ant has travelled on the path s → w → x →

. . . → y → z → d, then it’s cost stack is, Scost = {cs,w, cw,x, . . . , cy,z, cz,d}, and

it’s visited stack is, Svisited = {s, w, x, . . . , y, z, d}. Since links are asymmetric,

eg. cs,w 6= cw,s, the backward ant must return this information to the nodes that

can use it. A node can use the stack to determine the cost of a path to all of

the intermediate nodes between itself and the destination by adding intermediate

costs.

The AntNet algorithm can be considered as a sort of machine learning algo-

rithm meant to learn the best routes in a dynamic environment. It is best charac-

terized as a type of reinforcement learning in which the backward ant represents a

feedback signal regarding the quality of the current routing solutions. Each path

measurement is relative; there is no absolute measure of the goodness of a partic-
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ular link or route. Routing probabilities are updated similarly to those in ABC,

however the reinforcement parameter, ϕ, is calculated according to a much more

complex statistical method based on achieved trip time. The mean and variance

of trip times are compared in order to determine the quality and reliability of the

current data. Note that ϕ is different for each next-hop/destination pair, since it

is based on the measured cost of that path. The method used to update routing

probabilities in AntNet is shown in Equation 3.4.

∀i ∈ N n − r, ∀d ∈ Svisited, pn
i,d ← pn

i,d − ϕn
i,d · p

n
i,d

∀d ∈ Svisited, pn
r,d ← pn

r,d + ϕn
r,d · (1− pn

r,d) (3.4)

The equations are rewritten in Equation 3.5 in order to make clear that this update

is simply an averaging mechanism.

∀i ∈ N n, ∀d ∈ Svisited, pn
i,d ← (1− ϕn

i,d) · p
n
i,d

∀d ∈ Svisited, pn
r,d ← pn

r,d + ϕn
r,d (3.5)

Note that they also have the same form of Equations 2.5 and 2.6 with τ0 = 0.

AntNet 1.1 The original AntNet network routing algorithm is updated by Barán

and Sosa in 2000 with AntNet 1.1 [48]. The improvements are reviewed briefly

below.

• AntNet assumes uniform link probabilities upon initialization. AntNet 1.1

proposes to positively bias the probabilities of using neighbor links to get to

those neighbors; ∀i ∈ N n, pn
i,i > 1

|Nn| .

• AntNet does not describe the case of link failure. It is assumed that when

a link fails, the probability of using that link is then distributed uniformly
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among the remaining links. AntNet 1.1 proposes a non-uniform update of

remaining link probability after link failure.

• When a previously lost link returns, AntNet treats it as a brand new link with

no previous history. AntNet 1.1 suggests that the probability of this returning

link should be initialized based on the probability that it had previously and

a generic uniform probability. Thus if a link is dropped at time td and returns

at time tr and had uniform probability at time t = 0, the probability of the

dropped link to i to get to destination d, pn
i,d, is shown in Equation 3.6.

pn
h,d(tr) = (1− ρ) · pn

h,d(0) + ρ · pn
h,d(td) (3.6)

This reinitialization method assumes that the returning link retains charac-

teristics similar to those it had before it dropped. The coefficient of memory

is ρ.

• The use of probabilistic determinism is also proposed. Instead of forward

ants choosing next-hops according to the probability distribution listed in

the routing table, they choose the best link deterministically with some prob-

ability. The ant chooses randomly whether to decide on the next hop prob-

abilistically (as described previously), or deterministically and only go with

the best current solution. This technique is also used by ACO and generally

helps direct packets toward their destination.

• AntNet 1.1 suggests to set the number of ants sent into the network to the

number of links in the network. This approach should allow the for the

entire network to be updated on average every time forward ants are issued.

A tradeoff is made between control overhead and timely network updates.
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• When a backward ant cannot continue its trip to the forward ant source due

to a broken link, it is destroyed. Because the network topology has changed,

the information that it is carrying is now worthless. AntNet does not consider

this situation.

Cooperative Asymmetric Forwarding

Cooperative Asymmetric Forwarding (CAF) Routing, introduced by Heusse, Sny-

ers, Guérin, and Kuntz in 1998, is a parallel to AntNet [49]. It solves the routing

problem in networks with bidirectional asymmetric links. CAF builds on AntNet’s

forward/backward ant system by collecting forward information from existing data

traffic and then uses a reverse ant to deliver routing information back to the source

along the reverse route. CAF does not make use of the biological analogy that

motivates AntNet. A unified distance vector perspective is presented where link

probability is proportional to path utility.

The scheme works as follows. Since links are asymmetric, traffic moving in

one direction cannot update routing tables meant to direct traffic heading in the

opposite. As data traffic moves from source to destination, each node n estimates

the cost of moving from its neighbor p to itself, cn
p,n based on the measured cost,

cp,n. This data is essentially collected for free from existing traffic. Each node

periodically sends a routing agent to a randomly selected destination. This agent

must move backwards along the flow of arriving data from that destination. Rout-

ing data is only available (and relevant) along the path from the destination to

source. Each node maintains a reverse routing table, V , for the purpose of sending

a routing agent from destination (itself) to source. This reverse routing informa-

tion is collected by observing the rate of packet arrival and updating the routing
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table accordingly. This is shown in Equation 3.7. The previous hop of the arriving

data is r and the source is s.

V n
r,s ← (1− ϕ) · V n

r,s + 1 (3.7)

The routing agent is sent to a randomly selected next hop, i, in order to arrive at

the traffic source, s, based on the distribution calculated by Equation 3.8.

pn
i,s =

(

V n
i,s

)F

∑

j∈Nn

(

V n
j,s

)F
(3.8)

The exponent F is the sensitivity and will be seen again later.

The routing agent follows a random path based on forward traffic flow to the

source. It collects forward route statistics saved at each node (based on measure-

ments from packets moving from agent destination to the agent source) in its stack.

The agent updates the forward routing table at each visited node, as in AntNet.

The agent is killed once it arrives at its destination. The CAF routing update

method is somewhat more efficient than that used by AntNet because it takes ad-

vantage of existing traffic to measure path performance. However, it requires that

the destination of a traffic flow send routing agents back to the source in order to

update the routing tables.

Suppose that a routing agent is sent from a flow destination to its source

following the path d → w → x → . . . → y → z → s. Upon arrival at the

flow source, the stack of the route agent will be Scost = {cd
w,d, cw

x,w, . . . , cy
z,y, cz

s,z}.

Each node can update its routing table with the estimated cost to all intermediate

nodes.

Actual routing updates are made similarly to previous schemes. When an agent

arrives at node n from previous hop neighbor r, the routing table is updated as
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shown in Equation 3.9.

∀d ∈ Svisited, Cn
r,d ← (1− ϕ) · Cn

r,d + ϕ · cS
r,d (3.9)

The cost to use node r to get to node d according to the route agent’s stack S,

cS
r,d, is the sum of all costs between node n and d on the stack. Since the route

agent is arriving from the previous hop r, that node is also on the stack.

Data moving in the forward direction are routed randomly according to the

distribution calculated by Equation 3.10.

pn
i,d =

(

Cn
i,d

)−F

∑

j∈Nn

(

Cn
j,d

)−F
(3.10)

This cost normalization approach to determining route probabilities is common.

As in Equation 3.8, F is used to bias routes according to their relative differences.

The inverse of each cost is used to calculate routing probability since packets should

be forwarded over minimum cost paths.

Virtual-Wavelength Path Routing

Virtual-Wavelength Path Routing was introduced by Varela and Sinclair in 1999

[50]. Ant Colony Optimization is applied to the problem of routing and wavelength

allocation in multi-wavelength all-optical virtual-wavelength path routed transport

networks. A typical application of this system is in long haul fiber optical networks

requiring not only that packets be routed, but also that the minimum number of

wavelengths be used to transport those packets. Since each fiber link can only hold

a limited number of wavelengths, a constraint satisfaction element is added to the

traditional routing problem.

The authors propose a number of approaches using ACO, however the most

significant development is the idea of pheromone repel. In order to ensure that the
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algorithm does not try to place too many wavelengths on one fiber, or alternatively

that it tries to minimize the number of wavelengths used in the network, differ-

ent ants are sent into the network that are repelled by the pheromone of others.

Pheromone may be thought of as a routing metric.

This is implemented below. The probability of each link is first determined

based on the the local ant’s resident pheromone. This is a simple normalization of

the link pheromone.

pn
i,d =

P n
i,d

∑

j∈Nn P n
j,d

(3.11)

All of the pheromone belonging to other ants is summed to P̈ n
i,d and a link prob-

ability mass distribution is calculated. A meta forwarding probability is then

computed based on these two distributions such that,

p̂n
i,d =

pn
i,d ·

(

p̈n
i,d

)−R

∑

j∈Nn pn
j,d ·

(

p̈n
j,d

)−R
(3.12)

In this way the link probability is adjusted away from large competing pheromone

concentrations. The pheromone repel constant, R ≥ 0, determines the strength of

the pheromone aversion.

This idea will be used later in order to direct the movement of packets through

the network.

3.5.2 Wireless Routing

The routing problem in mobile wireless ad-hoc networks has received some atten-

tion from the swarm intelligence community. The properties of SI algorithms are

very well suited to the problem, which requires optimization in a dynamic environ-

ment. The Probabilistic Emergent Routing Algorithm (PERA) is the first routing

algorithm to be proposed in 2002. This was quickly followed by the Ant-like Rout-
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ing Algorithm (ARA) and Termite in 2003, with Ad-Hoc Networking with Swarm

Intelligence (ANSI) in 2004. Many of these algorithms extend AntNet or ABC

to the ad-hoc problem; the forward/backward ant architecture is used for route

discovery and then various route repair and error schemes are proposed.

Probabilistic Emergent Routing Algorithm

The Probabilistic Emergent Routing Algorithm (PERA) designed by Baras and

Mehta in 2002 is the first swarm intelligent MANET routing algorithm [53]. It

operates very much in the way of AntNet, using forward and backward ants to

collect and distribute information about the network. It also borrows elements

from more traditional contemporary routing algorithms such as AODV and DSR.

The reinforcement parameter is computed based on metric mean and variance.

The primary features which set PERA apart from other implementations is its

handling of forward and backward ants to manage the network. Forward ants are

sent from each node on regular intervals to random destinations, or in the event

that a route discovery must be made. They operate as in AntNet, collecting met-

ric information as they are routed randomly to the destination. However, PERA

broadcasts all forward ants, effectively flooding the network to find the destination.

This is a similar scheme as proposed by DSR. Each packet has a sequence number

which is unique to the source node and so each forward packet can be uniquely

identified. All nodes maintain a list of maximum sequence numbers last seen from

every other node in the network. If a packet is received with a sequence number

less than the last seen, it is discarded. This prevents forward ant floods from grow-

ing out of control, as well as preventing old information about the network from

being used in route updates. When a forward ant finally reaches its destination,
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a backward ant is generated with the information carried by the forward ant. It

should be noted that multiple forward ants may reach the destination if there are

multiple paths between it and the source. This will generate multiple backward

ants along each path to the source. The backward ant is unicast back to the source

along the reverse route of the forward ant and updates local routing tables as de-

scribed; the forward ant sequence number is maintained. PERA allows routing

updates to be done either according to the ABC (Equation 3.2) or AntNet (Equa-

tion 3.4) method. It is not made clear how exactly the reinforcement parameter is

calculated.

Data packets are routed deterministically to the next hop neighbor with the

largest probability in the routing table for the particular destination.

Ant-like Routing Algorithm

This algorithm presents a detailed routing scheme for MANETs, including route

discovery and maintenance mechanics [54]. It was developed by Günes, Kähmer,

and Bouazizi between 2002 and 2003. The Ant-like Routing Algorithm (ARA)

is the first MANET routing algorithm to use pheromone directly as a means to

measure path quality. It very closely mimics the classic ant foraging algorithm

instead of the more abstract ACO. ARA uses the same route discovery algorithm as

PERA. Forward ants with unique identifiers are flooded into the network. Forward

ants arriving at the destination are destroyed and a backward ant is returned to the

source along the forward path. When a node receives a forward ant, it is allowed

to update it routing table, or create a new entry for the source of the ant, with

some constant amount of pheromone, γc.

In contrast to previous algorithms, routes are maintained by data packets them-
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selves. Whenever a data packet is received or sent, a node will note the neighbor

and add pheromone, γc, to that link. This is made clear in Equation 3.13,

P n
h,d ← P n

h,d + γc

P h
r,s ← P h

r,s + γc, r = n (3.13)

In order to balance this positive feedback, each node n in the network periodically

decays the pheromone on each link for each known destination, Dn, as shown in

Equation 3.14.

∀i ∈ N n, ∀d ∈ Dn, P n
i,d ← P n

i,d · e
−τ (3.14)

If a loop is detected by checking data packet sequence numbers, an error message

is returned to the previous hop. The previous hop then removes all pheromone to

the duplicate hop, making the loop impossible to complete in the future.

ARA presents a unique local repair method. If a link is found to be dropped,

perhaps due to a MAC level communications failure, the pheromone on that link

is set to zero. As in the loop detection case, this makes it impossible for this (now

non-existent) link to be used. If another link is available, the packet is resent. If

not, the packet is returned to the previous hop for similar processing. If a packet is

eventually returned to its source with this method, a new route discovery process

is initiated using the forward ant flood method.

Data is forwarded deterministically over the links with the most pheromone on

them.

ARA2 The original Ant-like Routing Algorithm was improved in 2003 by the

same authors [55]. This version incorporates several changes including, proba-

bilistic data forwarding, continuous pheromone decay, ant packet prioritization,

backward ant flooding, data packet buffering, and neighbor broadcast.
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The original ARA had forwarded data packets deterministically, the same as

all of the algorithms to come before it. ARA2 allows the use of probabilistic data

packet forwarding. Next hop probabilities are computed by a normalization of the

destination pheromone on outgoing links, as shown in Equation 3.15.

pn
i,d =

P n
i,d

∑

j∈Nn P n
j,d

(3.15)

The authors cite that the main advantage of this approach is that the traffic load

is balanced across available paths.

ARA2 also introduces continuous pheromone decay. Previous proposals always

decayed pheromone on a fixed regular period, such as one second. This feature is

introduced in order to avoid oscillation between two paths with similar pheromone

concentrations. Unfortunately no specific implementation details are given.

Both forward and backward ant packets are prioritized over data traffic in

ARA2. This is a change from ARA where ants shared the same queues as data.

Such a scheme allows network control information to be distributed faster into the

network, as in previous schemes. It is noted that the implementation of ARA2

presented in [55] optimizes for hop count, where this approach works very well.

Other metrics may be better served if the forward ants have the same priority as

data. An example includes delay. This subtlety is mentioned in previous work.

Another effort to speed the dissemination of control information is the use of

backward ant flooding. This should cover a larger portion of the network and cause

network updates to be better distributed. Unfortunately no specific implementa-

tion details are given and this feature remains vague. A similar idea is presented

in PERA where backward ants are unicast for each received forward ant.

ARA2 also works to limit the number of forward ant floods sent into the network

by buffering received data packets which need a route request, rather than sending
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one out for each data packet.

Finally, ARA2 introduces the concept of neighbor broadcast to spread control

information. Past SI algorithms have relied on the MANET broadcast environ-

ment solely to facilitate the use of packet flooding. Although, the use of packet

eavesdropping has been used in algorithms such as DSR as well. ARA2 allows

nodes to eavesdrop on their neighbor’s transmission in order to gather information

about where they are transmitting to. This information is added in the context of

pheromone. No specific information is given on how this feature works exactly.

Termite

Termite, the subject of this thesis, is a contemporary of the original ARA. Work

started on its development in the Fall of 2001 and the first report published in 2003

[56]. Many of the features presented in this chapter are also found in Termite, with

future developments through 2004. A full treatment continues in the following

chapters. Some features found in future publications by other authors reflect on

those developed originally for Termite.

Ad-Hoc Networking with Swarm Intelligence

The Ad-Hoc Networking with Swarm Intelligence algorithm (ANSI) by Rajagopalan

and Shen is the most recent addition to the SI MANET routing family in 2004

[57]. This algorithm is introduced with the intention of creating an algorithm with

complementary proactive and reactive components, able to adapt to more flexible

metrics, such as a node capability.

In contrast to many other SI routing algorithms, ANSI allows a proactive rout-

ing feature in addition to the standard reactive approach. This follows in the



63

footsteps of other dual mode MANET routing algorithms such as the Zone Rout-

ing Protocol (ZRP) [58] and the Sharp Hybrid Ad-hoc Routing Protocol (SHARP)

[59]. Such systems are generally defined such that a node proactively keeps track

of routes to all destinations within a certain zone, and routes to the rest are

maintained reactively. A separate proactive routing protocol and reactive routing

protocol are defined to handle each case. The hybrid protocol is often designed

such that any previously defined proactive and reactive algorithms can simply be

plugged in. The hybrid protocol then defines how zones are managed. The zone

of a node is an area defined by a given hop diameter. The zone may be prede-

fined or calculated online according to the needs of the network [60]. In ANSI,

proactive ants are sent periodically by each node in order to establish routes to

their source. This is similar to the route discovery approach used by PERA. The

impact of the flood is minimized by using packet identifiers, a limited time-to-live

in each packet, and a probabilistic flooding (gossiping) scheme. As each proactive

ant moves through the network, it updates the current node with information from

its stack.

ANSI follows the PERA method for reactive routing to non-local destinations.

Forward ants are flooded while keeping their path and metric information on a

stack. When a forward ant arrives at the destination, a backward ant is unicast

along the forward ant’s reversed path to the source. However, the forward ant

flood radius is increased iteratively, equivalent to AODV’s optional expanding ring

search. Full route discovery floods are typical. When a backward ant is received

at a node, local pheromone is updated according to Equation 3.16.

∀i ∈ N n, ∀d ∈ Svisited, P n
i,d ← P n

i,d · e
−(t−tn

d )τ

∀d ∈ Svisited, P n
r,d ← P n

r,d + γS
r,d (3.16)
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Here, γS
r,d is the amount of pheromone to be placed on the link to the previous hop

r for destination d by the backward ant. This is equivalent to the value
(

cS
r,d

)−1

from CAF. Pheromone is interpreted as utility, the inverse of path cost. In the

context of the decay parameter, e−∆t·τ , the current time is t, and the last time

that the pheromone from destination d at node n was updated is tnd . This is an

example of continuous pheromone decay.

The utility, u, of using a link is computed according to Equation 3.17. This

is the same equation used in ACO, incorporating two measures of link utility.

Pheromone, P , measures global path utility, and η is the estimated metric distance

to the destination. Data packets are routed over the link with the highest utility.

un
i,d =

[P n
i,d]

α[ηn
i,d]

β

∑

j∈Nn[P n
j,d]

α[ηn
j,d]

β
(3.17)

ANSI also describes a detailed route error and recovery procedure. In the event

of route error, an intermediate node performs a number of tasks. These include

buffering the data packet, sending a route request forward ant flood to search for

the destination, and sending a route error ant back to the source of the packet.

The packet will be buffered until the route request returns a result. The route error

ant is unicast back to the source, letting it and all intermediate nodes invalidate

routes to the destination. This is accomplished by setting the pheromone on the

offending link to zero. The source route must then issue a new route request to

find a route to the destination for all subsequent packets.

3.5.3 Discussion

It should be clear by this point that all of the SI routing proposals are basically

equivalent. Whether they assume symmetric link costs like ABC or asymmetric
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link costs like AntNet, whether routing updates affect link probabilities directly or

through an intermediate pheromone metric, each algorithm is essentially doing the

same thing. Each approach may have a different name for different parameters,

however analogies can be drawn to show equivalency. In fact, not only are they

equivalent between themselves, but as the previous chapter showed, there is also an

equivalency to algorithms found in other fields such as optimization and artificial

intelligence.

It may be difficult to differentiate between proposals and find the best solution

for a particular application. But as the principles of swarm intelligence posit, there

is strength in a diversity of approaches. The strongest solution will emerge.

3.6 Related Approaches to Routing

A number of approaches to routing have been developed in the past that bear

a resemblance to swarm intelligent designs. For this reason they merit mention

and understanding. For example, the idea of using roaming software agents in

order to perform network services has been around for some time. While the ant

packets of SI are small and simple, agent-based networking suggests using much

more capable mobile programs. Simple probabilistic routing was developed for the

first computer networks some forty years ago. Next-hop probabilities were pre-

computed and static. A probabilistic broadcast scheme called gossiping has been

studied in an effort to reduce the load of traditional flooding. Artificial Intelligence

has also made some attempts to solve the routing problem. Reinforcement learning

techniques have been applied using the concepts of link utility and feedback signals.
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3.6.1 Agent-Based Routing

A related approach to SI routing is known as agent-based routing. In this para-

digm, a discrete number of agents traverse the network and measure and update

various parameters at each node that they visit. Clearly this idea is very similar to

the ant packets used in SI algorithms. The difference is that agents are generally

considered to be more capable in terms of their execution and data storage than

simple ants packets. Agents may be able to carry with them program code as well

as program data as they move through the network. Ant packets are generally

only considered to carry some small amount of data. Ants may be considered to

be a simple agent.

An example of agent-based routing is the Agent-based Distance Vector Routing

(ADVR) [61]. It is introduced in 2001 as a generalized distributed distance vector

routing algorithm in which network data is moved about by independent agents.

In retrospect, this scheme is similar to CAF which uses ant packets to distribute

network control data and to perform distance metric updates. ADVR presents

these same ideas, however it is able to generalize the mathematics somewhat with

regards to forwarding strategies.

Another example is the 2002 Ant-AODV which follows the AODV routing rules,

but uses agents, also called ants, to distribute routing updates [62]. The algorithm

does not use any sort of randomness as may be implied by the name. Instead,

the ant packets are only used to pass route information around the networks. The

AODV based portion can still use RREQ floods for route discovery. A RREP may

be more readily available due to the updating activity of the ant packets. The

ants are thus intended to reduce the route discovery latency, however it really just

makes the algorithm proactive, similar to DSDV.
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Agents need not be used only for routing. They can be used to manage any

sort of service on a network [63]. Other examples include network diagnostics,

remote maintenance of heterogeneous elements, service provisioning, component

provisioning, and performance management.

3.6.2 Probabilistic Routing

The fact that probabilistic routing is such a large component of the SI based routing

algorithms, and that SI is a relatively new optimization paradigm, does not mean

that probabilistic routing has not been used in the past. In fact, probabilistic

routing was first introduced as a means of load balancing in the early 1960s. Since

a packet’s path is not deterministic, it has also been proposed to the use the

technique as a security measure. In general, by exploiting the geometric properties

of computer networks, messages can be delivered reliably even with probabilistic

retransmission.

Stochastic Routing

The idea of using random routing has been around since the first computer net-

works [64]. When packets are routed deterministically, certain paths may become

congested because so much traffic is being sent on it. Stochastic routing is a simple

solution to this problem where packets are sent to a random next-hop, allowing

packets to be evenly spread over a larger number of paths and thus reducing con-

gestion. The disadvantage to such an approach is that it is increasingly likely

that packets will be received out of order and with a larger delay spread. There

has not been a large amount of work in this area because deterministic routing

schemes are much easier to understand and design, and their performance is good
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enough. Early stochastic routing schemes used static predetermined probabilities,

while more recent work has allowed for dynamic next-hop probabilities.

Multipath Routing Stochastic routing may also be considered a form of multi-

path routing; packets are sent across multiple paths to a destination. More packets

could be sent at a time since more network resources are available, the delivery

could be more reliable since there are redundant delivery options, and security

could be improved because an attacker would have to monitor multiple points in

the network in order to intercept all packets of a message.

Gossiping

Gossiping is a probabilistic optimization of flooding which attempts to have every

node receive some information without requiring each node to transmit it as well

[65]. The basic gossiping scheme in a broadcast communications medium, such as

an ad-hoc network, requires each node receiving a message to rebroadcast it with

some probability. While the modification is slight, the reduction in the number of

transmissions can be significant, up to 35% for random topologies [66]. Gossiping

in a wired network requires each node to randomly select a number of neighbors

to retransmit the received message to.

Gossiping also exhibits an interesting feature known as a phase transition [67].

As the network becomes large, the probability that all nodes or no nodes will

receive a message becomes extremely sensitive to the retransmission probability.

There is a critical probability below which almost no nodes will receive the gossiped

message, and above which almost all will. This threshold is dependant on many

factors including network size and density.
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3.6.3 Q-Routing: Routing with Reinforcement Learning

Boyan and Littman introduce Q-routing in 1993 as an application of the Q-learning

reinforcement learning technique to the problem of network routing [68]. The

authors’ perspective is entirely from that of reinforcement learning and artificial

intelligence. With the hindsight of the development of swarm intelligent routing

in the late 1990s, Q-routing may well be thought of as one of the first swarm

intelligent routing algorithms. It predates ABC by three years.

Q-routing works simply as follows. Each node maintains an estimate of the

time necessary to reach every other node in the network through each neighbor,

Cn
i,d. When a packet is sent from a node n to the next hop h for destination d,

n receives a feedback signal from h consisting of h’s best estimate of arriving at

d. Node n will then update its cost estimate to arrive at d according to Equation

3.18.

Cn
h,d ← (1− ϕ) · Cn

h,d + ϕ · (cn,h + min
j∈Nh

Ch
j,d) (3.18)

The authors note that this is very similar update rule found in Bellman-Ford algo-

rithm. The authors of CAF make the same observation regarding their algorithm

some five years later. Since Q-routing is designed from the reinforcement learning

perspective, ϕ is explicitly referred to as the learning rate. This again makes the

similarities between the swarm intelligent algorithms and reinforcement learning

very clear.



CHAPTER 4

TERMITE

4.1 Introduction

Termite is a distributed routing algorithm for mobile wireless ad-hoc networks [56].

It is designed using the swarm intelligent framework in order to achieve better

adaptively, lower control overhead, and better packet delivery than contemporary

solutions. The algorithm is inspired by the hill building behavior of termites.

A social insect metaphor suggests a probabilistic routing algorithm. Informa-

tion about the network environment, such as topology, link quality, and traffic

congestion, is determined from the amount of pheromone, or path utility estimate,

contained on each arriving packet at each node. Packets are considered to route

themselves and are able to influence the paths of others by updating routing para-

meters throughout the network. The collection of these parameters from all nodes

across the network constitute the environment in which the packets exist. This

Termite environment is a representation of the collective knowledge of all nodes.

The interaction between packets and their environment implicitly spreads infor-

mation about network conditions and thus reduces the need to generate explicit

control traffic. In general, the method of communicating information indirectly

through the environment is known as stigmergy.

4.2 Design of Termite

The Termite algorithm is explained in detail below, however it may be described

simply as follows. Each node in the network has a specific pheromone scent. As

packets move through the network on links between nodes, they are biased towards

70
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the pheromone of their destination. Packets follow this pheromone gradient while

laying pheromone for their source on the links that they traverse. The amount

of pheromone deposited by a packet on a link depends on the utility of the path

that it has traversed. Packet pheromone is proportional to the utility of the path

followed up to the current node in the network. Using this method of pheromone

updating, consistent pheromone trails are built through the network. Changes

in the network environment, such as topological or path quality changes, are ac-

counted for by allowing pheromone to decay over time. This requires paths to

be continuously reinforced by new traffic; new information about the network is

added to links. Each network node records the amount of pheromone that exists

for each destination on each of its links.

4.2.1 The Pheromone Table

In order to manage the pheromone in the network, each node maintains a table

recording the pheromone on each neighbor link from each destination node. Each

node has a distinct pheromone scent. The table may be visualized as a matrix

with neighbor nodes listed along the side and destination nodes listed across the

top. Rows correspond to neighbors and columns to destinations. An entry in

the pheromone table of node n is referenced by P n
i,d, where i ∈ N n is a neighbor

node, and d ∈ Dn denotes a destination. In other words, P n
i,d is the amount of

pheromone from node d on the link with neighbor i at node n. An example of a

pheromone table is shown in Figure 4.1. N n and Dn are the sets containing the

current neighbors and destinations known to node n, respectively.
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Figure 4.1: Example of a Pheromone Table

4.2.2 Pheromone Update

When a packet is received at a node n from source s and previous hop r, the

pheromone entry P n
r,s is updated in the pheromone table according to Equation 4.1

with a constant amount of pheromone, γc. Each receiving node should update its

pheromone table in this way, even if it is not the intended receiver of the packet.

Using such promiscuous mode reception allows routing information to be spread

more quickly.

P n
r,s ← P n

r,s + γc (4.1)

4.2.3 Pheromone Decay

To account for pheromone decay, each value in the pheromone table is periodically

multiplied by a decay factor, e−τ . The decay rate is τ ≥ 0, and is a global para-

meter. A high decay rate will quickly reduce the amount of remaining pheromone,

while a low value will degrade the pheromone slowly. The nominal pheromone de-

cay interval is one second; this is called the decay period. Equation 4.2 describes

pheromone decay.

∀i ∈ N n, ∀d ∈ Dn, P n
i,d ← P n

i,d · e
−τ (4.2)

If all of the pheromone for a particular node decays, then the corresponding
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row and/or column is removed from the pheromone table. Removal of an entry

from the pheromone table indicates that no packet has been received from that

node in quite some time. It has likely become irrelevant and no route information

must be maintained. A column (destination listing) is considered decayed if all

of the pheromone in that column is equal to a minimum value. If that particular

destination is also a neighbor then it cannot be removed unless all entries in the

neighbor row are also decayed. A row is considered decayed if all of the pheromone

values on the row are equal to a minimum value.

Neighbor nodes must be specially handled because they can forward packets as

well as originate packets. A decayed column indicates that no traffic has been seen

which was sourced by that node. Since neighbors can also forward traffic, their

role as traffic sources may be secondary to their role as traffic relays. Thus, the

neighbor row must be declared decayed before the neighbor node can be removed

from the pheromone table.

If a neighbor is determined to be lost by means of communications failure (the

neighbor has left communications range), the neighbor row is simply removed from

the pheromone table.

4.2.4 Pheromone Bounds

There are three values governing the bounds on pheromone in the table. These are

the pheromone ceiling, the pheromone floor, and the initial pheromone. When a

packet is received from an unknown source, a new entry for that node is created in

the pheromone table. In the case of a neighbor node, a new column and row will

be created (neighbor nodes are also potential destinations). If the source is not a

neighbor only a column is entered into the table. Each pheromone value in the new



74

cells will be assigned the initial pheromone value. During the course of pheromone

decay, no value is allowed to fall below the pheromone floor. This allows unused

nodes to be easily detected. Likewise, no pheromone value is allowed to exceed the

pheromone ceiling. These bounds prevent extreme differences in pheromone from

upsetting the calculation of next hop probabilities. Each parameter may be tuned

for a particular network environment.

4.2.5 Route Selection

In order to forward a packet towards its destination, the forwarding equation is

used to determine the next hop neighbor. This formula transforms the pheromone

for destination d on each outgoing link i, P n
i,d, to the probability that that link

will be used to forward the packet, pn
i,d. The specific next hop neighbor is chosen

randomly according to this distribution, though no packet is ever returned to the

node that it arrived from, r. Thus, i is chosen from N n − r. The forwarding

equation is shown in Equation 4.3.

pn
i,d =

(P n
i,d + K)F

∑

j∈Nn−r(P
n
j,d + K)F

(4.3)

The constants F and K are used to tune the routing behavior of Termite. The

pheromone threshold, K, determines the sensitivity of the probability calcula-

tions to small amounts of pheromone. If K ≥ 0 is large, then large amounts

of pheromone will have to be present before an appreciable effect will be seen in

the routing probability. The nominal value of K is zero. Similarly, the pheromone

sensitivity, F ≥ 0, may be used to modulate the differences between pheromone

amounts. For example, F > 1 will accentuate differences between links, while

F < 1 will deemphasize them. F = 1 yields a simple normalization.
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4.2.6 Packet Design

There are five types of packets used by Termite. These are data, hello, seed,

route request (RREQ), and route reply (RREP). The latter four types are control

messages. Each packet type contains at least six fields, including source address,

destination address, previous hop address, next hop address, message identification,

and Time-To-Live (TTL). The previous hop address and next hop address fields

may be removed from the packet and the information instead extracted from the

MAC header which encapsulates the routing data. Issues of address resolution

may arise; MAC addresses are rarely the same as routing addresses. The message

identification field allows each packet in the network to be uniquely identifiable.

This feature is not required, however it enables loop detection as well as allowing

the nodes to operate in a limited promiscuous mode. Data packets may contain

additional fields such as data length and bulk data.

Data Packets

Data packets are routed normally through the network. If a node does not know

how to forward a packet, which is the case when the node’s pheromone table does

not contain the packet’s destination, the packet is buffered and a route request is

issued. If a reply is not received within a given time period, rreq timeout, the data

packet is dropped and considered lost.

A route reply will ensure that pheromone for the packet’s destination exists in

the pheromone table, thus enabling proper routing. A reply also ensures that there

exists at least one pheromone trail from the requestor to the node which replies to

the route request.
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Route Request Packets

Route request (RREQ) packets are sent when a node needs to find a path to

an unknown destination. Route requests perform a random walk over the network

until a node is found which contains some pheromone for the requested destination.

In a random walk, a packet uniformly randomly chooses its next hop, except for

the link it arrived on. If a route request cannot be forwarded, it is dropped.

Pheromone is disregarded during a random walk. Any number of RREQ packets

may be sent for each route request; the exact number of which may be tuned for

a particular environment.

A route request is not looking for an explicit route to the destination. Rather

it is searching for the beginning of a pheromone trail to the destination. The route

will be strengthened by future communications.

Route Reply Packets

Once a route request packet is received by a node containing pheromone to the

requested destination, a route reply (RREP) packet is returned to the requestor.

The RREP message is created such that the source of the packet appears to be the

requested destination and the destination of the packet is the requestor. The reply

packet extends pheromone for the requested destination back to the requestor

without any need to change the way in which pheromone is recorded at each

node. The reply packet is routed normally through the network by probabilistically

following a pheromone trail to the requestor. Intermediate nodes on the return path

automatically discover the requested node.
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Hello Packets

Hello packets are used to search for neighbors when a node has become isolated.

Hello packets are broadcast at a regular interval until a reply is received. A reply

is sent by all nodes who hear the original hello. Any replies will create an entry

in the pheromone table (since the table was previously empty) and thus make the

node aware that it is not alone. The node will stop sending hello packets until the

pheromone table is again empty.

As has been suggested in previous work, hello broadcasts may be avoided at

the routing layer by an analogous mechanism at the MAC layer.

Seed Packets

Seed packets are used to actively spread a node’s pheromone throughout the net-

work. Seeds make a random walk through the network and serve to advertise a

node’s existence. They can be useful for reducing the necessary number of explicit

route request transactions.

4.3 Properties of Termite

This section highlights some of the properties and variations of Termite.

4.3.1 Probabalistic Routing

All routing decisions in Termite are random. This simplifies the processing of each

packet, and allows new paths to be explored at a rate inversely proportional to the

quality of the current routing solutions. The use of tuning parameters F and K

allows a tradeoff between route exploration and exploitation.
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4.3.2 Best-Effort Service

The random routing of packets allows known routes to be used while still exploring

the network for new and better routes. There is always a chance that poor routing

decisions will be made and a packet will never arrive at its destination. A packet

may be routed in a loop or perhaps in an entirely wrong direction. A Time-To-Live

(TTL) field is used in order to prevent the propagation or reinforcement of bad

routing decisions. The probability of a packet persisting in a loop tends to zero

with the length of the loop; the number of packets that are lost to looping will

not adversely affect the overall routing performance. If loops cannot be tolerated,

the message identification field in each packet may be used to record previously

processed or overheard packets. Packets in this list will be dropped if received a

second time.

Termite is designed to quickly find an acceptable routing solution and to adapt

gracefully as the network changes.

4.3.3 Low Complexity

Termite is a simple algorithm. The memory footprint can become large, storing

a maximum number of pheromone values equal to the square of the total number

of nodes in the network. The is the same as any distance vector based routing

algorithm. Computation time for next-hop probabilities may be reduced by caching

probability results or reducing the frequency with which updated probabilities are

calculated. Each packet is processed in one pass, including the updating of the

pheromone table and the next hop computation. It is not necessary to keep track

of special purpose information such as sequence numbers or route setup attributes.
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4.3.4 Low Route Recovery Latency

Termite provides low route recovery latency. If a neighbor link is lost, future next

hop calculations will simply not consider the pheromone that was on that link.

Packets transmitted to neighbors that are no longer able to communicate may be

retransmitted to those that can. Unless a node is entirely unaware of a particular

destination, a next hop can be computed immediately.

Given a sufficient amount of traffic from each node, little pheromone will decay

to the point of being lost entirely from a pheromone table. Few control packets

must be sent, which could delay the next hop calculation.

4.3.5 Adaptability

Termite is able to adapt to the aggregate effects of all factors affecting throughput.

Many effects influence the rate at which a message may be transmitted, and thus

the rate at which messages arrive at their destinations.

In order to find a shortest hop path, packets traversing a shorter path will

arrive at the destination sooner than those on longer paths. This will influence

packets traveling in the opposite direction to travel the shorter path, which will in

turn bias more traffic onto the shorter path.

In the case of variable quality links, the network will learn to avoid low quality

links. For instance, in order to maintain an acceptable bit error rate (BER) across

low quality links, a medium access protocol can be expected to reduce the bit rate.

This will result in a lower throughput, and perhaps also increased traffic congestion

at that node as transmit queues are filled. Fewer arriving packets leads to a lower

regeneration rate of pheromone and thus lower bias for packets traveling in the

opposite direction.
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The MAC layer may take a different approach to solving the link BER problem,

such as increasing the transmit power. This may maintain an acceptable bit and

error rates, but the larger transmit radius will influence traffic patterns in the

area. The node will prevent others from transmitting while it is doing so. This

will alter the rate at which packets are able to be transmitted between nodes and

thus change the routing probabilities.

Protocols have been suggested that base their routing strategies on measured

topology volatility, especially that of the local topology [70]. Termite automatically

measures this; many transmissions will be overheard from long-time neighbors,

resulting in high pheromone levels on the links to those neighbors. Stable neighbors

will be preferred for routing.

4.3.6 Multipath Routing

Termite provides multipath routing. Each routing decision is probabilistic and

independent from all other decisions. No two packets are guaranteed to take the

same path through the network. After all, data packets are expected to explore

the network.

As a network topology becomes more stable, routes between nodes may collapse

to a single high probability path. This will be the case if there is one path which

is more optimal than all others, or it may simply be a matter of happenstance.

In the latter scenario, the forwarding function can be tuned to equalize the link

probability.
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4.3.7 Stigmergy

Termite is built on the strength of the traffic flowing through the network. No

direct communication between packets, nodes, or any sort of higher level network

abstraction exists or is even necessary. Packets are routed simply by interact-

ing with the pheromone environment around them. Stigmergy is fundamental to

Termite.

4.3.8 Mobile Agents

In the mobile agents paradigm, agents traverse the network while updating and

optimizing routing information at each node. Termite may be viewed in this frame-

work, where each packet is an agent updating each node which overhears it. Infor-

mation conferred includes where the packet came from immediately and originally,

as well as how quickly it has traveled through the network relative to other pack-

ets. Each node to which a packet is directly forwarded will execute the agent; the

packet will forward itself by detecting its environment and making a decision.

Because every packet in the network would be considered an agent in this frame-

work, we do not believe Termite to fall into this category. Rather, routing solutions

are an emergent property of the interaction of all packets. Little information must

be stored in each packet in order for the packets to route themselves.

4.3.9 Promiscuity in a Broadcast Medium

Termite can take advantage of the fact that many MANETs exist in a broadcast

medium. While this algorithm ultimately abstracts communications with neigh-

bors to discrete links, it is possible for each node to promiscuously listen to all
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transmissions. Routing information can be gained from listening to all traffic,

rather than only to specifically addressed traffic. New nodes can quickly be de-

tected when their transmissions are overheard. Also, a great deal of information

about the network can be gained from the destinations that neighbors are forward-

ing for.

While promiscuity can boost the performance of Termite, it also creates some

problems. If the same packet is overheard more than once, the routing information

derived from it may result in misleading pheromone gradients. In order to prevent

the double counting of packets, a message identification field is included in Termite

packets. Suppose a packet from node s to d is forwarded from x to neighbor y,

and then y again forwards the packet to z. Node x will overhear the transmission

from y to z (since x and y are neighbors), and updates its pheromone table with

the overheard packet. This would imply that there exists a path through y to s.

But the path through y is already through x! If x naively records the packet in

this manner, it might be tempted to forward a packet destined for s to y, which

then may pass the packet back to x. This is somewhat related to the distance

vector counting to infinity problem. In order to prevent such a scenario, each node

should maintain a list of previously forwarded packets as well as packets that it

has overheard (but were not addressed specifically to it). Packets in this list are

dropped if they are received again; they cannot be used to update the pheromone

table. This process will also prevent packets from following loops in the network;

previously forwarded packets will be destroyed.
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4.3.10 Energy Consumption

Eavesdropping on all communications requires a great deal of energy. With current

technology, the energy cost of receiving a message is almost as high as that of

transmitting one [71]. As many ad-hoc applications are power limited, this can

become a major drawback to the Termite approach.

4.3.11 Directional Links

Termite assumes symmetric bidirectional communications links between nodes.

When a packet is received directly from a particular node, it is assumed that

packets may be forwarded in the opposite direction. Unidirectional links will break

Termite as it has been described in this paper. Sub-Layer schemes have been

proposed to abstract unidirectional links into bidirectional links [72].

4.4 Simulation and Results

Termite has been simulated using Opnet Technologies Inc.’s, Opnet Modeler [74].

A series of tests are run in order to determine the viability of Termite as an effective

scheme for MANET routing. Data goodput and control overhead are the primary

metrics; Node speed is the independent parameter.

4.4.1 Simulation Environment

Simulations are executed in scenarios containing one hundred nodes and lasting

600 seconds. Each scenario uses the same simulation parameters as listed in Table

4.1. Only node speed is varied and is indicated in the results.
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Table 4.1: Simulation Parameters

simulation area 50 x 50 [meters2]

transmission range 10 [meters]

channel bit rate 1 [Mbps]

initial pheromone 1

pheromone ceiling 10000

pheromone floor 0.1

rreq timeout 2 [seconds]

τ (decay rate) 0.105

decay period 1 [second]

Data TTL 32 [hops]

RREQ TTL 32 [hops]

RREP TTL 32 [hops]

Seed TTL 4 [hops]

Seed period 30 [seconds]

Hello period 1 [second]

RREQs per Route Request 2
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Random Waypoint Mobility Model

The random waypoint mobility model is used in this simulation. Movement is

restricted to a rectangular area. Generally, each node remains stationary for a

uniformly distributed period of time, chooses a uniformly random destination in the

area, and then moves to that destination in a straight line at a uniformly random

speed. In this simulation, there is a 60 second pause time at the beginning of the

simulation in order to allow the network to reach an equilibrium state. Otherwise

there is no pause time and all nodes have the same speed. These parameters are

not subject to the decreasing average speed problem encountered when setting the

bounds on speed too far apart [75].

Traffic Source Model

A constant bit rate (CBR) traffic source model is used. Each node sends one data

packet every half second to a random destination which is selected at the beginning

of the simulation. The data size of each packet is 64 bytes in order to minimize

the effects of congestion on the network. A reply is returned to the source when a

packet arrives at its destination. This is to simulate an acknowledgement.

MAC Layer Model

A perfect MAC layer is used in this simulation. If two nodes are within communi-

cations range, then they may communicate immediately without error or transmis-

sion collision. Transmission and receive queues are modeled; a packet must wait

until all packets ahead of it in the queue are serviced before it is processed. Such

a simple model is used in order to test the behavior of the algorithm without the

influence of extra-layer effects.
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4.4.2 Simulation Results

In order to make an initial assessment of the algorithm, data goodput and control

overhead are measured against average node speed. Results are shown in Figure

4.2. Data goodput is the fraction of successfully delivered data packets. Overhead

is measured in three ways; Bandwidth overhead is the fraction of all transmit-

ted bits that belong to a control packet. Packet overhead is the fraction of all

transmitted packets that are of the control type. Using these measures, packets

transmitted multiple times will be counted in each instance. Control overhead

is the fraction of all sourced packets that are of the control type. Packets are

only counted when they are created and not again. Data goodput declines as
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Figure 4.2: Data Goodput vs. Control Overhead vs. Average Node Speed

node mobility increases. Control overhead experiences a nearly linear increase on

the semilog plot, suggesting a logarithmic control packet generation rate in the

node mobility region of interest. Bandwidth and packet overhead remain constant

throughout the simulation.

Figure 4.3 shows how the average hop count of data and route request packets
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varies with node mobility. The average path length of successfully delivered data

packets experiences a sharp increase as the network becomes more volatile. How-

ever, the path length of both successful route request and route replies remains

constant and quite low.
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In order to more clearly illustrate how data packets take longer paths with

higher node mobility, Figure 4.4 shows how route confidence varies against average

node speed. Route confidence is the average next-hop probability. Routes are

extremely well established in a static network; average next-hop probabilities are

close to unity. As the network topology becomes unreliable, packets move through

the network with significantly less confidence; the average next-hop probability

drops and low probability next-hops are dominant. These conditions yield longer

paths as packets wander through the network; they are no longer closely guided to

their destination. More paths are explored, most of which are long.

Figure 4.5 demonstrates the distance of nodes being requested from the re-

questor with respect to average node speed. The results are normalized to the
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Figure 4.4: Route Confidence vs. Mean Node Speed

transmission range which is ten meters in this simulation. The requested desti-

nations tend to be within two hops, however higher node speeds quickly find the

requested nodes to be farther away.

Finally, an indication of network volatility is shown in Table 4.2. Volatility

is measured by the average number of link state changes per node per second. A

change in link state is defined as an existing neighbor link failing, or a new neighbor

link discovered. This metric observes the rate with which the network topology is

changing from an individual node’s perspective. The increase in number of link

changes is approximately linear with average node speed.

4.4.3 Discussion

Figure 4.2 confirms that Termite is able to perform well over a variety of volatile

network environments. Bandwidth overhead remains constant regardless of node

mobility. This is despite the fact that control overhead can become quite large.

Packet overhead mirrors the characteristics of bandwidth overhead although it is
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Table 4.2: Mean Link State Changes per Second per Node

0 [m/s] 0 [link changes/node/s]

1 1.18

2 2.41

5 5.88

10 11.25

somewhat larger. This characteristic is in stark contrast to other MANET routing

algorithms where overhead attributed to control packets is nontrivial in general

and can become a dominating factor in network resource consumption [73]. Figure

4.3 demonstrates that as the network becomes more volatile, data paths become

longer while control paths remain small. The reason for this is explained by Figure

4.4, where data packets are quickly less confident in their next-hop selections as the

network becomes unstable. Packets tend towards a random walk over the network

as volatility increases. Simple calculations based on node density indicate that
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the average number of neighbors per node in this simulation is slightly less than

thirteen. Thus, 0.08 is roughly the route confidence for a random walk. Though

this metric is much higher than that in all cases, data goodput degrades greatly.

Even though many more control packets may be generated in volatile situations,

they do not have to travel very far to meet their objective. One explanation for this

behavior draws on the results of Figure 4.5. The majority of requested destinations

are within two hops of the requestor. This suggests that paths are being broken

only at the very end of a trip. The destination moves outside of the communications

range of the penultimate node, which then must issue a route request for it. The

destination node has not moved very far and can be reached within two hops.

Likely an intermediate node between the penultimate and the destination is aware

of the destination (since it is within communications range of both) and thus is

able to reply to the route requestor. In this way, route requests are kept very short.

A second possibility as to why control paths are so short, is that most nodes are

aware of most destinations due to packet exploration of the network. Nodes record

the source of all packets they receive; as long as enough traffic is received from

that source to prevent its pheromone from decaying, a node will always maintain

a knowledge of that source. If a route request is issued, it is highly likely that a

nearby node will be aware of the requested destination; pheromone does not decay

very quickly in this simulation. This characteristic of Termite is facilitated by all

packets exploring the network on their way to a destination.

Another perspective on these results indicates a tradeoff. As network volatility

increases, data paths become significantly longer and control paths stay short.

Data packets are being used to explore the network while the bandwidth impact of

control packets is minimized. But as data paths become longer, potentially large
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packets will be transmitted many times, negatively impacting energy use as well

as network capacity. There is a tradeoff between the amount of bandwidth used

by control packets and the additional amount of bandwidth used by transmitting

large data packets over longer paths.

These results are promising; data goodput is maintained while packet overhead

is kept constant, even in highly volatile networks. But there remain many open

questions as to the specific operation of Termite. For instance, it is unclear what the

optimal value of the system parameters are; the most notable of these parameters

being the decay rate. How can parameter values be automatically determined

based on locally available information. In these simulations, the parameters were

chosen empirically but are not necessarily to be optimal. The optimal performance

or even the optimal parameter values of this algorithm are unknown at this time.

4.5 Conclusion

A routing algorithm for mobile wireless ad-hoc networks has been presented.

Swarm intelligence is used to build an emergent routing behavior. Packets prob-

abilistically follow pheromone trails to their destination while laying pheromone

for their source. Passive route marking reduces the need for explicit routing traffic

and maximizes the network resources available to carry user data. Nodes deter-

mine network conditions by monitoring traffic flow and make adjustments to their

routing tables. Simulations show that Termite is able to maintain reasonable data

goodput over a variety of mobility conditions. Control bandwidth overhead is min-

imized and remains constant across several degrees of network volatility. Further

work exploring the characteristics of the underlying algorithm is warranted. Ter-

mite is in the first generation of biologically inspired MANET routing algorithms.



CHAPTER 5

PHEROMONE UPDATE IN SI MANETS

5.1 Introduction

The previous chapter has shown Termite to be a viable MANET routing algorithm.

Termite effectively applies the principles of swarm intelligence to provide a novel

solution to the routing problem. The biological analogy of ants and pheromone

is quite poetic. There is nevertheless an opportunity to improve performance

even further through the precise and dedicated application of engineering acumen.

By regarding pheromone based routing not just as an algorithm based on a strict

metaphorical interpretation of biology, but as a general framework for probabilistic

routing, performance is enhanced by moving away from a biological perspective

[76].

This chapter tests and develops pheromone accounting strategies in the context

of the Termite routing algorithm. Termite is briefly reviewed, and new features are

added in order to improve performance. A number of pheromone accounting tech-

niques are presented which can be used to determine pheromone levels and routing

probabilities. Appropriately tuned parameters can approximate the deterministic

approach used by ABC and AntNet to forward data packets and thus provide a

smooth transition between hard and soft routing. In some of the techniques con-

sidered below, Termite is reformulated in order to make hard routing decisions and

also include an explicit exploration probability. There is also a question of how

certain parameters affect performance. Each of the accounting methods is tested

across a wide range of pheromone sensitivity and decay rate.

92
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5.2 Termite

This section will review the swarm intelligent Termite MANET routing algorithm.

A number of new features have been added in order to improve performance over

the original description in the previous chapter. Termite may be described simply

as follows. Each node in the network has a specific pheromone scent. As packets

move through the network on links between nodes, they are biased to move in the

direction of destination pheromone gradients. Packets follow this gradient while

laying pheromone for their source on the links that they traverse. The amount

of pheromone deposited by a packet on a link may be equal to the utility of its

traversed path. Using this method of pheromone updating, consistent pheromone

trails are built through the network. Changes in the network environment, such

as topological or path quality changes, are accounted for by allowing pheromone

to decay over time. This requires paths to be continuously reinforced by new

traffic; new information about the network is added to links. Each node records

the amount of pheromone that exists for each destination on each of it’s links.

This creates a routing table similar to those found in traditional distance vector

routing algorithms.

There are two major operations in Termite. These are pheromone accounting

and packet forwarding. The former is responsible for maintaining current informa-

tion about the network. This includes updating the routing table when packets are

received as well as removing old information over time. The latter uses the avail-

able information about the network to route packets; the probability with which

to forward a packet over a given link to its destination is determined.
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5.2.1 Pheromone Accounting

The description of laying pheromone on a link is left vague in the previous descrip-

tion. The process of accounting for the amount of pheromone on a link, or even

the eventual physical meaning of that number, can take many different forms.

The purpose of this process is to find a measure of the ability of a particular link

to deliver a packet to a destination. This estimate is based strictly on information

carried by local traffic. The traditional method for tallying pheromone mimics real

pheromone in the sense of additive increase and exponential time-based decay. This

allows old concentrations to be removed temporally while new ones are created as

the network changes. The method is known as pheromone filtering. It is described

in detail in the next section as the classic pheromone filter, and is analyzed in the

following chapter. Alternative methods are also proposed.

Besides a specific pheromone accounting scheme, three general methods are

described which assist in maintaining current and reliable utility estimates.

True Continuous Pheromone Decay

The SI framework requires that pheromone be decayed in order to remove old

information from the system. Previous routing implementations such as Termite

[56] and the Ant-like Routing Algorithm (ARA) [54] would decay pheromone on

a regular predefined period. ARA2 introduces continuous pheromone decay [55].

Superior performance is reported by decaying pheromone based on packet inter-

arrival times. Older information is removed immediately and proportionally upon

the addition of new information.

This chapter introduces true continuous decay in which pheromone is decayed

based on pheromone observation interarrival times. Not only does pheromone



95

decay in between packet arrivals, but between any pheromone observations, such

as when pheromone is used to determine link probability. In essence, pheromone

is decaying all of the time and the update algorithm implements this by noting all

times at which the pheromone has been observed for any reason.

Piggybacked Routing Information

In order to easily disseminate routing information, each packet contains the cu-

mulative metric measurement experienced as it has travelled through the network.

The cumulative metric measurement is simply a number detailing the total delay,

throughput, hop count, energy use, or whatever the optimizing metric may be,

that the packet has experienced enroute to the current node. On many platforms,

this information results in the addition of only eight bytes of overhead.

While it is not new to piggyback routing information on data packets, it should

be stressed that this information is piggybacked on all packets. Even data packets

are used to actively update the network.

Neighbor Broadcast

This is a general technique used is many routing algorithms. Since MANETs

exist in a multiuser broadcast environment, all neighbors can overhear a packet

transmission. One of those neighbors will be the intended receiver, but all local

nodes may eavesdrop and update their own routing information with data from

that packet. Packets processed by unintended receivers are subsequently dropped.

Neighbor broadcast substantially improves the dissemination of routing informa-

tion without incurring any additional overhead. This technique is found to be

particularly useful in Termite.
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5.2.2 Packet Forwarding

As in the previous chapter, in order to forward a packet towards its destination,

the forwarding equation is used to determine the next hop neighbor. This formula

maps the destination d ∈ Dn pheromone on each outgoing link i ∈ N n at node

n, P n
i,d, to the probability that that link will be used to forward the packet to the

destination, pn
i,d. The specific next hop neighbor is chosen randomly according to

this distribution. Unlike the previous chapter, the previous hop, r, is not pre-

cluded from this calculation; a packet may be forwarded to the previous hop. The

forwarding equation is shown in Equation 5.1 below.

pn
i,d =

(P n
i,d + K)F

∑

j∈Nn(P n
j,d + K)F

(5.1)

Source Pheromone Repel

Source Pheromone Repel (SPR) is an adaptation of the packet forwarding process

in order to take advantage of additional routing information already available at

each node. Packets usually only follow the pheromone gradient of their destination.

SPR forces the packets away from their own source’s pheromone, thus simultane-

ously pulling and pushing the packet towards its destination. SPR was originally

reported in VWPR [50] and later used in MACO [51] as a means to find a ranking

of good solutions. MACO expands on the ant colony metaphor for routing by

placing two competing colonies in a network to find routes; each is repelled by the

other, thus forcing them to alternative solutions.

SPR adds an extra dimension of directivity to the routing process and elegantly

allows for the previous hop to be included in the next hop selection. The preclusion

of the previous hop was intended to mitigate obviously bad routing decisions and

loops. The addition of SPR is very effective at preventing packets from being
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routed back to where they came from. While not impossible, it is unlikely. The

reason for this is that the arrival link is more likely to be useful to go to the

source. The source pheromone on it will be higher than the destination pheromone.

This will yield a smaller forwarding probability for the destination based on the

SPR forwarding equation, Equation 5.2. If the packet happens to wander through

the network and arrive instead on a link that is relatively useful to go to the

destination, the amount of source pheromone on that link is likely to be small;

source and destination nodes are likely to be on opposite sides of the node and

thus best reachable over different links. Ultimately, complexity may be removed

from the algorithm while maintaining performance.

Unfortunately it cannot be relied upon blindly. Poor parameter selection can

keep packets behind topological bottlenecks because they cannot overcome the

repelling force of the source pheromone at that point.

The forwarding equation is augmented in order to determine the new link bias

based on source pheromone. Both the destination and source link biases are com-

puted according to the original forwarding equation. The source repel sensitiv-

ity, R ≥ 0, controls the amount by which the packet is repelled by the source

pheromone. A meta link distribution, p̂n
i,d, is then created. This is similar to the

equation introduced by Virtual-Wavelength Path Routing.

p̂n
i,d =

pn
i,d

(

pn
i,s

)−R

∑

j∈Nn pn
j,d

(

pn
j,s

)−R
(5.2)

Route Discovery and Repair

In case there does not exist any destination pheromone at a node for a packet to

follow, a route discovery procedure must be initiated. Previously, some number of

route request packets (RREQ) would be sent on a random walk to find a node with
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the destination’s pheromone. A route reply packet (RREP) is then sent back to

the requesting node, marking its path with destination pheromone. A path with

destination pheromone then exists for the data packet to follow.

The version of Termite used here does not use control traffic. If a destination

is unknown, its pheromone on each link is zero and thus the packet sees a uniform

forwarding distribution over each link (save for the effect of the source pheromone

if SPR is used). Routing in a network with no pheromone at all is difficult; packets

perform a random walk over the network. Ultimately, only data packets exist in

the network; each carries a small amount of routing information with it, which is

disseminated to each node on its path as it moves through the network.

There is no concept of route repair in Termite. Each next hop is computed

online and every node has an estimate of the utility of each link to deliver a packet

to its destination. If a link should fail, the neighbor row is removed from the node’s

routing table and the next-hop probabilities are recomputed for the remaining set.

If all else fails, the packet will simply be routed back to the previous hop, or else

dropped.

Loop Prevention

Preventing packets from being routed in loops is always a key priority for a routing

algorithm. This behavior is clearly suboptimal. A typical approach to loop pre-

vention is for each node to maintain a list of packets already routed. If the same

packet is seen more than once, an error procedure is executed. This might include

dropping the packet or sending control traffic into the network to fix routing tables.

Termite as presented here does not make any special effort to prevent loops. All

received packets are forwarded as described, regardless of the number of times they
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have visited any particular node. SPR helps mitigate the number of routing loops

by making hops towards the source less likely. Nodes closer to the source (measured

according to the network metric) will have larger amounts of source pheromone on

them. This makes travel towards a packet’s source increasingly unlikely, as travel

towards the source is generally also travel away from the destination. Looping is

most probable at the midpoint between source and destination where the push and

pull of the two is roughly the same. Packets fall into a random walk pattern when

there is no significant pheromone gradient in any direction. This indeterminate

directionality can lead to packet death as time-to-live (TTL) counters expire.

Evidence of this sort of behavior may be seen in the decreasing goodput of

larger networks. These situations allow larger intermediate areas where neither

source nor destination pheromone gradient is well defined.

Duplicate Packet Processing

No special effort is made to prevent the same packet from being processed more

than once. This was the case in the previous description of Termite. The message

identification feature is removed, and the pheromone table is updated any time a

packet is received. This is true even when a neighbor retransmits a packet just

forwarded by the local node. Because this version of Termite decreases the amount

of pheromone on a packet as it moves through the network (the packet’s total path

utility decreases), the effect on the pheromone table will not be detrimental.

5.3 Pheromone Update Techniques

A total of eleven pheromone update techniques are tested. They represent a variety

of approaches and philosophies to the problem of effectively maintaining reliable
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and current routing information at each node in the network. The classic swarm

intelligent approaches are used, along with distance vector style, and link indepen-

dent and dependant updates.

5.3.1 Classic Pheromone Filter

The classic pheromone filter (CPF) is the ant pheromone decay model used by the

ant food foraging example. It is widely used in many routing applications such as

Termite, ARA, MACO, as well as ACO. The particular variant used here features

continuous decay which takes into account pheromone observation times.

Each arriving packet deposits a constant amount of pheromone, γc, on the

link that it arrives on, regardless of the quality of the path that it has traversed.

Pheromone constantly evaporates over time; pheromone evaporation is modeled as

exponential decay where t is the current time, tns is the last time that pheromone

from node s was observed at node n. The pheromone decay constant is τ . Node r

is the previous hop.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

P n
r,s ← P n

r,s + γc (5.3)

5.3.2 γ Pheromone Filter

The γ pheromone filter (γPF) is an extension of CPF only in that each packet

deposits an amount of pheromone equivalent to the utility of the path that it has

taken in order to arrive at the current node. The difference is small but the global

effect is substantial. Where the classic pheromone filter makes decisions based on
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packet throughput, the γ pheromone filter bases them on path quality.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

P n
r,s ← P n

r,s + γ (5.4)

As the packet moves through the network, its utility measurement worsens. Basing

routing updates on a worsening metric measurement is similar to ABC’s method

of making routing probability adjustments smaller based on the amount of time

the packet has spent in the network; the packet age [45].

5.3.3 Averaging Filter

A one-tap infinite impulse response averaging filter is a basic averaging technique

widely used in previous work such as CAF. It may also be viewed as an evolution

of the γ pheromone filter. The averaging filter retains the idea of pheromone decay,

but normalizes the result in order to produce an actual estimate of the utility of

that link to the destination. Link utility is estimated independently for each link

for every source-neighbor pair. The time tnr,s is the last time that the pheromone

for node s on the link to neighbor r was observed.

P n
r,s ← P n

r,s · e
−(t−tnr,s)τ +

[

1− e−(t−tnr,s)τ
]

· γ (5.5)

5.3.4 Normalized γ Pheromone Filter

The normalized γ pheromone filter (NγPF or γ̄PF) is a variation of the previous

two methods. Each link is normalized with respect to incoming pheromone, but

there is also the effect of joint pheromone decay.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

P n
r,s ← P n

r,s +
[

1− e−(t−tnr,s)τ
]

· γ (5.6)
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5.3.5 Probabilistic Bellman-Ford

With packets traveling the network and updating link metrics based on path util-

ity, this behavior is reminiscent of a distance vector routing approach such as the

Bellman-Ford algorithm. The Probabilistic Bellman-Ford (pBF) algorithm is de-

signed as a distributed, asynchronous, probabilistic version of the Bellman-Ford

algorithm where packets are routed probabilistically and update routing informa-

tion at each node they visit. Unlike all other techniques tested here, this one is

nonlinear.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

if P n
r,s < γ, P n

r,s ← γ (5.7)

5.3.6 Ant-Based Control + X

While it does not represent a fundamental difference, SI algorithms such as ACO

feature a different mechanism for balancing exploration and exploitation than Ter-

mite does now. Earlier algorithms sent an ant over the best available link, and

also had an explicit noise function which forced them to choose a probabilistic

next-hop. This is probabilistic determinism. ABC does something similar where

control packets are usually routed according to the pheromone table, but occasion-

ally forwarded uniformly. ABC’s data packets are always forwarded over the best

link. Termite integrates this tradeoff between exploration and exploitation directly

into the forwarding equation with the pheromone threshold and sensitivity.

The Ant-Based Control + X (ABC+X) algorithm is a combination of the ABC

forwarding method described above and a selected pheromone update method

which determines how pheromone is accounted for. That is, pheromone is ac-
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counted for normally, according to an accounting method such as γPF. When a

packet must be forwarded, it is sent either on the link with the largest amount

of pheromone, or else a next-hop is chosen uniformly. The use of the uniform

forwarding method is chosen randomly according to a noise factor.

Three different variations of ABC+X are used in this work. They include

ABC+γPF, ABC+γ̄PF, and ABC+pBF.

5.3.7 Box Filter

The box filter is a simple length m averaging filter. If the pheromone filter can

be approximated by the averaging filter, the box filter should be able to estimate

the average utility of a link as well. Each packet travels independently through

the network and this represents an independent stochastic sample of the network

environment. The box filter is ideally suited to estimate the mean of a signal in this

case [77]. The length of the filter must be adjusted in order to trade off between

speed of adaptation and accuracy of the estimate. As with the averaging filter,

each source-neighbor pair is filtered separately and independently. Here, γn
r,s(t)

is integer indexed as the most recent pheromone arrived at time t at node n on

neighbor link r from source s. Equation 5.8 simply averages the last m received

pheromone on each link for each source.

P n
r,s ←

1

m

m−1
∑

i=0

γn
r,s(t− i) (5.8)

5.3.8 Oracle

The Oracle sets the destination pheromone on each link equal to the minimum

distance to the destination out of that link. Each node always knows the exact
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utility of each link. This is not a practical algorithm, rather a test case used to

determine how well the system is able to perform with exact information.

5.3.9 Random Routing

Random routing is the baseline case in these experiments. Each link is considered

uniformly regardless of observed traffic. Comparisons of the above algorithms to a

pure random walk will show how the traffic flow information is exploited to produce

reliable routing results.

In order to fit the random walk into the forwarding model, the pheromone on

each link is maintained at zero. In this way the forwarding equation (assuming

K > 0) will return a uniform distribution over the outgoing links, even with SPR.

The random routing pheromone update equation is shown in Equation 5.9.

∀i ∈ N n, P n
i,s ← 0 (5.9)

5.4 Simulation and Analysis

A number of different scenarios are simulated in order to compare the performance

of the various pheromone accounting techniques over a variety of system parame-

ters. Simulations are designed to test the effect of node mobility, pheromone

sensitivity (F ), and pheromone decay rate (τ) on the global performance metrics.

5.4.1 Environment and Parameters

Two scenarios of varying network diameter are tested. This includes 50 nodes

distributed uniformly over an area 100 meters square, and 100 nodes distributed

over 141.2 meters square. Network population is increased while maintaining node
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density. Common to each scenario is a node transmission radius of 10 meters. As

the nodes move according to a random waypoint mobility model, a single source

and destination pair transmit packets to each other at a rate of two packets per

second. Packets are only sent when a path exists between source and destination.

This is determined by the simulation. All tests are performed with single com-

munication pairs since pheromone is superimposable. Performance is tested with

nodes moving at 1, 2, 5, and 10 meters per second, presenting a wide range of node

mobility. It is unknown what values of the pheromone sensitivity and pheromone

decay rate give the best performance. The sensitivity is tested with six values,

1, 2, 5, 10, 20, and 50, and the decay rate is tested with 0.1, 0.2, 0.5, 1, 2, and

5 seconds−1. Each combination of mobility, sensitivity, and decay rate is tested

for 5000 seconds and averaged over five runs. This gives a total of 720 simulation

runs to test each pheromone update method. The optimization metric is based on

a simple energy model, where the cost of a link is equal to the distance between

nodes squared. In all scenarios, the pheromone threshold is chosen as the utility of

a hypothetical link spanning the diagonal of the simulation area; K50 = 5× 10−5,

and K100 = 2.51 × 10−5. All packets have a time-to-live (TTL) of 32 hops. The

ABC+X algorithms have a 5% exploration probability.

The purpose of these simulations is to test the pheromone update methods. A

perfect MAC layer is assumed; nodes are able to communicate over an error and

contention free medium.

5.4.2 Evaluation Metrics

A number of metrics are used to determine the utility of the proposed algorithms.

These include data goodput, path ineffiency, delivery efficiency. The link change
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rate is a measure of the network volatility, or rate of change of the network topology.

Data Goodput

Data goodput is a classic evaluation metric for routing algorithms. It is the fraction

of successfully delivered data packets. This metric should remain as high possible

under any circumstances.

Path Inefficiency

This metric is a measure of how many times larger the achieved per packet path

metric is, as compared to the smallest available path metric at the time. The lower

this number, the better; the path length ratio must be greater than or equal to

one, since the achieved performance is compared to the optimal.

Delivery Efficiency

This metric aims to characterize the value of the algorithm in one number. It is

the ratio of the goodput to path inefficiency. It is a number between zero and one,

and values approaching unity are desired.

Link Change Rate

The link change rate measures the average number of links that change state,

new or leaving, every second at each node. It is a relative measure of how fast

the network topology is changing, and thus the time available to acquire new

information about the network. This metric is shown in Figure 5.1 for each tested

speed and node count. Note that the 100 node case sees a larger slope. This is

due to fewer boundary effects resulting from a larger simulation area.
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Figure 5.1: Link Change Rate for 50 and 100 Node Simulations

5.4.3 Simulation with 50 Nodes

In this simulation series, fifty nodes are placed in a square area of 100 meters

on a side. Pheromone sensitivity, pheromone decay rate, and node speed are

the independent parameters. The results here only compare with node speed for

reasons of clarity. The values of F and τ giving the best results are used. The

complete results are shown in Appendix A.

Data Goodput

The results for data goodput are shown in Figure 5.2. The Oracle is able to

do extremely well, but only with a very large pheromone sensitivity (Figure A.7).

Note that it does not actually achieve full goodput; a finite sensitivity and non-zero

pheromone threshold allow enough randomness in the forwarding process as to let

packets wander. The Oracle is also able to achieve constant performance regardless

of node speed, but this is expected since it always has perfect information. The γ

pheromone filter is the best performing realizable implementation. At low speeds
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it is able to achieve near perfect goodput, while suffering only a small performance

loss at high speeds and still achieving over 96% packet delivery. γ̄PF and pBF

are close contenders in the low node speed regime, but lose substantially more

performance as speeds increase. γ̄PF achieves roughly 95% goodput at 10 m/s

while pBF drops to 91%. The box, averaging, and classic pheromone filters fall

so far behind the primary three that the results only serve to show that these

methods are unsuitable. More interesting are the results for the ABC+X class

of algorithms. The results are comparable with those of the pheromone filters,

but ABC+X generally lags behind the performance of the original algorithm. Not

shown on the graph for reasons of clarity are the results for random routing, which

is a constant 36% at all speeds.
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Figure 5.2: Data Goodput vs. Node Speed (50 nodes)

Perhaps the most interesting feature of these results is that the classic filter

does better at high node speeds. The reason for this is the high constant value

of pheromone that was used in these simulations compared to the pheromone

threshold; γc = 1. At low speeds, when it is easy to find paths, such a large amount
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of pheromone on many paths creates an ambiguous gradient to the destination.

Packets are not well directed. However, at high speeds it is much more difficult

to find a stable path. With such a large amount of pheromone being laid down

over short-lived paths, strong gradients are created and packets can more easily

find their way through the network. The effect of using such a large pheromone

constant was unknown before these experiments. The constant was chosen based

on previous work.

Path Inefficiency

The path inefficiency results in Figure 5.3 are somewhat more unexpected. γPF

performs quite poorly compared to the other tests. pBF is the best contender of

the three pheromone based techniques and performs equally well as the box and

averaging approaches. γ̄PF uses less optimal paths than pBF. ABC+X performs

comparably to γPF; poorly.

The fact that the link independant estimators, the box and averaging filters,

perform so well in this metric is somewhat misleading. The metric can only be

measured with packets that have successfully arrived at their destination. Fig-

ure 5.2 shows that these pheromone measures have very poor goodput, and thus

are likely to successfully deliver packets only when an easily discovered path is

available. The shorter the path, the easier to find. The box and averaging filters

achieve a very good path inefficiency but overall their performance is still rather

poor.

By constrast, the classic pheromone filter achieves a low goodput and is also

path inefficient. Since this filter can establish a strong pheromone gradient quickly

using a large pheromone constant, even long paths can be followed. And because
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longer paths are likely to be established first by a wandering packet, this filter will

continue to use that path until it breaks.
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Figure 5.3: Path Ineffiency vs. Node Speed (50 nodes)

Delivery Efficiency

The delivery efficiency metric gives an alternative view of the results, shown in

Figure 5.4. γ̄PF is now the top performer regardless of speed. pBF and γPF

follow closely, however the former is superior in lower speed regimes while the

latter in higher. ABC+X has comparable performance. As seen in the goodput

results, the box, averaging, and classic pheromone filters perform dismally.

5.4.4 Simulation with 100 Nodes

In order to test the algorithm in larger diameter networks, a simulation environ-

ment of 100 nodes is generated with the area increased to 141.2 meters squared

in order to keep the node density constant. All other simulation parameters are

retained, except for the pheromone threshold which is changed to reflect the new
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Figure 5.4: Delivery Efficiency vs. Node Speed (50 nodes)

area. This environment tests how well the algorithm is able to scale with network

size; the diameter of the network is roughly doubled. Only the best performing

algorithms are retained for clarity of presentation and timeliness of simulation,

including the γ pheromone filter, the normalized γ pheromone filter, and the prob-

abilistic Bellman-Ford. Oracle and Random Routing are kept for purposes of

comparison. The results of the 100 node simulations mirror those of the smaller

test. The absolute results drop, however the ranking remains the same.

Data Goodput

γPF is able to perform the best across all tested speeds, followed closely by γ̄PF

and pBF in the low speed regime, and becoming clearly superior in high speeds.

All methods have roughly 96% goodput at low speeds, however large speeds dif-

ferentiate the results significantly with ranging from 87% to 85% to 78% for γPF,

γ̄PF, and pBF. The Oracle is able to do very well at 98% regardless of node speed;

random routing achieves only a contant 19%. The results are shown in Figure 5.5.



112

1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1
Goodput vs. Speed

Node Speed (m/s)

G
oo

dp
ut

Joint Decay IIR Filter
γ Pheromone Filter
pDijkstra
Oracle
Random Routing

Figure 5.5: Data Goodput vs. Node Speed (100 nodes)

Path Inefficiency

The path inefficiency ranking in Figure 5.6 remains the same as in the 50 node

case. The algorithms are able to maintain the ratio of achieved path length to the

minimum available path length independent of network size. This is a very fortu-

nate property from the perspective of scalability. γPF, γ̄PF, and pBF each manage

a ratio of about 1.75 at low node speed and spread to a range between 2.1 and 2.5

at high speed between γ̄PF and γPF. Oracle achieves a ratio of approximately 1.3

and random routing performs very poorly at 15.

Delivery Efficiency

The delivery efficiency results of the 100 node simulations reflect those of the 50

node simulations. γ̄PF performs the best at all speeds, followed by γPF and pBF.

The only surprise here is that pBF outperforms γ̄PF slightly at very low node
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Figure 5.6: Path Ineffiency vs. Node Speed (100 nodes)

speeds. Oracle achieves 72% delivery efficiency and Random Routing manages

only 1.3% efficiency. These results are shown in Figure 5.7

5.4.5 Parameter Analysis of F and τ

Both the pheromone sensitivity, F , and pheromone decay rate, τ , are varied in

order to examine which values give the best performance with respect to node

speed. Results for the optimal pheromone decay rate, τ ∗, are shown in Figure

5.8. The different values of the pheromone decay rate tested are 0.1, 0.2, 0.5, 1,

2, and 5 seconds−1. As expected, the decay rate achieving the best performance,

with respect to delivery efficiency, increases with node speed. Note that the decay

rate does not need to be too high even with high node movement. The figures of

Appendix A show that the effects of the pheromone decay rate and the pheromone

sensitivity can offset each other to some degree. Global performance does not

necessarily change dramatically as decay rate increases. Should the decay rate be

too aggressive, the pheromone sensitivity can be raised in order to accentuate the
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Figure 5.7: Delivery Efficiency vs. Node Speed (100 nodes)

remaining differences in pheromone and force a high probability trail.

The different values of F that are tested are 1, 2, 5, 10, 20, and 50. The results

are in Figure 5.9. It is difficult to draw any serious conclusions from this graph

without also looking at the complete data set in Appendix A. The data shows

that the optimal pheromone sensitivity remains constant with node speed. The

truth of the matter is that this parameter makes little to no difference in global

performance above a certain level, shown to be F = 10 in these simulations. This

threshold exists because the relative differences between resident pheromone values

have been exaggerated to an extreme above this value. Exaggerating them more

does not make any practical difference in the link probabilities.

The results are more affected at lower levels of the sensitivity when the decay

rate is also varied. For instance, Figure A.1 shows how the decay rate can have

a substantial effect on the delivery efficiency when the γ pheromone filter is used.

In contast, Figure A.2 shows how the performance of the normalized γ pheromone

filter is nearly independent of the sensitivity above this threshold. The reason for
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this is that the each of the tested decay rate values are much too large in the

normalized case; the unnormalized filter requires larger optimal decay rates. τ

does not seem to make a difference for normalized filters because even τ = 0.1

already decays pheromone much too quickly based on the amount of pheromone

already on the link. The exact mechanics for this are discussed in detail in the

following chapters.
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5.4.6 Analysis

While the random routing approach fares particularly poorly, it serves as an ex-

cellent standard against which the other algorithms can be compared. In both the

50 and 100 nodes simulations, all pheromone update methods are able to perform

much better than random choice. This is not to say that the methods perform

near optimally; this case has also been disproven by comparison to the oracle. But

the results are certainly much better than they are worse.

The γ pheromone filter is able to perform extremely well with regards to the
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goodput metric. Even at 10 m/s, where a node can cross another’s transmission

range in two seconds, and with six links changing state per second per node on

average, the algorithm is able to deliver over 96% of the data packets success-

fully. This level of performance is likely due to the fact that the γ pheromone filter

maintains a relatively large amount of pheromone on its links. A strong pheromone

gradient is created between source and destination for packets to follow. Unfortu-

nately, the large pheromone gradient is also slow to decay, which limits the rate at

which the algorithm can adapt to changes in the network environment. Thus, the

γ pheromone filter shows poor path efficiency and ultimately suffers in the delivery

efficiency metric.

For similar reasons, the normalized γ pheromone filter shows superior perfor-

mance in the latter metric to the unnormalized version. The former maintains less

pheromone and thus a weaker gradient. Goodput suffers, but path flexibility grows

stronger. The probabilistic Bellman-Ford algorithm also maintains less pheromone

than the γ pheromone filter.
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The link independent estimators are all but worthless. While it may not be a

bad idea to estimate the utility of each link independently, the implementation is

certainly flawed. By adding joint link pheromone decay to the averaging filter and

creating NγPF, performance is improved dramatically. This implies that a method

for measuring the freshness of the available information about the network consis-

tently across links is critical. The pheromone techniques use pheromone decay in

order to achieve this. The algorithm supposes that information about the network

loses relevance exponentially with time. The linear filter techniques only update

their estimates upon packet arrival. The box filter has no way of incorporating

time, such as the packet interarrival time, into its estimate. A dynamic determi-

nation of filter length is necessary to properly account for time-based correlation.

It is important to remember that the absolute numbers shown in the results

may not be accurate under more realistic situations. It is the ranking of pheromone

update methods that is important. The qualitative results provide intuition as to

the true operation of such swarm intelligent or stochastic algorithms. There is a

great deal to be learned from the type of updates that work well and why.

5.5 Conclusion

A routing algorithm for mobile wireless ad-hoc networks has been presented. The

principles of swarm intelligence are used to build an emergent routing behavior.

Packets probabilistically follow pheromone trails to their destination while laying

source pheromone. Passive route marking reduces the need for explicit routing

traffic, thereby maximizing the network resources available to carry data traffic.

Nodes determine network conditions by monitoring traffic flow and make adjust-

ments to their routing tables.
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Various pheromone accounting methods are tested by simulation. A pheromone

decayed version of a simple averaging filter is shown to be superior to the traditional

pheromone metaphor approach. The former maintains less pheromone on each link

due to its normalization process. This allows it to adapt faster than the latter filter,

although it does not achieve as high a goodput. Performance of each accounting

method scales with network size although there is a general negative trend. The

improved performance is gained by moving away from the biological perspective

and borrowing ideas from traditional linear filtering. The pheromone sensitivity

and decay rate also have an effect on performance. There seems to be a sensitivity

threshold above which performance is unchanged, while the pheromone decay rate

should be more carefully determined. Their relative effects can offset each other

to some extent as well.

Results are generally very good, delivering the large majority of packets to

their destination without any control traffic under very high mobility conditions.

The implementation is very simple, letting the routing behavior emerge from the

simple interaction of many randomized agents.



CHAPTER 6

ANALYSIS OF PHEROMONE UPDATE IN SI MANETS

6.1 Introduction

The previous chapter has shown that modified pheromone update schemes can

improve routing performance over the traditional approach. It remains unclear as

to exactly why the new schemes work as well as they do, and how parameters affect

their performance in general. This chapter presents a simple analytical model of

Termite [79]. The purpose of this model is to discover how individual parameters

are related to each other and how they affect global metrics, such as the reliability

of message delivery and adaptability to changes in the network environment. The

critical element under study is pheromone. Because Termite is based on a model

of social insect behavior, much of the biological terminology remains. Pheromone

is a measure of the metric that the network is optimizing for; it is a measure of

route utility.

The model will first be used to characterize the behavior of pheromone on a

single communications link. This will establish an intuition for determining the dy-

namics of pheromone in a system of two links. An understanding of pheromone be-

havior is then used suggest two heuristics on the optimal selection of the pheromone

decay rate. This parameter must be carefully chosen such that information about

the network is retained only as long as it needs to be, without disregarding it

too quickly. The heuristics are known as Maximum Pheromone and Filter Cutoff.

Their predictions of the pheromone decay rate are then compared to simulation

results from the previous chapter.

Swarm intelligent routing algorithms lend themselves to mathematical analysis.

119
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Their routing update and decision procedures are mathematical functions them-

selves. One of the earliest works on swarm intelligent routing is the Ant Based

Control (ABC) algorithm. ABC has been modeled analytically in [46]. This work

demonstrates and gives analytical justification for the behavior of pheromone and

its effect on global system performance in ABC.

A great deal of work has been done with the original biologically inspired

models. This work spans several fields, including experimental biology, theoretical

biology, and the various disciplines of engineering which apply the models derived

by the former. Some summaries may be found in [1] and [7].

6.2 The Model

A model of an ad-hoc network is presented which will be used to evaluate the

behavior of the pheromone update methods. The network is modeled as two com-

municating nodes with two independent paths available between them. These

paths abstract all other connections between the two nodes, including additional

nodes, mobility issues, or communications effects. The physical structure is shown

in Figure 6.1, and is the same as that used in [46].

Figure 6.1: Diagram of the MANET Model

Each node sends packets to the other with independent exponentially distrib-

uted interarrival times. The average rate at which node A sends packets to B is λA,



121

and λB in the opposite direction. Each node is also able to decay the pheromone on

its links independently. The decay rates at each node are τA and τB, respectively.

Each path, indexed by v, has a utility characterized by a non-negative random

process Γv(t) with mean µv(t). The pheromone contained in a packet arriving on

a link, γ, is a sample of that process. Γ is non-stationary since link utilities change

over time due to mobility and other effects. Γ is considered to be stationary in this

work for ease of analysis. Since each packet moving in the same direction passes

through the network independently of all other packets, there is no correlation

between successive samples of the link utility process. The forwarding equation

independently considers each packet.

6.3 Pheromone Update Analysis

This section analyzes the amount of pheromone found on a link. The results

will explain the performance of the γ pheromone filter (γPF), the normalized γ

pheromone filter (NγPF or γ̄PF), and the probabilistic Bellman-Ford (pBF) al-

gorithms, which are reprinted in Figures 6.2 and 6.3 from the previous chapter.

Specific answers to be answered include, why the γ pheromone filter achieves such

high goodput while being slow to adapt at high mobility, why pBF adapts better,

and why the normalized γ pheromone filter is able to achieve the highest perfor-

mance with regards to the delivery efficiency metric.

Goodput is the fraction of successfully delivered data packets, while the latter

metric is the goodput divided by the ratio of the achieved path metric to the best

possible available at the time.
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Figure 6.2: Goodput vs. Pheromone Update Method

6.3.1 Single Link Pheromone

A system of one link is first considered in order to give insight on the more interest-

ing system of two links. A formula is established for the time average pheromone

deposited on a link, given that the number of packets arriving per second is poisson

distributed with mean λ [packets/second]. The decay rate, τ [1/second], remains

constant. The poisson packet arrival rate assumption implies that the packet inter-

arrival times are exponentially distributed with mean, λ−1 [seconds/packet]. The

average value of the received pheromone is EΓv = µv. The amount of pheromone

on the link before packets begin arriving is P0.

By applying the pheromone update equation n consecutive times, an expres-

sion is derived for the amount of pheromone on a link given that n packets have

arrived, P (n). The packet interarrival time of the nth packet is independently and

identically distributed, tn.

P (n) = (((P0e
−t1τ + µ) · e−t2τ + µ) · . . .) · e−tnτ + µ
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Figure 6.3: Delivery Efficiency vs. Pheromone Update Method

= P0e
−(t1+...+tn)τ + µe−(t2+...+tn)τ + . . . + µe−tnτ + µ

= P0e
−(
∑n

i=1
ti)τ + µ

[

n
∑

i=2

e
−

(

∑n

j=i
tj

)

τ

]

(6.1)

The expectation of P (n) with respect to packet interarrival time is found according

to standard methods.

EP (n) =
P0λ

n

(λ + τ)n
+

n−1
∑

i=0

µλi

(λ + τ)i
(6.2)

In order to simplify Equation 6.2, substitute β = λ
λ+τ

=
(

1 + τ
λ

)−1
, and further

reduce the expression.

EP (n) = P0β
n + µ

(

1− βn

1− β

)

(6.3)

To arrive at an expression for the expected amount of pheromone on a link over

time, note that the number of packet arrivals, n, within a given time, t, is distrib-

uted according to the poisson distribution with parameter, λt.

EP (t) =
∞
∑

n=0

[poisson(λt, n)] [EP (n)]
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=
∞
∑

n=0

[

e−λt (λt)n

n!

] [

P0β
n + µ

(

1− βn

1− β

)]

=
µ

1− β
+ e−

λτt
λ+τ

(

P0 −
µ

1− β

)

(6.4)

The long term behavior of the link pheromone is defined as its mean.

lim
t→∞

EP (t) =
µ

1− β

=
µ(λ + τ)

τ
def
= EP (6.5)

A similar analysis shows the variance of the link pheromone,

V AR(P ) =
µ2λ

2τ
(6.6)

Scale Invariance The ratio of λ and τ is a scale invariant parameter in this

system. Primarily characterized by the expected decay factor in Equation 6.2, the

expected pheromone on a link may be held constant as long as τ
λ

remains the same.

The scale invariant parameter is proportional to β.

The Pheromone Filter

The expected link pheromone may be represented by the sum shown by Equation

6.7, which is a reexpression of Equation 6.2. Indices represent packet arrivals; γ(n)

is the amount of pheromone contained in the nth packet, and P (n) is the expected

pheromone after its arrival. Assume P0 = 0 and B(n) = βn =
(

λ
λ+τ

)n
, n ≥ 0.

P (n) = P0β
n +

n−1
∑

i=0

γ(n− i)βi (6.7)

= γ(n) ∗B(n)

The sum is equivalent to the convolution of the incoming sequence of pheromone

values and the expected decay factors. The decay process may thus be interpreted
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as a linear filter with random weights, and the received pheromone as a signal

which is passed through the filter. The resulting pheromone on the link is the

output of the pheromone filter, B.

Following standard techniques, the complex fourier transform of the filter is

shown,

B(ω) =
1

1− βe−jω
(6.8)

as well as its magnitude,

|B(ω)| =
1

√

1 + β2 − 2β cos(ω)
(6.9)

The mean, or DC component, of an input signal has frequency ω = 0. It is noted

that the peak of this filter is at the mean, and is equal to 1
1−β

. If the mean of

the received pheromone process is µ, then the mean of the pheromone on the link

will be equal to µ

1−β
. This is a rederivation of Equation 6.5. This analysis assumes

a normalized frequency, −2π
λ
≤ ω ≤ 2π

λ
. The sampling rate of this system is λ

samples per second, which is the packet arrival rate.

The cutoff frequency of the pheromone filter is controlled by adjusting the

pheromone decay rate. An optimal pheromone decay rate can be computed by

selecting to remove a certain portion of the frequency content from the spectral

power density of the path utility stochastic process, Γ. The bandwidth of the

pheromone filter is defined in the usual way, and 0 ≤ s ≤ 1 is the fraction of the

peak value at the cutoff. For example, a -3dB cutoff implies s = 1
2
. The cutoff

frequency is calculated,

λc =
λ

2π
cos−1





λ2 + λτ −
(

1−s2

2s2

)

τ 2

λ2 + λτ



 (6.10)
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as well as the value of τ corresponding to that cutoff frequency.

τ =









λ(1− s2)

1− s2 cos
(

2πλc

λ

)

+

√

(

1− s2 cos
(

2πλc

λ

))2
− (1− s2)2









− λ (6.11)

The physical interpretation of the cutoff frequency is twofold. The first is that the

cutoff frequency represents the maximum frequency of events to which a node will

adapt. If changes in the network occur faster than the cutoff frequency, a node will

be unable to accurately adapt to this change. Network changes are reflected by

the value of received pheromone. Alternatively, unwanted noise in the system or

unreliable variability in the arrived pheromone stochastic process will be reduced.

6.3.2 Two Link Pheromone

The following analysis shows the average value of pheromone on each link in a

two link system. The γ pheromone filter, the normalized γ pheromone filter,

and probabilistic Bellman-Ford update methods are reviewed. Each generates

different pheromone dynamics and maintains varying amounts of link pheromone

in equilibrium. Each method falls into a one-zero pheromone distribution which

echoes previous results from an analysis of ABC [46].

A system of equations is presented to recursively compute the mean pheromone

at each node on each link, P A
0,B, P A

1,B, P B
0,A, and P B

1,A. Pheromone changes when it is

checked in order to send a packet, or when it is updated due to packet arrival. The

total pheromone observation rate is λ = λA+λB. The Pheromone Check procedure

only decays the pheromone and accounts for the fraction of the instances when

a packet must be sent. During Packet Arrival, which accounts for the fraction

of instances that a packet arrives, the pheromone is not only decayed, but also

incremented if the packet arrives on the correct link.
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The average amount of inter-observation pheromone decay has already been

implicitly derived in Equation 6.2. Suppose random variable Y is the interarrival

time between packets and is distributed exponentially with mean λ−1, as described

in the model definition. Random variable X is defined such that X = e−Y τ ,

which describes the fraction of pheromone decayed in between packet arrivals. Its

probability distribution function is, fX(x) = λ
τ
x(λ

τ
−1) where 0 ≤ x ≤ 1. EX =

λ
λ+τ

= β.

γ Pheromone Filter

The γ pheromone filter is shown in Equation 6.12.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

P n
r,s ← P n

r,s + γ (6.12)

The example below develops the average link pheromone equation for P A
0,B based

on the previous description of pheromone influences. The expected pheromone for

the remaining links is then shown as well.

P A
0,B = Pheromone Check

+ Update Not On This Link (6.13)

+ Update On This Link

P A
0,B =

λA

λ

[(

λ

λ + τA

)

P A
0,B

]

+
λB

λ

{

pB
1,A

[(

λ

λ + τA

)

P A
0,B

]}

+
λB

λ

{

pB
0,A

[(

λ

λ + τA

)

P A
0,B + µ0

]}

=

(

λ

λ + τA

)

P A
0,B +

(

λB

λ

)

pB
0,Aµ0 (6.14)
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P A
1,B =

(

λ

λ + τA

)

P A
1,B +

(

λB

λ

)

pB
1,Aµ1

P B
0,A =

(

λ

λ + τB

)

P B
0,A +

(

λA

λ

)

pA
0,Bµ0

P B
1,A =

(

λ

λ + τB

)

P B
1,A +

(

λA

λ

)

pA
1,Bµ1 (6.15)

The link probability described by the forwarding equation is pB
0,A. The evolution of

pheromone on a link as packets arrive is illustrated in Figure 6.4. The parameters

for this particular run include K = 0, F = 5, R = 0.5, λA = λB = 2, τ = 1,

µ0 = 0.99, and µ0 = 1.0.
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Figure 6.4: Link Pheromone vs. Packets Received using the γ Pheromone Filter

Note that when K = 0, the asymptotic probability mass function between the

two links follows a one-zero distribution; the algorithm uses the better link ex-

clusively. The reason for this is that when a packet arrives at a node, its link is

positively reinforced, while all other links at that node are negatively reinforced;

pheromone decays on all links but is only replaced on one. Because packets are also

biased towards pheromone, this produces a strong positive feedback which even-
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tually transfers all traffic to the link with the highest utility. With no pheromone

threshold there is no incentive to use a lesser link. Consequently the probability of

using it disappears. Under these conditions, the dominant link follows the behavior

of the single link. This is why ABC and AntNet must include a non-zero noise or

exploration parameter, and why Termite must include K > 0. Only when µ0 = µ1

do the links have equal probability. An example of this behavior is shown in Fig-

ures 6.5 and 6.6, where µ1 = 1 and µ0 and K are varied. The former describes the

pheromone on each link, and the latter shows the corresponding probability.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

K

Link Pheromone vs. γ
0
 vs. K

γ
0

Li
nk

 P
he

ro
m

on
e

Figure 6.5: Link Pheromone vs. µ0 vs. K

With K > 0, traffic is allowed to be forwarded over all links, regardless of their

utility. Currently bad links may be tested on occasion for a change in utility. This

allows for a measure of adaptivity, however K must be set appropriately in order

to allow for links to be tested often enough. Too few tests of other links will not

overcome the positive feedback towards to the dominant link. In this way, the

function of K is equivalent to that of noise in ABC or AntNet. It is also noted

that value of the pheromone on the link and the corresponding probability does
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not have a physical meaning. The amount of pheromone or the link probability

can be set arbitrarily by manipulating parameters such as τ , K, or F .

The mean link pheromone on the dominant link in the case of a one-zero

pheromone distribution can be found by setting the probability of using the dom-

inant link to one and solving for the remaining pheromone. For example,

P̃ A
0,B =

λB (λ + τA)

λτA

µ0 (6.16)

Normalized γ Pheromone Filter

The normalized γ pheromone filter implements a simple one-tap infinite impulse

response averaging filter with joint pheromone decay. The inspiration for such an

approach comes from the single link pheromone analysis and the corresponding

pheromone filter. It also closely mirrors traditional averaging filters.

The pheromone analysis is done similarly to the previous. This filter requires

that arriving pheromone be normalized according to the time since a packet last
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arrived on that link, as shown in Equation 6.17.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

P n
r,s ← P n

r,s +
[

1− e−(t−tnr,s)τ
]

· γ (6.17)

The amount of pheromone on each link is shown in Equation 6.18.

P A
0,B =

(

λ

λ + τA

)

P A
0,B +

(

λB

λ

)[

1−

(

pB
0,AλB

pB
0,AλB + τA

)]

pB
0,Aµ0

P A
1,B =

(

λ

λ + τA

)

P A
1,B +

(

λB

λ

)[

1−

(

pB
1,AλB

pB
1,AλB + τA

)]

pB
1,Aµ1

P B
0,A =

(

λ

λ + τB

)

P B
0,A +

(

λA

λ

) [

1−

(

pA
0,BλA

pA
0,BλA + τB

)]

pA
0,Bµ0

P B
1,A =

(

λ

λ + τB

)

P B
1,A +

(

λA

λ

) [

1−

(

pA
1,BλA

pA
1,BλA + τB

)]

pA
1,Bµ1 (6.18)

The time pheromone evolution is described by Figure 6.7 which has the same para-

meters as those from Figure 6.4. Mean link pheromone in the one-zero distribution
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case is shown,

P̃ A
0,B =

λB (λ + τA)

λ (λB + τA)
µ0 (6.19)
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Note that,

lim
λ→∞

P̃γ̄PF = µ0 (6.20)

which not only confirms the normalization but also shows that the expected link

pheromone has an upper limit of the mean of the incoming pheromone.

Probabilistic Bellman-Ford

In an effort to test a pheromone update method more similar to traditional ap-

proaches, the probabilistic Bellman-Ford (pBF) scheme is developed. As in the

original, better paths are discovered by comparing the current best known solu-

tion to new information. If the utility of the new path is better, the routing table

is updated. Thus, the pheromone update equation is,

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

if P n
r,s < γ, P n

r,s ← γ (6.21)

All pheromone decays concurrently as in the previous methods.

The pBF pheromone update method cannot be analyzed in a similar way be-

cause it is nonlinear. For the purposes of the analysis presented here it suffices to

note that the link pheromone is upper bounded by the utility of the link.

P̃ A
0,B ≤ µ0 (6.22)

6.3.3 Analysis

As shown by the simulation results of Figures 6.2 and 6.3, the γ pheromone filter

has the best goodput performance but poor ability to track changes in the network.

Probabilistic Bellman-Ford is able to do better in delivery efficiency, while the



133

normalized γ pheromone filter scores best in this regard. These results can be

explained based on the analysis in the previous section.

The γ pheromone filter maintains the largest equilibrium pheromone level on

the best link. Since pheromone takes time to decay, this allows it to route on

a particular link longer as the underlying link metric changes; large amounts of

pheromone imply a large link forwarding probability. Due to this hysteresis effect

on pheromone decay, suboptimal links are used longer which prevents the algorithm

from adapting quickly. In essence, γPF tends to use a known good route and

achieves a high goodput, but it is unwilling to change that route in the face of

varying metrics.

The latter two update methods see less goodput but higher adaptivity compared

to the former, both for similar reasons. They maintain less pheromone on the links

and because of this are able to adapt to changes faster. Less pheromone requires

less time to decay. Note that P̃γ̄PF < P̃γPF due to an additional term of λλB

in the denominator of the former. P̃γ̄PF is also upper bounded by the mean of

the incoming pheromone, as shown in Equation 6.20, while P̃γPF has no such

restriction. Differences in pheromone between links is relatively less than with

γPF, thus the link probabilities are also less decisive during transition periods

while the algorithm is choosing a new link. This leads to wandering packets which

eventually timeout in the network and result in lower goodput.

Regular and Uniform Ants

In light of the results here regarding the qualitative function of system parameters

and update methods, it is possible to generalize the SI routing algorithms into one

of two categories. There are called Regular Ants and Uniform Ants [46]. Regular
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Ants responsible for updating pheromone are also biased towards pheromone. Uni-

form Ants that update pheromone are unbiased by it and instead move uniformly

over communications links.

Regular Ants Given the choice between two links, a Regular Ants algorithm

such as ABC, AntNet, or Termite will tend towards using only the link with the

highest utility. There will be a one-zero distribution between two links of unequal

utility. If both links have the same utility, they will be used equally. Since agents

laying pheromone are also biased towards pheromone, they become biased towards

their own trails on return trips. It is a positive feedback loop that the agents

cannot stop. If a network is expected to adapt to a changing environment, this

feature of the algorithm is extremely detrimental. A link with zero probability will

never be used again, even if its utility should increase in the future.

The most common solution for preventing a one-zero asymptotic distribution

in a regular ants algorithm is to include a noise factor in the forwarding equation.

With small probability, a link will be uniformly chosen instead of being biased by

pheromone. The beneficial properties of the uniform algorithm can still be enjoyed

while still using pheromone influenced data messages. These features can be found

in the Termite algorithm in Figures 6.5 and 6.6. Only the best link is used if K is

zero.

Uniform Ants A Uniform Ants algorithm does not suffer from the one-zero

problem. Its asymptotic link distribution is proportional to the utility of each

link. Since agents are not biased by pheromone, they travel the network blindly and

update each path through the network equally. This approach has the advantage of

using each link proportionally to its utility and thus being able to fairly balance the
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traffic load across the network. However, the pheromone updating packets cannot

be used to carry data because the source cannot be sure of their final destination.

In order to update the network, special uniform ant control packets must be used.

The load on the network increases and data is prevented from being sent.

Termite Termite attempts to mitigate the disadvantages of regular ants by using

normalized pheromone update. Even though packets are biased by pheromone,

they only produce a pheromone value proportional to the true utility of the link.

A disproportionate amount of pheromone cannot be placed on a link which will

caused routing to become unbalanced to entirely unfair.

6.4 An Optimal Pheromone Decay Rate Heuristic

Over the course of this and the last chapter, the dynamics of pheromone according

to various parameters has been explored. With some intuition established, it is

possible to use the previous results and calculations to create some heuristics of

the optimal pheromone decay rate. If the selected decay rate is larger than the

optimal, τ > τ ∗, then the network will forget its state too fast and throw away

relavent information. If the decay rate is too low, τ < τ ∗, then the network will

retain too much information make suboptimal decisions.

The Maximum Pheromone and Filter Cutoff τ ∗ heuristics are presented. The

first uses the expected pheromone results calculated in the previous section and

calculates a decay rate to remove that pheromone in a timely fashion. The latter

heuristic uses the pheromone filter interpretation directly in order to calculate a

decay rate which will set the cutoff frequency of the filter at the desired point.
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6.4.1 Maximum Pheromone Decay

A heuristic is developed for the pheromone decay rate based on the expected

amount of pheromone resident on a link and the amount of time between “sig-

nificant” events in the network that would require a change in routing behavior.

The intuition is that pheromone should decay at a rate such that the expected

amount could decay by the time a change in routing behavior is needed. Another

perspective is that information from the last network event should be decayed by

the time the next one happens.

An upper bound of the expected amount of pheromone on a link was derived

earlier in the chapter. It is based on the average amount of arriving pheromone,

µ, the rate of pheromone observation, λ, the pheromone decay rate, τ , and the

packet arrival rate, λB. For simplicity, it is assumed that a communications session

between source and destination is symmetric; λA = λB = λ
2
.

The network event interarrival time, tc, is the time between significant network

events. It may also be viewed statistically as the route correlation time. It is

the time during which the statistics of incoming pheromone accurately reflect the

state of the route to destination; it is the path correlation time. An upper bound

on this time could be the link lifetime, although specific statistics are difficult to

determine, especially since routing is probabilistic. The link lifetime can be either

measured or calculated [78]. Routing patterns must be reconsidered after the loss

of a route. This idea agrees with the intuition that pheromone should decay faster

the more volatile the network topology. Since links last a shorter amount of time,

the pheromone must decay faster in order to account for the high route volatility.

It should be noted that this approach assumes that packets arrive faster than

network events happen. If this is not the case, then the algorithm is better off
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considering the pheromone in each packet separately, without regard to previous

information. Any memory a node would maintain would be useless by the time a

new packet arrived in order to update the system. It is for this same reason that

Termite performs so poorly under conditions of slow packet rate compared to the

rate of change of the network. The rate of incoming information about the network

is not high enough to properly adapt to it. This could be considered something

like a Nyquist’s rule for networks [69].

The general equation, P̃ e−tcτ = K, must be solved for the decay rate, where P̃

is the expected amount of pheromone on a link as derived earlier in this chapter.

The second term is the decay factor based on decay time and decay rate. The

decay factor must decay the expected pheromone to the pheromone threshold, K.

Such low pheromone levels will not have a tangible effect on the link probability.

From this, the pheromone decay rate can be derived as a general guideline to its

optimal value.

Because different amounts of pheromone reside on a link depending on the

specific pheromone update method being used, the heuristic reflects this as well.

Unfortunately there is no closed form expression for the solution of these equations,

however a numerical result is easily found.

γ Pheromone Filter Equation 6.23 shows the decay heuristic equation for the

γ pheromone filter. It is of note that the decay rate is unbounded as the packet

arrival rate increases. The γ pheromone filter does not incorporate any sort of

pheromone upper bound, and as more packets arrive, the more pheromone is laid

on a link.

λ + τ ∗
γPF

2τ ∗
γPF

· µ · e−tcτ∗

γPF = K (6.23)



138

Normalized γ Pheromone Filter Equation 6.24 shows how the normalized

γ pheromone filter estimates the pheromone decay rate. Unlike its sibling, this

estimate is bounded (of course, it is normalized) and thus the estimate is upper

bounded by τ ∗
γ̄PF = 1

tc
ln
(

µ
K

)

as the packet arrival rate increases; The pheromone

decay heuristic is a line with respect to the network event rate.

λ + τ ∗
γ̄PF

λ + 2τ ∗
γ̄PF

· µ · e−tcτ∗

γ̄PF = K (6.24)

6.4.2 The Pheromone Filter Cutoff

The pheromone filter provides an interesting perspective on the determination of

an optimal pheromone decay rate. As explained during the derivation, the cutoff

frequency of the filter is a function of β, and thus tunable by adjusting τ . It is

very tempting to use this connection to say that the optimal pheromone decay

rate is that which properly tunes the filter to the desired cutoff frequency. Such

an approach was described earlier in the chapter and is also shown in Figure 6.8a

shows a. However, there are a number of caveats which make the implementation

of such an idea much more difficult than first apparent.

The greatest difficulty is that the analysis assumes a constant mean packet

arrival rate, λ. While mathematically convenient, this is absolutely not the case

in any practical sense. The decay rate would have to be changed depending on

the current statistics of the packet arrival rate, which means that extra infrastruc-

ture must be installed to estimate the parameter. The performance of this extra

estimation stage will further influence the operation of the algorithm.

Not only must λ be estimated and τ matched, but there is also a question of

the “sampling rate” of the system itself. If the designer wished the network to be

able to adapt to events happening at a certain rate, then clearly there must be
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enough traffic in the system which can measure the effects of this feature. This is

again the network sampling issue. Equation 6.11 shows that as the required cutoff

frequency tends towards ω = 2π
λ

, the frequency representation limits of this digital

system, the value of τ tends towards infinity. That is, if the network must be able

to adapt to faster phenomena, the pheromone should decay faster as well because

relevant information about the network has a shorter lifetime. If the network is

changing faster than packets are arriving, the decay rate should be infinity; there

is no point to averaging because each successive sample of the network (pheromone

arrival) has no correlation at all with previous samples. Alternatively, if the packet

arrival rate is substantially greater than the rate of change of the network, then the

decay rate can afford to be a little bit smaller. The system has a greater amount

of information about the network over the relevant period of the time and thus

can average over more packets.

There are of course drawbacks to this system. The most complete implemen-

tation of this idea is to install such a filter for each type of pheromone on each

link of each node. The objective of the routing algorithm in general is to be as

lightweight as possible. So many filters and λ estimators on top of per-packet

probability computation likely constitutes too much overhead. It is not clear at

this point in the development of ad-hoc networks what the packet rate for a typical

application might be compared to the network volatility. Therefore, it is difficult

to predict how well such a system might perform in general.

The previous chapter showed that a link independent implementation of such

an averaging filter approach is doomed. Performance was by far substandard. The

promise of independent per-link pheromone estimation and favorable load balanc-

ing properties were not realized. A more complex implementation is required.
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6.4.3 Heuristic Comparison

Figure 6.8 shows a comparison between the maximum pheromone and filter cutoff

decay heuristics. The specific parameters used here are, λ = 8, µ = 1
4.5

, and

K = 1
32

. They are meant to reflect some generic situation. The minimum network

correlation time (maximum instance rate) shown here is λA

2
= λB

2
= 2 since that

is the maximum frequency representable by the discrete time filter. Unfortunately

the heuristics are not directly comparable. The maximum pheromone heuristics

for γPF and γ̄PF follow the same trend, however the filter cutoff heuristic is

substantially smaller. The latter does not take into account the absolute amount

of pheromone on the link, rather only the variation in that pheromone.
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Figure 6.8: Pheromone Decay Rate Heurisitcs

Each of these heuristics is roughly linear, especially that for γ̄PF. This should

come as no surprise. The expected link lifetime (an upper bound on the route

lifetime or correlation time) can be calculated according to [78]. Link lifetime is

inversely proportional to node speed, and thus the link expiration or break rate is
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Figure 6.9: Pheromone Decay Rate Heurisitcs

directly proportional to node speed. This is corroborated by the link break rate

results in Figure 5.1 which are linear with respect to node speed. If the network

changes linearly with node speed, then routing information must also expire in the

same way. Thus, the pheromone decay rate increases linearly with node speed.

Such a conclusion vaguely agrees with the results of Figure 5.8 which shows the

measured optimal pheromone decay rate of the simulations of the previous chapter.

Unfortunately that work does not contain enough fidelity to draw any serious

conclusions.

But this still leaves the question of how good the heuristic really is. Because

the expected pheromone level and the path correlation time are upper bounds, the

calculated pheromone decay rate is not a bound. Table 6.1 shows the calculated

link expiry rate for the simulation parameters of the previous chapter. Figure 6.9

shows the heuristics on a semilog plot for more detail. The table indicates that

links break on the order of 10−2 per second, and the heuristics recommend a lowest

pheromone decay rate on the order of 10−1. Figure 5.8 agrees with this generally



142

with measured τ ∗ ranging from 0.5 to unity. Unfortunately no strong conclusion

can be drawn due to the low resolution of the data.

Table 6.1: Calculated Link Expiry Rate

0 [m/s] 0 [link break/s]

1 0.0059

2 0.0118

5 0.0294

10 0.0589

6.5 Conclusion

An extension of an analytical model for a mobile wireless ad-hoc network is pre-

sented. This model was used to investigate the properties of the Termite swarm

intelligent MANET routing algorithm. The mean pheromone on a single link and

in a system of two links were determined. These results were compared for three

different pheromone update methods, including the γ pheromone filter, the normal-

ized γ pheromone filter, and the probabilistic Bellman-Ford. Relationships between

parameters were explored and a scale invariant parameter was found. This para-

meter is shown to be critical in determining the amount of pheromone resident on

a link, which in turn influences performance. This is true not only for goodput but

also in adaptability. The analysis revealed a linear filtering perspective in which

link utility is directly estimated with the pheromone rather than simply using it as

a routing heuristic. The maximum pheromone and filter cutoff pheromone decay

rate heuristics are derived from the model presented in this chapter. They are

compared to simulation data from the previous chapter, although the results are
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inconclusive due to the poor quality of the data. The heuristics can serve as an

order-of-magnitude bound to selecting the optimal pheromone decay rate.



CHAPTER 7

RETERMITE

7.1 Introduction

This chapter updates Termite with all of the knowledge gained over the course

of its development in the previous three chapters. The end result shows how

the MANET routing problem can be competetively solved with only minimal use

of control traffic. A small amount of control information is imbedded in every

data packet, which is usually sufficient for the network to maintain a current and

accurate view of its state. The end result is a routing algorithm requiring only data

traffic in the network under many circumstances. The version of the Termite used

here with all of the previous enhancements is called ReTermite [80]. ReTermite is

compared to the state-of-the-art and proposed MANET routing standard AODV,

the Ad-hoc On-demand Distance Vector routing protocol.

7.2 ReTermite

This section will review the swarm intelligent ReTermite MANET routing algo-

rithm in detail. It may be described simply as follows. Each node in the network

has a specific pheromone scent. As packets move through the network on links

between nodes, they are biased to move in the direction of the pheromone gradi-

ent of the destination node. The specifics of this operation are governed by the

packet forwarding equation. Packets follow the pheromone gradient while laying

pheromone for their source on the same links. The specific amount of pheromone

deposited by a packet on a link, as well as how that pheromone behaves over time,

is governed by the pheromone accounting process. Changes in the network envi-

144
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ronment, such as topological or path quality changes, are accounted for by allowing

pheromone to decay over time. This requires paths to be continuously reinforced

by new traffic; new information about the network is added to links. In this way,

consistent pheromone trails are built through the network. Each node records the

amount of pheromone that exists for each destination on each of its links. This

creates a routing table similar to those found in traditional distance vector routing

algorithms and is known as the pheromone table.

7.2.1 Pheromone Table

The pheromone table is ReTermite’s routing table, and is that same as in the

original Termite algorithm as shown in Figure 4.1. It maintains the amount of

pheromone on each neighbor link for each known destination. Note that neighbors

may also appear in the table as a destination. The pheromone table is generally

oriented such that each column represents a destination, and each row a neighbor.

When a neighbor is gained, an extra row is added to each column showing the

pheromone on the link to the new neighbor, which is initialized to zero. If a neigh-

bor is lost, its corresponding row is removed from the table. When a destination is

gained, the current list of neighbors is replicated for the new destination but with

all pheromone values reset to zero. If a destination is lost from the pheromone

table, the column is simply removed.

A neighbor row is never removed unless the link is explicitly lost through com-

munications failure. Even if the pheromone on that link decays, it is still retained

since it still exists as a communications option. Alternatively, a destination column

is removed if all of the pheromone on it decays. It is necessary to do this so that

the algorithm knows when it should issue a route request for the destination. This
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procedure is initiated if the destination does not exist in the pheromone table.

For all nodes in the network, n, pheromone values in the pheromone table are

referenced with, P n
i,d, where i ∈ N n, and d ∈ Dn. These sets represent the current

set of neighbors and destinations that node n is aware of. P n
i,d is thus the amount

of pheromone at node n for destination node d on the link to neighbor node i.

7.2.2 Packet Forwarding

In order to forward a packet towards its destination, the forwarding equation with

source pheromone repel is used to determine the next hop neighbor. This formula

maps the destination d pheromone on each outgoing link i at node n, P n
i,d, to the

probability that that link will be used to forward the packet to the destination, pn
i,d.

In order to account for the source pheromone, the source pheromone distribution,

pn
i,s, is also used. The specific next hop neighbor is chosen randomly according

to the meta distribution, p̂n
i,d, which reflects the source pheromone repel. The

forwarding equation is shown in Equation 7.1 below.

pn
i,d =

(P n
i,d + K)F

∑

j∈Nn(P n
j,d + K)F

pn
i,s =

(P n
i,s + K)F

∑

j∈Nn(P n
j,s + K)F

p̂n
i,d =

pn
i,d

(

pn
i,s

)−R

∑

j∈Nn pn
j,d

(

pn
j,s

)−R
(7.1)

The constants F , K, and R are used to tune the routing behavior of ReTermite,

and are the same as those found in Termite.
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7.2.3 Pheromone Accounting

Upon the reception of any packet, pheromone must be updated according to the

pheromone accounting procedure. This process, or even the eventual interpre-

tation of its output, can take many different forms. Three pheromone update

methods are considered in this paper. They represent the best approaches found

in a comparison of eleven update strategies two chapters ago. The approaches

are γ pheromone filtering (γPF), normalized γ pheromone filtering (γ̄PF), and

probabilistic Bellman-Ford (pBF).

Two critical mechanisms are used in order to facilitate pheromone accounting.

These include true continuous pheromone decay and piggybacked routing informa-

tion. Promiscuous mode packet reception is also found to be very helpful.

True Continuous Pheromone Decay

As described by the swarm intelligent framework, pheromone must decay in order

to provide a negative feedback mechanism to the system; old information must be

removed from the system. Past swarm intelligent routing algorithms have either

decayed pheromone on regular intervals or decayed it upon packet arrival.

ReTermite features true continuous pheromone decay which properly simulates

the continuous decay of pheromone. Pheromone is decayed when packets arrive

and also when it is checked to create a probability distribution when forwarding a

packet. In essence, pheromone is decaying all of the time, and the update algorithm

implements this by noting all times at which the pheromone has been measured

for any reason.

This approach is better able to account for reductions in certainty about net-

work state. If no packet is received from a destination for some time, the routing
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probabilities now reflect the fact that less timely information is maintained about

the whereabouts of the destination; the routing probabilities tend towards a uni-

form distribution over all neighbor nodes.

Piggybacked Routing Information

In order to easily disseminate routing information, each packet contains the cu-

mulative metric measurement experienced as it has traveled through the network.

The cumulative metric measurement is simply a number detailing the total metric

utility that the packet has experienced enroute to the current node. The metric

is updated at each node that the packet visits. On many platforms, this informa-

tion results in the addition of only four bytes of overhead. While it is not new

to piggyback routing information on data packets, it should be stressed that this

information is piggybacked on all packets. Even data packets are used to actively

update the network. Other algorithms such as AntNet, CAF, and ANSI use a

stack to store more path history, but do so only for control packets.

Permiscuous Mode

Nodes are expected to exist in a broadcast medium. They may eavesdrop on the

communications of neighbors and incorporate overheard routing data into their

own routing table. This technique is used in many other ad-hoc routing algorithms,

and is found to be particularly useful in Termite. In principle it is not obligatory,

however it does afford a notable increase in performance.
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Pheromone Update Methods

Each pheromone update method tested in this paper is described. Each case

describes how the pheromone table is updated based on a packet arriving at node

n, from source node s, previous hop r, and going to destination d. The previous

hop is the node which just transmitted the packet. If n is not designated as the

packet’s next hop, it updates the pheromone table in the way described here and

then drops the packet. The time at which the packet is received is t, and the last

time at which the pheromone for node x was observed at node n is tnx . The last

time which the pheromone for node x on the link to node y at node n was observed

is tny,x.

γ Pheromone Filter γPF deposits pheromone on the link that a packet is

arriving on. The pheromone on the packet, γ, is equivalent to the utility of the

path that the packet has taken. All pheromone for the source of the arriving packet

decays exponentially.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

P n
r,s ← P n

r,s + γ (7.2)

Normalized γ Pheromone Filter γ̄PF is a normalized version of γPF. It is

essentially an infinite impulse response averaging filter with joint pheromone decay.

Only a fraction of the received pheromone is added based on link observation

time. γ̄PF effectively limits the amount of pheromone on a link with its averaging

properties. γPF allows much larger amounts since it is unnormalized. Additionally,

the form of γ̄PF make this variant of ReTermite similar to algorithms used by the
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reinforcement learning community.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

P n
r,s ← P n

r,s +
[

1− e−(t−tnr,s)τ
]

γ (7.3)

Probabilistic Bellman-Ford The probabilistic Bellman-Ford algorithm is de-

signed as an asynchronous version of the Bellman-Ford algorithm where packets

are routed probabilistically and update routing information at each node they visit.

This is in contrast to the original algorithm which requires a local flood of control

packets to update information. Unlike all other techniques used here, this one is

nonlinear. If a packet is received with information of a better path over the receiv-

ing link than is already known, then the utility estimate (pheromone) is updated.

Pheromone decays on all links in order to degrade the estimates over time.

∀i ∈ N n, P n
i,s ← P n

i,s · e
−(t−tns )τ

if P n
r,s < γ, P n

r,s ← γ (7.4)

7.2.4 Route Discovery

In case there does not exist any destination pheromone at a node for a packet

to follow, a route discovery procedure must be initiated. ReTermite uses the

traditional flooding approach and does not use any optimizations such as gossiping

or expanding ring search. Only the next hop node designated in the packet may

rebroadcast the RREQ and does so only if is it unable to answer the route request

itself. This is done even if other neighbors have already transmitted a route reply

(RREP) to the RREQ source. Any nodes overhearing a RREQ may reply to the

request with a RREP if they have destination pheromone. A RREP is unicast
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back to the source normally by probabilistically following the source pheromone.

A RREP is formatted such that its source is the destination of the RREQ. This

creates a destination pheromone trail back to the RREQ source. It is necessary to

maintain a list of previously seen RREQ packets according to the source address

and a sequence number. Route requests also serve to spread source pheromone

into the network.

The packet that triggers a route request is cached for a route request timeout

period before it is dropped. Any additional packets received during this period for

the same destination are also cached. If the hold time since the first packet was

held is exceeded then all of the held packets for the sought destination are dropped.

If a route reply is received while there are packets cached for the destination, they

are processed normally according to the forwarding equation.

7.2.5 Route Repair

ReTermite has no concept of route repair in the traditional sense. Each next hop

is computed online, and every node has an estimate of the utility of each link to

deliver a packet to its destination. If a link should fail, the neighbor is simply

removed from the routing table and the next-hop probabilities are recomputed for

the remaining set. If all neighbor nodes are found to have disappeared (perhaps

after many unsuccessful retransmissions), the packet is dropped. There is no such

thing as a route error or route error packet (RRER).

7.2.6 Packet Structure

There are three types of packets in Termite, data (DATA), route request (RREQ),

and route reply (RREQ). They can be all considered within one generic packet
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format with the following fields. This list does not assume a pheromone stack, as

has been mentioned in previous chapters. Certain information such as the previous

and next hop IP address can often be obtained from lower layers of the network

stack, as seen in the AODV specification [41]. The total size of the header shown

here is 24 bytes, excluding any user data. If necessary, an additional four bytes of

flags could be added.

Packet Type

This field is one byte in size. It’s value describes the purpose of the packet, data,

route request, or route reply.

Source IP Address

This field is four bytes and describes the IP address of the data source.

Destination IP Address

This field is four bytes and describes the IP address of the data destination.

Previous Hop IP Address

This field is four bytes and describes the IP address of the previous hop.

Next Hop IP Address

This field is four bytes and describes the IP address of the next hop.

Pheromone

This field is four bytes and describes the amount of pheromone carried by the

packet.
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Time-To-Live (TTL)

This field is one byte and describes the remaining allowed hop-count for the packet.

It is initialized to the maximum TTL and decremented at each visited node. The

packet is dropped when this counter reaches zero.

Data Length

This field if two bytes and describes the length of the data field in this packet; the

amount of data carried by this packet.

Data

This field contains all of the data carried by the packet.

7.3 Simulation

A number of different scenarios are simulated to compare the performance of the

variations of Termite, along with the presented pheromone update methods. These

results are also compared to the standard MANET Ad-hoc On-demand Distance

Vector (AODV) routing protocol, as described in [41]. Simulations are designed to

test the effect of node mobility on the global performance metrics.

7.3.1 Simulation Environment and Parameters

A common test scenario is used in which 100 mobile nodes are distributed uni-

formly over an area 2200 meters by 600 meters. Each node uses a simulated IEEE

802.11b MAC layer with 2 Mbps data rate and a 250 meter transmission range.

The standard MAC layer has been modified to allow promiscuous reception of all
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in-range transmitted packets, and also to return unsuccessfully transmitted packets

back to the routing layer for reassessment. Nodes move according to the random

waypoint mobility model with zero pause time and a uniform speed. These para-

meters are the same as those in [81]. Speeds are varied over 1, 5, 10, and 20 meters

per second. All runs are 600 seconds long and all data points are averaged over at

least two runs for high speeds and five runs for low speeds. Ten nodes send 512

byte data packets with exponentially distributed interarrival times with a mean

of 0.5 seconds to a unique communications partner, which replies to each received

packet with an acknowledgement. Both AODV and ReTermite optimize for path

length. AODV parameters are set according to the specifications found in [41].

The maximum TTL for any packet is 32. ReTermite parameters include, K = 1
32

,

F = 10.0, τ = 2.0, and R = 0.5. ReTermite holds packets for as long as AODV’s

ACTIVE ROUTE TIMEOUT parameter, which in this case is 1.28 seconds. All

simulations are completed using Opnet [74].

7.3.2 Evaluation Metrics

A number of metrics are used to determine the utility of the proposed algorithms.

These include data goodput, average path length, control packet overhead, control

packet distribution, medium load, medium efficiency, medium inefficiency, link

failure rate, and end-to-end delay.

Data Goodput

Data goodput is a classic evaluation metric for routing algorithms. It is the fraction

of successfully delivered data packets. This metric should remain as high as possible

under any circumstances.
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Average Path Length

This metric measures the average number of hops needed for a packet to success-

fully arrive at its destination. This is a relative measure of protocol efficiency,

especially since the network is being optimized to minimize hop count.

Control Packet Overhead

Any routing algorithm should expend as little control traffic as possible in order

to successfully deliver data packets. Control packet overhead measures the frac-

tion of control packets to the total number of transmitted packets in the system.

Successively transmitted packets are counted individually.

Control Packet Distribution

This metric shows how many of each type of control packet were transmitted. This

helps to identify the effectiveness of route request and discovery procedures.

Medium Load

This metric characterizes how inefficient the algorithm is in delivering packets. It

is the ratio of the total number of packet transmissions, data or control, to the

number of data packets successfully delivered. Successively transmitted packets

are counted individually. This is not a general metric, but since the algorithms

are optimizing for hop count, the fewer the transmissions the better. This metric

should be as low as possible, however it will always be larger than the path length.
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Medium Efficiency

Medium efficiency is the ratio of the number of transmissions of successfully arriv-

ing data packets to the number of total packet transmissions. Multiple transmis-

sions of the same packet are counted individually. Since access to the communica-

tions medium often comes at a premium, it is important that it is only accessed in

order to move packets that will arrive at their destination. Medium efficiency is a

number between zero and one and values close to unity are desired.

Medium Inefficiency

This metric is related to the previous two and helps to fill in the full performance

picture. Medium inefficiency is the fraction of transmitted packets to the number

of data packets offered to the network for delivery. Lower numbers are better.

Consideration of this metric should ensure that the routing algorithm is making

an effort to deliver all packets, instead of just ones that are easy to deliver.

Link Failure Rate

The link failure rate measures the average number of links that are lost per node

per second. It is a relative measure of how fast the network topology is changing,

and thus how much time each node has to acquire a sensible local routing pattern

before its local topology transforms.

End-To-End Delay

The average end-to-end delay of all successfully delivered data packets is measured.

This metric gives another perspective on the overall performance of each algorithm.

Delay should be minimized.
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7.3.3 Results and Analysis

Data Goodput

As shown in Figure 7.1, the data goodput performance of ReTermite is higher

than that of AODV. The latter is able to deliver at least 90% of its packets, and

ReTermite outperforms it with a moderate 95%. The former sees a more graceful

degradation of performance over the latter as node speed increases.
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Figure 7.1: Data Goodput vs. Node Speed

Average Path Length

As might be expected, ReTermite has longer paths than AODV. This is illustrated

in Figure 7.2. The former pays a cost for reduced control traffic by requiring data

packets to take longer paths. The downward trend of AODV is due to the frequency

route breaks and subsequent route rediscoveries. As node speed increases, links will

break more often and force more route errors and route discovery operations. Since

AODV will almost always find the shortest route by way of flooding, the algorithm
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is put into a mode of constantly finding the shortest route as the network changes.

Thus, the average path length is continuously minimized as node speed increases.

ReTermite must rely on successive refinement in order to shorten its paths as

the network topology changes. Since the packet rate is relatively low, there are

not many opportunities to do so compared to the rate of change of the topology.
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Figure 7.2: Average Path Length vs. Node Speed

Control Overhead

ReTermite shows favorable control overhead properties as compared to AODV in

Figure 7.3. Not only does ReTermite have an order of magnitude less control

overhead, but it also produces a nearly constant amount over a large range of node

mobility. This is true despite the use of flooding for route discovery, and speaks

to the effective use of route information caching on the part of ReTermite. AODV

suffers so much overhead because it floods the network with a new route discovery

every time a route breaks. This weakness is addressed with an expanding ring

search, however the details have not been agreed upon in the standard [42].
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Figure 7.3: Control Overhead vs. Node Speed

Control Packet Distribution

The control packet distribution data from Figure 7.4 is truly telling. Compared

to AODV, ReTermite uses little control traffic. As mentioned above, AODV must

issue a route discovery flood whenever there is a route break. ReTermite is spared

this because of its retransmission link repair policy. A full route discovery is almost

never needed, which eliminates the majority of the control overhead. For AODV

this proportion increases with node speed as links break more often. The most

limiting factor is the number of route request packets; there are so many because

such packets are flooded which ultimately generates a choking amount of overhead.

Alternatively, ReTermite produces more route reply packets than route re-

quests. This attests to both the liberal route reply policy (any overhearing node

with route information can generate a route reply) and also to the route caching

of ReTermite. Since each node keeps route information about every other node, it

is not difficult to find a pheromone trail.
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Figure 7.4: Packet Type Distribution vs. Node Speed

Medium Load

While the control overhead statistics are quite positive, it is ultimately necessary

to compare the total amount of access to the medium needed to deliver a packet. It

has already been shown that ReTermite has favorable control traffic but suffers in

average path length as compared to AODV. Figure 7.5 shows that ReTermite is able

to do better than AODV with regards to the total number of transmissions required

to deliver a packet successfully. They perform equally at 20 m/s. Both algorithms

show an increasing load on the medium as the network volatility increases. In the

case of AODV, this is because of the increasingly large amount of control traffic

generated. For ReTermite, this is because data packets must take longer paths to

explore the network as the topology changes faster.

Medium Efficiency

The results of Figure 7.6 show that ReTermite is able to easily deliver packets at

low speeds. Both AODV and ReTermite expend more effort to deliver a packet



161

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Node Speed (m/s)

T
ra

ns
m

is
si

on
s 

pe
r 

S
uc

ce
ss

fu
l D

at
a 

P
ac

ke
t

Medium Load vs. Node Speed

Normalized γ Pheromone Filter
AODV
γ Pheromone Filter
Probabilistic Bellman−Ford

Figure 7.5: Medium Load vs. Node Speed

successfully, again with similar performance at 20 m/s. Medium efficiency de-

creases linearly with node speed in all cases. This metric reconfirms the results of

the medium load.

Medium Inefficiency

This metric confirms the results of the previous two. Figure 7.7 shows that ReTer-

mite makes a best effort to deliver all packets that are offered. It able to do so with

fewer packet transmissions at low speed but suffers at higher speed by a margin

of 13%. The reason for this is due to unsuccessful data packets that wander the

network until they exceed their Time-To-Live (TTL). This behavior causes unnec-

essary transmissions which increases the metric. Naturally this happens more at

high speeds when the network is topology is more volatile. When this the medium

inefficiency is readjusted to include only successful data packets (the medium load

in Figure 7.5), the outcome is somewhat more even.
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Figure 7.6: Medium Efficiency vs. Node Speed

Link Failure Rate

Figure 7.8 shows how the link failure rate changes with node speed. As expected

from previous simulations, the trend is linear. The results may be somewhat

skewed from standard link failure rates because this data is only measured when

a communications attempt fails. That is, when a packet is sent on a link but the

receiver is unavailable. Since the packet rate is relatively low, this measured link

failure rate may also tend towards the low end. However, this metric does give an

idea as to how quickly the network is changing and at what rate the nodes should

reconfigure themselves.

End-To-End Delay

Figure 7.9 shows the average end-to-end (ETE) delay for each of the compared

routing algorithms. The ETE delay of AODV stays constant regardless of node

speed while the delay of the ReTermite variants grows from less than AODV at

low speed to substantially larger at high speed. The AODV results reflect those
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Figure 7.7: Medium Inefficiency vs. Node Speed

reported by [81] and is due to the fact that packets are only sent when a full

route is known to exist. The ReTermite delay results are not positive considering

that the delay of AODV is nearly an order of magnitude lower at high speeds.

However, there are two extraneous issues at work in this situation. The first is

that the metric only measures the delay of successful packets. AODV has a lower

goodput than ReTermite, and so packets that might have otherwise timed out in

AODV due to link or route discovery failure are delivered by ReTermite. This

extra goodput comes at the expense of some additional delay incurred by perhaps

a longer path length or congestion. It can be shown that when the slowest 5%

of packets in ReTermite are not considered (the difference of goodputs between

AODV and ReTermite at 20 m/s), then the delay can be reduced by 66%. This

property indicates that ReTermite’s high delay comes from statistical outliers.

These are packets that require a great deal of effort to deliver, packets that AODV

does not. The second factor is ReTermite’s use of link recovery retransmission.

When the network is changing quickly, packets may be retransmitted often due to
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Figure 7.8: Link Failure Rate vs. Node Speed

neighbor loss. If several nodes in the same area are trying to retransmit, this can

lead to localized packet storms. This is especially true when using 802.11 which

automatically retries up to seven times before reporting a broken link.

7.3.4 Discussion

The results show that ReTermite is able to outperform AODV primarily due to the

lack of control traffic and liberal route caching. AODV often finds itself repairing

routes which requires route errors and route request floods. ReTermite avoids

this complexity and effort through the use of piggybacked route information and

promiscuous packet reception. However, ReTermite must find a way to explore

the network as well in order to find better routes. It does this by letting data

packets do the work. The medium load, efficiency, and inefficiency metrics show

what the control overhead does not. The ReTermite approach works well at low

speed but gives fewer performance gains at high speed. The number of packets

transmissions per data packet is equal between the two algorithms; they both
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Figure 7.9: End-To-End Delay vs. Node Speed

do the same amount of work to deliver packets. The most noticeable difference

between the algorithms at high speed is the end-to-end delay. ReTermite’s packet

storms hurt performance tremendously.

7.4 A Pheromone Decay Rate Heuristic

Previous discussion indicated that the pheromone decay rate, τ , can be thought

of as the learning rate of the network. If the selected decay rate is larger than the

optimal, τ > τ ∗, then the network will forget its state too fast and throw away

relavent information. If the decay rate is too low, τ < τ ∗, then the network will

retain too much information about its state and also make suboptimal decisions.

It should be possible to determine the optimal decay rate and compare it to the

heuristics developed previously.
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7.4.1 τ ∗ Simulation

Figures 7.10 and 7.11 show how the performance of ReTermite can vary according

to the global pheromone decay rate. The parameter was kept constant in the

previous simulations at τ = 2.0 in order to make each scenario directly comparable.

The figures test τ over two orders of magnitude at node speeds of 1 m/s and 10 m/s.

As is shown, the appropriate selection of this parameter is of critical importance.

Using the normalized γ pheromone filter at 1 m/s, τ ≈ 0.1 is the best choice.

τ ≈ 1.0 is best at 10 m/s. This is most easily seen from the achieved goodput and

medium efficiency. The performance of ReTermite was quite good in the first set

of simulations, and these results show that the performance could be even better

if optimal parameters are chosen.
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7.4.2 τ ∗ Heuristic Analysis

The quality of the heuristic is determined by comparing its predictions to experi-

mental data. The primary difficulty is to determine a good metric for the network

correlation time or the network event rate (the inverse of the former). This work

will use the link failure rate as a lower bound for the event rate (and thus an upper

bound on the correlation time). Figure 7.12 takes the results reported in Figures

7.10 and 7.11 and compares them to the γ̄PF τ ∗ heuristic.

Unfortunately the results are inconclusive. There is a clear difference between

the heuristic and optimal values from simulation. The former predicts values

roughly 15% lower that the latter. However, it is also true that the link failure rate

overestimates the network correlation time. That is, the ideal network event rate

is the path correlation time, which is lower than (and upper bounded by) the link

lifetime [78]. Perhaps if the true path lifetimes could be determined (which would

move the simulation points on the graph to the right) then the heuristic would
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more closely match the simulation results. This value may be determined from

traditional approaches by examining the rate that route errors are reported. How-

ever, since ReTermite uses probabilistic routing with automatic retransmission, it

is difficult to measure when a route has changed significantly or truly broken.

While the heuristic is not perfect, it is reassuring to note that both the heuristic

and optimal decay rate have a generally linear relation. An order of magnitude

change in the node speed results in the same change in the optimal decay rate.

Such a linear relationship is also seen in the τ ∗ heuristic for both γPF and γ̄PF. It

is most useful to compare the heuristic to node speed instead of correlation time.

While this can be done for the experimental data, it is more difficult to do for the

heuristic. It is impossible to compare node speed with link failure rate and then use

it as an estimate of the event rate. The failure rate is itself dependent on the chosen

decay rate. The path correlation time is independent of the pheromone decay rate;

it is only dependant on the mobility and medium model. If this relationship could

be found then a much more useful heuristic could be built.
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7.5 Conclusion

The ReTermite swarm intelligent routing algorithm for mobile wireless ad-hoc

networks is presented. Building upon the introduction of the Termite SI MANET

routing protocol, it adds several features including source pheromone repel, the

normalized γ pheromone filter, a route discovery flood, and a fast route repair

mechanism. Many components are justified based on work presented in previous

chapters. A comparison is made to the standard AODV routing protocol. The

simulation tests are run over a wide range of node speeds in order to show how

each algorithm is able to scale with respect to speed. ReTermite is shown to be

superior in all of the tested metrics, especially at low speed. Using data to carry

routing information turns out to be a very effective technique to reduce control

overhead and to maintain routing information. However, the end-to-end delay

suffers due to a fraction of packets which are difficult to deliver. This may be

due to frequent route breaks, route discovery latencies, and other network effects.

The determination of optimal parameters remains a difficulty. It is easy to show

that optimal parameters exist, in this case the pheromone decay rate, however the

available heuristics are not always effective or even tight. More work in this area

is clearly requires. Ultimately, ReTemite is shown to deliver more packets with

less overhead in more adverse conditions than AODV in a realistic medium access

environment.



CHAPTER 8

CONCLUSION

8.1 Introduction

This chapter concludes the thesis. The original contributions to the state-of-the-art

of the fields of swarm intelligence and routing in mobile wireless ad-hoc networks

are first presented. This is follwed by a section on future work and further re-

search opportunities which can continue the work presented here. The last section

concludes the chapter and the thesis with some final remarks.

8.2 Original Contributions

A number of original contributions have been made to the state-of-the-art of the

fields of swarm intelligence and ad-hoc routing over the course of this thesis. The

swarm intelligent Termite routing algorithm has been developed. It was shown

not only to work, but to work very well compared against the widely accepted

standard in the field. An extensive testing of various pheromone update schemes

revealed several insights into the nature of pheromone-based routing. Simulta-

neous pheromone decay is necessary in order to consistently maintain concurrent

estimates of link utility. A continuous pheromone decay is also helpful in this re-

gard. These tests confirmed some intuitions regarding the general influence of the

pheromone decay rate parameter. They were the first of their type to be carried

out in the field. The analytical model used to analyze the routing algorithm is not

new, however it is extended beyond its original form in order to take into account

stochastic packet arrival and pheromone utility models. The pheromone decay

rate heuristics derived from the analysis are new to the field and they represent

170
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the first attempt to predetermine optimal operating values. The final effect of all

of this development work is shown when a redesigned Termite is compared against

AODV in a realistic simulation model. The performance of Termite is shown to be

superior to AODV in all of the critical metrics, and shows promise for future devel-

opment and further improvement in performance. The research into Termite is the

most comprehensive of any other swarm intelligent MANET routing algorithms to

date.

8.2.1 The Termite SI MANET Routing Algorithm

Termite fits very nicely into the swarm intelligence framework, and thus pushes

the state-of-the-art in the same direction as those algorithms to have come be-

fore it. Termite offers many novel advancements over previous work including a

pheromone/utility based metric, the use of random walk for route discovery, and

local retransmission instead of local path repair.

One of these advancements is the use of a pheromone based metric which is

also interpreted as path utility. ACO uses a pheromone based technique coupled

with a local search parameter to determine next-hop probabilities. However the

pheromone value does not have any real physical significance. ABC and AntNet

calculate probabilities directly and do not use pheromone as an intermediate met-

ric. The first routing algorithm to use only pheromone to route packets is ARA.

Developed simultaneously, Termite uses this same approach, however with the use

of the normalized γ pheromone filter, the pheromone value may be interpreted as

representing the estimated path utility to a destination through a given link. This

interpretation brings the concept of pheromone routing full circle back to the orig-

inal concepts behind distance vector routing. This is exemplified by CAF, where
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pheromone is not even mentioned and costs are measured directly, similarly to how

Termite does now (but without joint pheromone decay on all links).

Termite also introduces the option of using random walks for route discovery.

This is not a new concept by any means, however it has some favorable character-

istics especially when taken in conjunction with promiscuous mode receiving. A

much larger number of nodes can be reached with a single route request message

and many fewer broadcasts are needed compared to a full flood of the network.

There are of course some issues, such as the route requests needed to cover a given

area or the probability of finding a particular destination. But the tradeoffs can

be favorable.

ARA introduces the use of local retransmission instead of local repair, which

Termite then further develops. Traditional routing algorithms choose to either

initiate local route requests when a link breaks, or to notify the source of a traffic

stream to initiate a new route request, or both. Searching and notification can

incur a large time delay and a heavy load on the network resources. When a

link breaks, Termite removes that link from its pheromone table and then simply

retransmits the packet on a remaining link based on the new pheromone distrib-

ution. The only delay is in recognizing that the link has broken, which any other

algorithm must suffer as well. This technique does well, but ultimately the end-to-

end delay of Termite is increased because more difficult-to-deliver packets arrive

at their destination. Since no route errors are sent, the number of control packets

is reduced. No additional route request or route error packets must be issued to

find a new route to a destination.
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8.2.2 Evaluation of Pheromone Accounting

The most common pheromone update method is the pheromone filter, or perhaps

the classic pheromone filter. Oftentimes these techniques are used blindly for any

application simply because they are used everywhere else. In an effort to verify

the utility of the pheromone filter, the analysis of Termite includes the empirical

testing of eleven different pheromone update methods. This is the first known

direct comparison and serves to reveal several aspects of the Termite system. These

include the need for joint pheromone decay (concurrent freshness maintenance), the

need to update with variable amounts of pheromone, the difficulty of independent

link utility estimation (such as the Box and Averaging filters), and the relative

performance of routing with respect to situations of perfect information and no

information. These different approaches have never been compared side-to-side

and the analysis of Termite was able to show that the pheromone based approaches

fare the best.

8.2.3 Pheromone Decay Rate Heuristics

Two novel pheromone decay rate heuristics have been introduced by this work.

They are called Maximum Pheromone and Filter Cutoff. Earlier publications only

described the decay rate as a system parameter and determined its optimal value

either by simulation or simply by choosing a value that seemed to give good re-

sults. The work here is among the first to automatically identify good operating

points. The heuristics were shown to be lower bounds, although they are not espe-

cially tight. There is also some difficulty in determining exactly what the network

correlation time is; no good definition exists.
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Maximum Pheromone Heuristic

The Maximum Pheromone heuristic determines the pheromone decay rate by first

calculating the maximum expected pheromone level on a link given the local packet

arrival rate and pheromone brought by each packet. This is coupled with the

expected time during which the statistics of the incoming pheromone are the same,

known as the network correlation time. The heuristic calculates the decay rate

necessary to decay the expected pheromone on a link to an insignificant level,

ie. equal to the pheromone threshold, within the network correlation time. The

equation to determine the amount of pheromone on a link will depend on the type

of pheromone filter being used. This work has developed expressions for both the

γ pheromone filter and the normalized γ pheromone filter.

Filter Cutoff Heuristic

The Filter Cutoff heuristic interprets the pheromone filter updating method as a

literal filter, and adjusts the filter cutoff to determine a pheromone decay rate.

The filter’s frequency response is determined by the packet arrival rate and the

decay rate. By adjusting the decay rate to meet a particular definition of a cutoff

frequency, a heuristic is defined to allow the pheromone or link utility estimation

to change at a certain rate.

8.2.4 ReTermite

The development of Termite through its final incarnation as ReTermite also brings

with it a number of original contributions to the field. Perhaps the most mundane

of them is a simple comparison to AODV. The simulations were able to show that

ReTermite has superior performance in many critical performance metrics across a
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wide range of node mobility. ReTermite includes a number of novel enhancements

to a SI MANET routing algorithm. These include true continuous pheromone

decay and source pheromone repel. These ideas were known previously in related

forms, however ReTermite brings them all together and shows how they can be

effectively applied to help solve the routing problem.

Comparison with AODV

A simulation-based comparison was made between ReTermite and AODV. The

results show that ReTermite performs extremely well as compared to the control.

It is able to deliver more packets faster and with less control traffic across a wide

range of mobility. This gives very strong motivation to continue its development.

Probabilistic routing algorithms should be reconsidered in a more positive light as

more is known of how to control them.

Continuous Pheromone Decay

Termite has progressed the idea of continuous pheromone decay first introduced by

ARA. Originally pheromone was decayed periodically, which was based on simple

computer models of ant behavior. ARA then mentions the idea of continuous

pheromone decay based on packet interarrival times, although does not give any

implementation details. Termite is the first to give these details, but then also

to include pheromone decayed on observation times; true continuous pheromone

decay. In this way, if a packet arrives after a long silence, the pheromone levels

used to calculate the forwarding distribution will reflect that wait.

Pheromone decay is a real time process in biology. There is good reason to

accurately model this phenomenon in a computer implementation as well. Since
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pheromone in part measures the freshness or timeliness of information (since it

is decayed based on time; a time based metric) it must be kept as up-to-date as

possible. It is therefore decayed not only between packet arrivals, but also when

it is measured in order to forward packets.

Source Pheromone Repel

Temite is the first SI MANET routing algorithm to use source pheromone repel

(SPR). While MACO mentions it, the descriptions never give specific implemen-

tation details. Instead of being repelled by the pheromone of another colony, a

packet is repelled by its own source pheromone. This provides a strong degree of

directivity to the routing process. SPR also helps to mitigate looping since this

implies a turn towards the source. ReTermite is simplified by removing any sort

of packet identifiers or logs.

8.3 Future Work

No research is really ever done. There still exist a number of opportunities for

future work. Clearly there are many areas for improvement with the Termite

algorithm itself. This includes issues from packet forwarding to route discovery

to pheromone updating and everything in between. More generally, there are also

open issues regarding the development of better parameter heuristics for optimal

performance, reformulation of the network routing problem, and new directions

for artificial intelligence and machine learning algorithms. The following sections

will describe open problems in each area in detail.
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8.3.1 Termite

There are several assumptions upon which Termite is based that should be ad-

dressed. The most pressing of these is the requirement of symmetric, bidirectional

communications links between nodes. The use of hop count as an optimization

metric obscures this assumption, because as long as the link is bidirectional, it

will be symmetric in that metric. However there are many more metrics that are

not symmetric, such as throughput, delay, or energy consumption. Based on pre-

vious work, as well as the experience gained from designing and testing Termite

as it stand today, the following recommendations are made for a more general SI

MANET routing algorithm.

Packet Forwarding

The packet forwarding equation should be kept, and packets should continue to

be forwarded probabilistically based on link pheromone concentrations. There is

no evidence to show that an Equation 8.1 style packet forwarding scheme (as used

originally in AS, and later in PERA and ANSI),

pi,d =
τα
i,dη

β
i,d

∑

j τα
j,dη

β
j,d

(8.1)

can provide superior performance over something like Equation 8.2 (used in Ter-

mite and ARA).

pi,d =
(Pi,d + K)F

∑

j(Pj,d + K)F
(8.2)

This is despite the fact that the former uses two metrics, both global pheromone

and local visibility, and the latter only global pheromone. An answer to this

question may come over time, however no direct comparison has been done to

date.
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Source Pheromone Repel SPR has been shown to provide a strong improve-

ment in results when applied to the routing problem. While this technique cannot

be considered in general, the structure of the routing problem allows its use; the

destination is generally in a direction away from the source.

Route Discovery

Alternative route discovery methods should be considered. The random walk

method currently being used by Termite works well, however a flooding or gos-

siping scheme should also be considered due to their higher destination discovery

rate. Flooding schemes will find the destination if it exists in the network since

they cover the entire network. Random walks may fail depending on their path.

It may be worthwhile to consider directed random walks.

Pheromone Update

True continuous pheromone decay as well as the normalized γ pheromone filter

should continue to be used. These techniques closely mirror older methods from

reinforcement and statistical learning, giving a strong argument for their effective-

ness and a strong basis for their analysis. They elegantly fit into the theory of the

algorithm, and are easily implemented as well.

The CAF method for pheromone updates should be used while regarding the

network sampling theory. The routing metric can only be updated upon the arrival

of a routing agent. Thus the destination of a packet flow should take care to send

routing agents to the source at a rate sufficient to update the metric fast enough

based on the rate of change of the network environment. In fact, the pheromone

decay rate and the send rate of route agents would be linked, since they are both
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dependant on the correlation time of the network. If this new algorithm is to

be a purely on-demand protocol, then these route agents only need to be sent

to nodes from which there is an active traffic flow. This could be coupled with

information from the transport layer to determine which nodes should receive

route updates. Due to the nature of the asymmetric environment, the use of route

agents is unavoidably necessary. This will lead to the proliferation of control traffic

in volatile networks.

Pheromone Updates with Data Traffic

A strong feature of Termite is the use of data packets to actively update the

network. This substantially increases the sampling rate of the network which

can lead to improved performance. Previous work in both the SI and MANET

communities relies only on control packets to do this job. Termite should continue

to do this according to the CAF route update. Each node will record the average

cost of moving from a neighbor to itself. This average can be calculated with a

simple one-tap averaging IIR filter with time dependant weights (as per continuous

pheromone decay). Unlike the current implementation of Termite, local travel costs

can be averaged over all packets arriving on a link, not just packets from a certain

source.

If Termite should be developed assuming bidirectional symmetric links, then the

algorithm should implement a limited pheromone stack on each data packet, similar

to AntNet or CAF. This will allow the packets to disseminate more information

while not adding too much control overhead.
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Route Repair

The Termite route repair scheme should be kept. This includes local retransmission

in case of link failure. Previous work attempts either a new route discovery, a route

error message, or both in order to manage this situation. There is no evidence to

support the use of the latter over the former. In fact, the former continues to make

more sense in the context of minimizing end-to-end delay and control overhead.

8.3.2 Parameter Heuristics

While the question of optimally determining Termite’s parameter values may never

be fully answered due to its complexity, more effort should be invested in ma-

turing the heuristics. A complete list of the controllable parameters include the

pheromone sensitivity, the pheromone threshold, the pheromone repel constant,

and the pheromone decay rate. Of primary concern is the determination of the

latter, either on a global, per node, or per link per node level, which has a very

intuitive effect on routing performance; the pheromone decay rate determines how

long network information is retained. The global effect of the other parameters

is not as clear, but should also be studied; the pheromone sensitivity controls

the tradeoff between environment exploration and exploitation, the pheromone re-

pel constant adjusts the liklihood of backtracking or looping, and the pheromone

threshold defines a “significant” amount of pheromone. The attempts made in

this work, while pioneering, are admittedly quite simple. The analytical model

developed in Chapter Six is tractable, however it honestly has little relationship to

a real ad-hoc network. Simulation tests are therefore recommended; at least the

results will have some basis in (simulated) reality.
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8.3.3 Networking with Linear Systems

After the pheromone filter perspective pheromone updating was developed, per-

haps a system of linear systems approach could be taken in order to model the

routing process. Such a perspective may also find some traction with ideas from

controls systems, where the use of dynamic feedback loops is quite common. The

idea that network routing can be formulated as a question of linear systems seems

to be novel and may lead to some significant insight.

8.3.4 Artificial Intelligence

The strong relationship between artificial intelligence and swarm intelligence has

already been demonstrated. The two fields can undoubtedly still learn a lot from

each other. Problems usually solved with AI techniques such as reinforcement

learning or neural networks might benefit from a swarm intelligent approach. This

would include game playing, control problems, non-linear functions, and especially

those variants in which the learning environment changes over time. On the other

hand, swarm intelligence may benefit from the more established methodologies of

artificial intelligence and machine learning. This is especially true with regards to

statistics (or statistical learning).

8.4 Final Remarks

This thesis has presented a novel approach to routing in mobile wireless ad-hoc

networks. Models based on social insect behavior are applied to create a proba-

bilistic solution. The approach is able to deliver more packets with less overhead

that traditional approaches. And that’s all I have to say about that.



APPENDIX A

PHEROMONE UPDATE SIMULATION RESULTS

The following figures are oriented in the following way. The upper left shows the

results for a node speed of 1 m/s, the upper right shows 5 m/s, the lower left shows

10 m/s, and the lower right shows 20 m/s.
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Figure A.1: Delivery Efficiency of γPF vs. F vs. τ (50 Nodes)
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Figure A.2: Delivery Efficiency of γ̄PF vs. F vs. τ (50 Nodes)
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Figure A.3: Delivery Efficiency of pBF vs. F vs. τ (50 Nodes)
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Figure A.4: Delivery Efficiency of Classic PF vs. F vs. τ (50 Nodes)
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Figure A.5: Delivery Efficiency of Box Filter vs. F vs. τ (50 Nodes)
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Figure A.6: Delivery Efficiency of IIR Averaging Filter vs. F vs. τ (50 Nodes)



189

Figure A.7: Delivery Efficiency of Oracle vs. F vs. τ (50 Nodes)
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Figure A.8: Delivery Efficiency of Random Routing vs. F vs. τ (50 Nodes)
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