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Consider the statistical analysis of a follow-up (or reliability) study in which individual
subjects (or units) may experience a series of recurrent events over time. Subjects are het-
erogeneous and covariates are available from each subject. The event times for each subject
can be viewed as a realization of a stochastic point process. To analyze such data, a variety of
parametric point process regression models have been proposed — a good discussion appears
in Lawless (1987). A more flexible approach is to use a semiparametric approach, in which
the functional form of the baseline intensity function is unspecified. Four such approaches
which may all be considered generalizations of the Cox (1972) model for survival data. These
are: the counting process formulation of Andersen and Gill (1982); the marginal approach
of Wei, Lin and Weissfeld (1989); the conditional approach of Prentice, Williams and Pe-
terson (1981); and the cumulative mean function approach of Lawless and Nadeau (1995).
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Abstract

Statistical methodology is presented for the analysis of multiple events with random
effects and measurement error. We model multiple events in a general space using a
random measure, and define point process regression models with residual random
effects. Our approach to parameter estimation and significance testing is to start with
a simple naive model of Poisson process regression, and then to adjust for random
effects and any possible covariate measurement error. We illustrate the techniques
with data from a randomized clinical trial for the prevention of recurrent skin tumors.

Introduction

1



Statistical software to implement parametric and semi-parametric methods are available in
standard computer packages, e.g. STATA 5.0 (StataCorp 1997) and Splus 3.3 (Statistical
Science Inc. 1995).

There are occasions when we encounter a more general setting than multiple events
occurring over time for which we may need to consider point processes in a higher dimensional
space. For example, the events occurring over time may be of different types or severity —
for an example, see Abu-Libdeh et al. (1990). In this case, the corresponding point process
is defined on a product space of the time and the type (or severity) of the events. In this
paper we introduce a flexible model for multiple events based on point processes in this
general setting. We concentrate on the issue of model misspecification, specifically presence
of omitted covariates and random effects and presence of covariate measurement error.

For the special case of survival analysis, where subjects can experience at most a single
event during their followup time, a number of researchers have examined the problem of
covariate measurement error in a partial likelihood analysis using Cox’s (1972) model. Pren-
tice (1982) and Pepe et. al. (1989) considered the induced hazard function conditional on
the observed covariate instead of its true value. Nakamura (1992) and Buzas (1996) used
procedures based on constructing unbiased or approximately unbiased estimating equations
from the partial likelihood score equations. The methods of Raboud (1991) and Raboud et
al. (1993) were based on examining the root of the asymptotic score equation of the naive
partial likelihood. There is also an extensive literature on misspecification of the Cox model
due to the presence of frailties or omitted covariates. A recent review has been given by
Keiding, Andersen and Klein (1997).

The effects of random subject heterogeneity and covariate measurement error on fully
parametric analyses of recurrent events, based on time-homogeneous Poisson process with
gamma mixture, have been discussed by Turnbull, Jiang and Clark (1997), of which the
present paper may be regarded as a semi-parametric analog.

Sandwich-type robust asymptotic variances have been discussed by several authors, in-
cluding Wei, Lin and Weissfeld (1989), Lin and Wei (1989), and Lawless and Nadeau (1995).
In this paper, we will show that the robust variances can account for extra variation from ran-
dom effects and from covariate measurement error, and can consequently lead to diminished
Z-values for testing the significance of the regression coefficients.

First, in Section 2, we introduce the random measure approach of point processes in a
discrete version. In Section 3 we discuss the naive likelihood-based analysis based on Poisson
processes. In the subsequent sections we examine the effects of random heterogeneity and
covariate measurement error on parameter estimation and significance tests and discuss how
to adjust for these effects. In Section 8, we illustrate our results with data on recurrent skin
cancers from the Nutritional Prevention of Cancer (NPC) clinical trial (Clark et al. 1996).
We close in Section 9 with a discussion of the assumptions underlying the models.



2 Modeling Multiple Events With Residual Random
Effects

Let (E’ ,€) be a measurable space where £ is a o-field on the carrier space E, which could
be the time axis, a two-dimensional plane, or a product space of event type and event time,
for example. We are interested in multiple events on E. The outcome variable for a single
subject is a random measure Y(:) on (E,€). If Y(-) is non-negative integer valued, it is
called a point process (Karr 1991, Chap. 1). In that case, }7(3) counts the random number
of points in a set B in £. The expectation ®(-) = EY(-) forms a mean measure. When E
is the one dimensional time axis, the mean measure is specified by a cumulative intensity
function A(t) = ®((0,1]).

It is convenient to formulate the problem in a discrete version. Suppose the carrier space
has a finite partition F = Uycx Er. Choose the o-field & = o({E}}) generated by all subsets
of {Ek}ke)c On &, the random measure Y (-) is determined by the collection of random
variables Y = Y(Ek) k € K; the mean measure ®(-) is determined by &, = ®(Ey), k € K,
and &, = E}}k Therefore ®;, is the expected number of events on “patch” Ek Because of
censoring, not all patches may be under observation. We define ‘at risk’ indicators: Hy =1
if “patch” E}, is under observation, 0 otherwise, for £k € K. Then Y}, = H,Y; denotes the
observed random measure outcome on “patch” Ek Note that H.Y; = Y}, since H? = H;,.

For multiple events, we postulate a relationship between the outcome process 17() and
a collection of p covariates, using a specified regression model. However, it may well be
that the outcome process also depends on factors not included in the model. Suppose the
random measure outcome {Y;,k € K} is related to a set of predictors, (Z, 0, H). Here
H = {Hy;k € K} are the at risk indicators defined above, Z = {Z;;k € K} where Z,
is the value of the included covariate p—vector taken on by the subject on patch Ej, and
O = {Oy; k € K} where Oy, is the value of a vector of omitted covariates taken on by the
subject on patch Ej. Often the vectors {Z;} (and perhaps {O;}) will be constant of k; for
example, if F is the time axis and the covariates are non time varying. The mean measure
is now defined as the conditional mean ®; = E{Yfk|Z, O,H}, k € K, conditional on all
covariates. A regression model specifies a link function, which is the expectation conditional
on the covariates included in the model. For example, an exponential link function is defined
as

B{Yi|Z, H} = heap(Z8) or  B{Yi|Z,H} = Hihweap(Z}), (1)

for some scalar A, and regression coefficient vector 3 of dimension p. Note that in the second
equation in (1), Y; = H,Y;, the observed outcome on Ej and that (1) provides a special
example of the multiplicative mean measure model.

Equation (1) implies that the mean process (conditional on Z’s) for the outcome {¥7} is
independent of the observing process { H}. More details of the implication will be discussed
in Section 9.

The residual random effect is defined as the ratio ¥, = ®;/E{Y;|Z, H} (assuming the
positiveness of the denominator). The rationale of this definition comes from the fact that the
mean measure ®;’s are not fully determined by the covariate Zj’s included in the model, but
also depend on the omitted covariates, O. Therefore &, = E{Y:|Z,0, H } differs from the link
function E{Y;|Z, H}, introducing a resadual random effect ¢, = @y, / E{Y:|Z,H}. Note that



E(¢|Z,H) = 1. In general we can write ®, = ¥, E{Y;|Z, H}. (E.g., ® = 7,bk/~Xke:cp(Z;cﬁ)
for the exponential link.)

Now consider the situation where there are n subjects, which are n i.i.d. replicates of the
system described above, labeled by z = 1,2,...,n. With the obvious extension of notation,
Yir, Hir, Zir, O, denote the corresponding quantities for patch k of system ¢, 2 =1,2,...,n,
and k£ € K. Similarly ®,; is the mean measure or the ‘intensity’ of events for patch k of
system ¢. We will concentrate on an inhomogeneous Poisson process regression model with
residual random effects. This is an example of the multiplicative mean measure model with
exponential link. Specifically this model assumes:

Conditional Poisson model: Conditional on {Z;, O, Hix;t = 1,2,...,n, k €
K}, the observed random variables Y;;, are independent Poisson distributed with
means Hy i Arexp(Z,03), {t=1,2,...,n, k € K}.

When a system of patches is composed of line segments on a time axis, we are essentially
describing a point process in discrete time. In the counting process formulation, the mean
measure ®;; becomes the discrete version of intensity function dﬁi(t), noting that k£ labels
the time intervals. Similarly Y;; becomes dN;(t), Z;x becomes Z;(t), and H;; becomes A;(t)
which indicates whether subject 7 is at risk at time ¢. The results we obtain in the following
sections can be transformed into this continuous time formulation. Of course, the patch
indices {k} can also label the lattice squares on a plane, so that A, is basically the 2-
dimensional intensity function /L(a:, y). We can also include multi-type processes in time,
for example, by using an index set X = {1,2} x {1,2,3,...,1000} where each k € K is an
integer-valued vector with its first component indicating the type of events (1 or 2, say), and
the second component indicating the location on the time axis (intervals 1,2,...,1000, say).
However, since K is finite, from now on we will take K = {1,2,..., K} for some K, without
loss of generality. Usually discretization will not cause any problem in real applications. For
example, in the NPC clinical trial described in Section 8, event times were recorded only as
falling on a given day; and thus “days” formed a natural discrete time scale.

3 Naive Log-likelihood and Naive MLE

In the conditional Poisson model of the previous section, the residual random effects {1);; 1 <
i <n,l <k < K} are unobserved. The likelihood function based on the observed informa-
tion Wi = (Yir, Hir, Zir,),1 <1 < n,1 <k < K, involves an integration over the unknown
¥;r’s, which can be very difficult. Instead, we begin by considering a naive analysis in which
the presence of the random effects is neglected (all 1;;,’s are taken as 1). This leads to a
misspecified or “naive” log likelihood function R = R(s) which, up to a constant of argument
s'=(Aq,...,Ag,b'), is given by

n K
R = Zlog H{(Akezz{kb)H““Y““ea:p(—HikAkeZz{kb)} = Z sz{Y;kZ,leb + Y;klog Ak — Akezi{kb}.
i=1 k=1 ik

the true parameter ¢ = (Ay,..,Ax, ) with s = (Aq,...,Ax,b') to emphasize the fact
that we are using a misspecified model in which the parameters may not have the same
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interpretation. We note that R is a sum of n i.i.d. copies of the function

p=p(s) =D Hi{YaZb + Yilog A, — Ape?i’} (2)
k

where we have suppressed the index ¢ for the i.i.d. systems.

For fixed b, R is maximized at Ay, = (3, Yir) (X, HizeZix?)~L. Substituting this value of Ay,
into R, we find that the function R on the “ridge” is just the log partial likelihood function
L of the argument b, up to some constant, where

Z Kb

= log H )ik,

i,k 2: jk€ ]k

Similar arguments in counting process theory can be seen in Andersen et al. (1993, Sec.VII.2.1,

Page 482). Hence R is maximized by the “naive” maximum likelihood estimates (MLEs)

b—bandAk—Ak,k—l ., K, where

b=argmax £(b) and A, = PR Hikezgki))*l, (3)

where the A;’s form a discrete version of the Nelson-Aalen estimates (cf. Andersen et al.

1993, Sec.VIL.2).

4 Asymptotic Properties of the Naive MLE

The asymptotic properties of such naive likelihood estimates have been discussed by various
authors including Huber (1967), White (1994), Jiang (1996), Turnbull et al. (1997). The

principal results can be summarized as follows:

Proposition: Suppose W; ¢ = 1,...,n are i.t.d. copies of W, where W has a probability
distribution P. Let R,(s) = 7, p(W;; s), which could be a naive log-likelihood function
with argument s. Under regularity conditions (Jiang 1996, Turnbull et al. 1997),

A. 3, = argmax, R,(s) is strongly consistent to s°(9) = argmax, Esp(W;s), and
Vi(3,—5%(0)) 2> N(0,171VI~") where I = —~EV2p(W;s)|wg and V =EVpVp

B. An inverse function (s°)~! exists, 8, = (s°)}(8,) is strongly consistent to the original
parameter 6, and

Va0, —6) 25 N(0,D'I VI D) with D = V(s

s9(6) 5
C. s = s%(0) satisfies the estimating equation

VEgp(W;s) = 0. (4)

In the following discussion, when convenient, we may omit the subscript n for §,, 0,
and R,, and denote the asymptotic limit of the naive MLE s°(@) as s(f) or simply s, which
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we sometimes refer to as the “naive” parameter. The relation s°(f) expresses the naive
parameter in terms of the original parameter, which is termed as the “bridge relation”
(Jiang 1996).

Note that the naive MLE § is in general inconsistent for the original parameter 6, but
instead consistently estimates the naive parameter s(6). When s() is invertible, we can
form a consistent estimator 6 for # by inverting the relation s(6), as suggested by result (B)
of the Proposition. The general strategy therefore is to attempt to find the bridge relation
s(0) using result (A) or (C) of the proposition, and then assuming the relation is invertible,
use result (B) to obtained an “adjusted” estimator of 6.

The asymptotic normality of § and 6 from the above proposition show how standard
errors and test statistics can be constructed. The “naive” asymptotic variance (matrix) of
§ that ignores the model misspecification is (n/)™!, the inverted naive information matrix.
The correct asymptotic variance of 5 is n=*/~!V =1, the so-called “sandwich formula” —
Huber (1967), Carroll et al. (1995, page 263). The asymptotic variance of the adjusted
estimate 6 is thus given by n=1D'I='VI~'D, which we term as the “double-sandwich for-
mula”. If the expectations in / and V' are not available then quantities based on sample
averages can be used in the usual way, e.g. for I use ] = —n=1Y; V2p(Wi;s) s, for V
use V= n 1, (Vp(Wi; 8))(Vp(Wis s)) |s. To test the significance of a particular regres-
sor variable, the jth say, using the Wald method, the naive test statistic that ignores model
misspecification would be the Z-value: Zy = §;/\/Avary(3;) where Avary(3;) is the jth di-

agonal element of (nf)~!. The correct Z-statistic is: Zpq; = éj/\/Avar(éj). where Avar(éj)
is the jth diagonal element of n=1D'I=V ! D.

In the present formalism, W is the collection of variables {Hy, Yy, Zp;k € K}, 6 =
({At}rex, ), and s = ({Ap}rex,t’)’. The first problem is to find the consistent limit
sY(0) of the naive MLE by using equation (4), which involves taking derivatives of p for all
components of s. Taking the expectation by first conditioning on the Hj;’s and Z}’s, the
equations become

BEp = Y E HiZp(Ye — Me™) = 30 B HyZy(Are”s — Are”i) = 0

and Oy Ep = ALE Hy(Yi — AreZ®) = ALYE Hy(AreZ? — AeZit) = 0. (5)

An obvious solution is the trivial one b = 3 and A, = Aj. This solution can actually be
proven unique by first solving the second equation for Aj as a function of b and substituting
into the first one. We can then prove that the first equation, which now only has b as the
unknown, is the gradient of a concave function in b under some non-degeneracy conditions
for the random variables Hj, and Z;, 1 < k < K.

Hence the bridge relation is trivially s%(#) = #. The naive MLE’s of Section 3, obtained
by neglecting random effects, give consistent estimates for [\’& and (3. Therefore the consistent

estimates for the original parameters are just § = 3, i.e. (A, B) = (As, l;) Also we notice
that the naive MLE’s are just the Nelson-Aalen-like estimates for baseline mean measure
Ax;1 < k < K, and the partial likelihood estimates for regression parameter 3. These
hold in general settings where the mean measure defined by Equation (1) of Section 2 is
correctly specified; and do not depend on specific probability models such as the conditional
Poisson model which we have been considering. Similar ideas have been applied to point
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processes in time by Lawless and Nadeau (1995), from the viewpoint of estimating equations
and conditional mean function specifications. Incidentally, in Section 7 where we consider
covariate measurement error, we will find that the bridge relation is no longer a trivial one.
We now turn to the problem of estimating the asymptotic variances of the consistent
estimates b and A;. In the next two sections, we will see that the usual asymptotic variance
estimates of b based on the inverted partial likelihood information matrix is inadequate.
In an adjusted analysis using the robust asymptotic variance, the Z-value for assessing
the significance of a component of the regression coefficient 3 can diminish, despite the
consistency of the naive estimate I;, since the robust variance can pick up the extra variation
from the residual random effects and become larger than the naive variance estimator.

5 Asymptotic Variances

In the previous section we have found that the naive MLE’s are consistent for the original
parameters. By part (B) of the Proposition, this implies that the double sandwich formula
for their asymptotic variance reduces to the usual sandwich formula. First we obtain the
naive sample information matrix n/ = —V?R|; from the second order derivatives of R. Note
that the parameter (row)-vector s’ can be partitioned into a K-dimensional sub-vector A’ =
(Ay,...,Ax) and a p-dimensional sub-vector b. Inverting the (K + p) x (K + p) dimensional
naive sample information matrix nl , we obtain the partitioned matrix:

wi =[G G2 g

where sub-matrix Cy; is K x K, C15 = C4; is K x p, and Csy is p X p. In (6),

022 = i'_l where j = Z(Z HlkY;k)(S]?)/Slgo) — EkE,IC) (7)
k %

where we have used the fairly standard notation:

S =S HyeZud, SV =3 HyZueZsb, S = 3 HyZu Zhe?sd, B, = SV /S0

Of course, 7= —00y L is exactly the same as the sample information matrix obtained
by taking second order derivative of the partial log likelihood £ with respect to b. Thus

~

Cop =17 = Avary(b) (8)

is the asymptotic variance matrix used in the naive partial likelihood analysis that ignores
residual random effects, which is not robust.
The other sub-matrices in (6), are given by

(Cu)e = AL(Z Hikez';kg)*l&k + MBI By, LE=1,..,K,

(Cra)e = —MEZIY (Co)i = (Cra)y, k =1, ..., K.



and C1; is the naive asymptotic variance-covariance estimator for vector A’ = (Aq, ..., Ag).
In order to use the sandwich formula, we also need to calculate the sample variance for

the naive score function nV = ¥,(Vp(W;; s))(Vp(Wi; s))'|s. We obtain

s .

121 122

Here the sub-matrices, for ¢ = 1,...,n, are given by:

(Jia )i = HyHg A7 YA (Ve — /A\IGZ:’I;)(YZ‘IC — /A\kez"{"l;)a forl, k = 1, ..., K,
Jizoh = Hil[\_lHikZ{ Y — AeZih) (Yip — Rpe?id), for 1= 1,..., K,
? l 'Lk

Jizz = {Z HiZin(Yir — AyeZi) 1,

and J; 01 = J! 5, where the operation ®2 of a column vector v denotes v® = v,

By the sandwich formula, we are now able to estimate the robust asymptotic variance by
Avar(0) = (nl)™ (nV)(nl)~!. where ' = (A\',3') = (A, ¥'). From (6) and (9), we obtain:

A”‘”’l ; ] Z{Z Hi(Ya, — AreZind) l By ]}®
where the K-dimensional sub-vectors {A;;} are given by

(Azk)l = 5lk(z Hjlezélb)_l — AlEle'_l(sz — Ek), [ = 1, .. ,K
J

and the p-dimensional sub-vector (B;;) = f‘l(ZZk — E}). Here &y is the Kronecker delta.

These equations enable us to calculate the variance estimators for Ak = Ay and ﬁ = b.
We can show that the robust asymptotic variance estimator for ﬁ (or b) can be put in the
sandwich form

Avar(b) = TV where V = S{> Hi(Yip — ApeZi)(Zi — B} (10)
7 k

Here V is the sample variance estimator for the score function corresponding to the partial
log likelihood L.

Consider now the case of processes in time, when K indexes points on a discrete time
axis, and we can define a cumulative intensity function Ag(t) = k<t A. We can then

estimate ]\O(t) by Ag(t) = Yt A = k<t Ag. The asymptotic variance for Ao(t) can then
be expressed in terms of those of A;’s. The asymptotic covariance matrix estimator of the

vector (Ag(t),') and (Ag(s),b') is given by:

A~

Azzv{[ Aoft) ] | [ o) ] _ l Acov(Ro(t), Ro(s)) Acov(Ao(t),

t)
Acov(b, Ay(s)) Avar(l; Z Gilt
(11)



where G;(t) = ZHik(Yik _ Akesz’;) l ElgtB(Aik)l ] .
k ik

In particular,

Avar AO Z{ZZHZ’“ ik— Ake ‘ 5lk ZH € J’ —AlEllj:_l(Zik—Ek))}®2. (12)

i U<t k

On the other hand, the naive asymptotic variance can be obtained by

A

Avary(Ao(t)) = ZZACOUN(AZ,Ak) => > (C)u

1<t k<t 1<t k<t
— ZAk Z HpeZh)y= £ 5% NEIZ A, (13)
k<t 1<t k<t

In the continuous limit (13) is consistent with the formula on Page 505 of Andersen et al.
(1993). When there are residual random effects, however, we should use the robust variance
estimator in (12).

Now that we have obtained the asymptotic variance estimators, we can compute con-

fidence intervals and test statistics for 3 = b and Ag(t) = Ay(t), based on the asymptotic
normality of the MLE’s. As would be expected, the robust variances turn out to be larger
than the naive ones because the former account for the extra uncertainty induced by the
random effects. This in turn leads to wider confidence intervals and larger P-values (see e.g.
Jiang 1996, Page 128-30). In the next section we examine an example.

6 Example of Variance Inflation

We will compare the naive and robust asymptotic variances of b constructed from P Xp
matrices Z and V, which are, respectively, the consistent limits of 7 and V as given by (7)
and (10). Let b and Ay, 1 < k < K denote those values that maximize Fp where p is given
by (2). is just at b= and Ay = Ay, We obtain

EZ, He?rb
EHeZ?b

EZ, 7! Hye?i®
=Y (EY, —

)} (14)

EZ, H,eZ:b

and V = E{zk:(yk — HyApe?i) (2, — EH 7 )¥e. (15)

The robust asymptotic variance of 3 (= ZA)) can be put in the sandwich form Avar(ﬁ) =
Ty

The same result can be derived by a rigorous calculation of Avar(,@) (instead of its
estimate), which can be obtained by repeating the matrix algebras in Section 5, working on
the limiting function Ep instead of n !R. Here we would calculate I, 71, V, and I 'V I1,
instead of f, fﬁl, V, and 11V ]! as we did in Section 5. Avar(ﬁ) would be obtained by the
sub-matrix of n 11 VI ! restricted to the 3 dimensions, which would become Z VI 1,
instead of Z1VZ 1.



An alternative expression for 7 is

EZ, He”ib
E HjeZib

2

T = E{> HiAe%t (2, )€ ) (16)

Here we have used the fact that £Y, = EFH,®;, = EH“/JkAkezib = AkEerZZb, since
E(¢|Hy's, Z;'s) = 1. Expanding the direct product ( )®* in the second expression shows
that it is equivalent to (14).

Let us now consider the case when the predictor Z; is constant, Z;, = Z, and Z is
statistically independent of H;. This may be assumed, for example, when Z is a treatment
assignment indicator in a randomized clinical trial. In this case, (16) leads to

EZeZ'? _,
1= E{Z E(Yk|H7 Z)(Z - Eezlb )® }7
k

using E(Yy|H, Z) = E(HyprAre?s|H, Z) = HyApe?:. can express T as

EZe%" .,
I=FE{E(Y"|Z,H)(Z - W)@) } (17)

where Y = ¥, Y}, is the total number of events observed for a system. Similarly, from (15)
we obtain

EZeZ'?

EZe?? . 2
Y =E{Var(Y'|Z, H)(Z — WP }o (18)

V=E{Y*—EXY*H 2)Z - W)
Note that, if there were no random effect, Y * would have a Poisson distribution conditional
on Z and H, since it is a sum of conditionally independent Poisson random variables. There-
fore the conditional variance Var(Y*|Z, H) = E(Y*|Z, H) the conditional mean. Hence
Z =V, and the sandwich formula is reduced to Z7'VZ~! = (Z)~%.

However when there exist residual random effects, the extra variation from the 1;’s makes
Var(Y*|Z,H) > E(Y*|Z, H). Suppose ¥, = 1, which is constant for a system (independent
of k), then Y*|H, Z,v) ~ Poisson()Ate?") where AT = ¥, HiAy. By first conditioning on
(H,Z,v), we obtain E(Y*|Z,H) = A*te? and Var(Y*|Z, H) = Ate?’ + k(A+e?'?)? where
k = Var(y|H, Z). Therefore

Var(YT|Z, H) — E(Y*|Z,H) = k(ATe?")? > 0.

Hence -

EZe )®z}

FeZ't

is positive definite, and so is 27 VI — (nZ) ' = 171V — I)(Z')'. Therefore, for any

linear combination of the components of l;, its robust variance is greater than the naive

(V—1I) = E{x(ATe?*)*(Z —

variance based on Z~'. For example, for a component b;, we have

Avar(?)j) — AvaTN(Ej) e (e A Vs A (nI)_l]jj >0

10



where the [ |;; denotes the jth diagonal element of a matrix. Obviously the increment is
proportional to k, the extra variation introduced by random mixing.

Let us use these results to derive the asymptotic variance of treatment effect estimator ﬁA
in a randomized clinical trial, where Z is a scalar taking value 0 or 1 with equal probability
0.5. We follow patients (systems) over time and use the time of randomization to treatment
assignment as the origin of the time axis. Then the information contained in {H}} is the
same as the follow-up time 7T for a patient. In this case, At = Ay(T"), which is the baseline
cumulative intensity (i.e. for a patient with Z = 0) at end of the follow-up period. We
treat 7 as a random variable. Now A" = A((T) leads to E(Y*|Z,H) = A¢(T)e?"® and
Var(Y*|Z,H) = Ao(T)e?® + x(Ao(T)e?')2. Substituting into (17) and (18), we are left
with expectations taken over 7" and Z only. Taking expectation with respect to Z first,
noting that Z is independent of 7" and takes value 0 or 1 with equal probability, we find

ef 1 ef e,

1 2 2
T = 3 BA(T)(375) and V = S BA(T)(35—5) + sE{(M (D) Hi5)”

The naive asymptotic variance of ﬁA can then be obtained as

Avary(B) = (D)™ = Z((BA(T)")™ + (BA(T))™) (19)

present). The robust asymptotic variance, on the other hand, is obtained by %I_1VI_1 as

Avar(B) = %{((EAO(T)eﬂ)l + (EAo(T)) 1) + 2 EAY(T)(EA(T)) 2} (20)

The inflation of Avar(ﬁ) due to extra variance x leads to an increased sample size in

study planning, comparing to the usual Poisson process regression. Consider the problem of

testing Hy: B =0 vs Hy : B = +6 , where § is a medically significant difference. In order for

the Wald test to achieve specified type 1 error rate a; and type Il error rate aj;, the total
sample size (including both treatment groups) should be

no R 2zarz+ 2a) 0 H{((EA(T)e?) T + (BA(T)) ™) + 26 BAG(T)(EA(T)) 7} (21)
based on the robust asymptotic variance in (20) instead of
"Naive N 2Zag/2 + 2ar) 0T (BA(T)e”) ™1 + (BAo(T)) ™'}

based on (19), which happens to be the sample size formula obtained from using the pure
Poisson regression model (k = 0).

Now EAy(T)e” and EAy(T) are the expected number of events for a patient in treatment
group (Z = 1) and the group (Z = 0) respectively. If we can make the assumption that
the point process is approximately homogeneous in time, these become 7 E'T and ryET,
respectively, where r; = rye”, for some ry > 0. estimate, assuming that 7”s are approximately
equal for all (21) becomes

n 2~ 2(zay 2 + 2a;:) 20 H{((MET) ™ + (ro ET) ™) + 26(1 4+ Var(T)(ET) %)}
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The parameters r(, r1, £ are unknown but may be estimated if results from a pilot study
are available. The parameters r(, 71, k in a pilot sample can be estimated by the method of,
say, negative binomial regression (Abu-Libdeh et al. 1990). Alternatively, we can estimate
them by the method of moments as ro ~ >2,.7._¢ Y/ 3. z,—0 1; and analogously for 7;. A
method of moments estimate for k can be obtained as

- ()2 =)

] — 1.
Yie)(MT)? + Tieo) (roT3)?

A similar approach to the planning the study duration for recurrent events data is taken
by Cook (1995), based on a model of constant recruiting rate and exponential censoring.

7 Covariates Measured with Error

Suppose the observed covariate Z is a surrogate for a true covariate, X, which is not observed.
Suppose Z, X and the random effect ¢ are all constant across different patches of any one
system, and the distribution of (Z, X, v, { Hj, }xex) does not involve the parameter of interest
B. Now a “model” consists of two parts — (a) a response model which relates the outcome
variables {Y}; k € K} to X, ¢ and the H}’s, and (b) a covariate error structure model which
relates the observed covariate Z to the true one X.

To describe the part of the model that relates to the covariate error structure, we first need
to partition the true covariate vector as X' = (5( ', A"). Here the components represent those
covariates (X ) measured with error, and those covariates (A) measured without error, which
are of dimensions r, g, respectively, say. We correspondingly partition the observed surrogate
variable vector as Z’ = (Z', A’). A covariate error structure model is one which specifies the
joint distribution of X and Z. In our application in Section 8, we shall use a simple normal
additive error model (NADD), where Z = X + U , X ~ N(0,%3), U ~ N(0,%y) and
are independent. Both X and U are assumed to be independent of A which is measured
without error. This assumption might be valid if, for example, A is treatment assignment in
a randomized trial. It is worth noting that this implies the conditional distribution:

X|Z ~ N(Z %) WhereQ:E;Eg, EZEUE;E)@ Yy =Yx + Y.

We will call the matrix €2 the “attenuation” matrix and it plays an important role. With
little added effort, it is possible to apply the techniques we describe to more general models
for the joint distribution of X and Z — for example to the conditional normal (CN) model
in which the conditional distribution of X given Z is normal with mean a linear function
of Z and constant variance: i.e. X | Z ~ N(Cy+ C'Z, X) where C'Z = Q7+ CLA
for general vector C\y and general matrices C, ¥, Cy, and (). Clearly the NADD model is a
special case, in which, in particular, Cy = 0.
For the response model we take the conditional Poisson specification:

Yi|H, X, ~ Poisson(y HyAreX?). (22)

We can make inference on § and A by using the recipe introduced in Section 4. That
is: we start by performing a naive analysis ignoring the presence of random effects and
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measurement error, and then adjust the resulting estimates and variances to account for
the misspecification. The naive log-likelihood function is constructed by taking 3 and X
in model as 1 and Z, respectively, in the log-likelihood function derived from (22). The
resulting R and p have exactly the same form as in Section 3. However the asymptotic naive
score equation (4) now leads to

hEp=> E HyZ1(Yi — Ae”") =Y E Hy Zi(AE(eXP|Z) — Ay =0 (23)
k k

and

OrFEp = A E Hi(Yi — Ae??) = ALYE Hi (A E(eXP|Z) — ApeZ) =0, for ke K.

(24)
Here we have assumed that the follow-up process {H}.} is noninformative for the covariate
error structure, in the sense that the conditional distribution of X given Z and H depends
on Z only. We partition the regression parameter by 3’ = (B' ,7'), and the asymptotic limit
of the naive MLE ¥ = (¥, ¢'), corresponding to the partition Z' = (Z’, A'). Suppose that
the measurement error model is specified as for (CN) above. We can solve the asymptotic
naive score equations, (23) and (24) by noting that

E(eX'P|Z) = B(eXPT4C4|Z) = exp{(Cofi + %5125) +Z'(QF) + A'(y + Cab)},

which comes from the conditional normality of X given Z. A solution can be easily read off
as

g=7+0Caf, F=08, Av=Aiexp{Chf + 5. (25)

The uniqueness of this solution can be demonstrated in a similar way as earlier for the
solution of equation (5). Notice that when measurement error is present, the naive MLE’s
are no longer consistent for the original parameters. When Z is one-dimensional and we use
the NADD model, we have Q@ = ¥ /(X3 + Xy) < 1 and the second equation in (25) exhibits
the feature of ‘attenuation’.

The inverted relations of (25) are

- - -~ - e 1~ -
y=g—CaQ7"%, B=Q7' A =Aprexp{—CoQ b — 5b’Hb}, (26)

where I1 = (Q!)’SQ 1. For processes in time, when K indexes points on a discrete time
axis, the third equations in (25) and (26) lead to the following relation for the cumulative

baseline hazard Aq(t) = <, Ax:
. R : 1. .
Ao(t) = Ag(t) exp{Cof + 5[3'25} and Ay(t) = Ag(t) exp{—CoQ b — Eb'Hb}. (27)

The equations (26) and (27) tell us how to form consistent estimators for the parameters of
interest from the naive MLE’s, namely the usual partial likelihood estimates for the regression
coefficients and the Nelson-Aalen estimate for the baseline cumulative intensity.
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Naive calculation of the asymptotic variance of the naive MLE b based on (nZ)™! can
be proven smaller than the adjusted one based on %I_IVI ~1. Now, an argument similar to
that in Section 6 leads to

(V=) = BYRA B 2) + (NVar(eX912))(2 — 22000

which is positive definite. Hence, as before, for any linear combination of the components of
l;, the robust variance is greater than the naive variance based on Z~!. Now the increment
contains two terms: one term proportional to x due to random mixing, as well as another
proportional to Var(eX'?|Z) contributed by the measurement error in Z. In particular, when
b = (b, g) consists of two scalars, we have

Avar(h) > Avary(b) and  Avar(j) > Avary(§). (28)

Since the naive MLE’s are not consistent for (Ak, B), we must use the double-sandwich

formula to estimate the asymptotic variances of the adjusted estimates A, and B in gen-
eral. However when A is the treatment variable in a randomized clinical trial, in which
X is assumed independent of A conditional on Z, we have Cy = 0 and v = g. There-

fore the asymptotic variances of particular interest are Avar(5) = Avar(§) and Avar(3) =
Q 1Avar(b)(Q ). (These can be obtained either by directly using the A-method or for-

mally calculating the D-matrix in Section 4). The asymptotic variance of Ay (t) can also be
obtained from (27) as

Avar(Ro(t)) = e VL Avar(Ro(t)) + A2(4)H'TT (Avar (b))TTb
— Ao(t) Acou(Ro(t), b)TIB — Ag(t)5'TI Acou(b, Aq(t))}. (29)

In the above expressions, the asymptotic variances and covariances for the naive estimates

A

can be obtained from (11), and b and Ao(t) can be estimated by the naive MLE’s, b and
Ao(t), respectively.

Consider again the case where v and {3 are scalars. For inference on v, asymptotically,
the magnitude of the adjusted Z value

Y g g
Za| = ol gl 19l _ 2|

\/Avar(ﬁl) - \/Avar \/AvarN (9)

even though the adjusted estimate is the same as the naive one, due to the inflation of the
adjusted asymptotic variance. For inference on 3, the regression coefficient for the predictor
measured with error, asymptotically

Bl |97 6] )
\/Avar \/Avar 1b \/Avar \/AvarN

by (28), even though the adjusted estimate ﬁ is greater in magnitude then the naive one,
since the adjusted asymptotic variance more than compensates for this.

| Zagi.| = = |Zn]|
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In summary, we find that the usual partial likelihood procedure will give a consistent esti-
mate for the treatment effect yv. However its naive asymptotic variance from 7! tends to be
an underestimate. When the robust asymptotic variance is used instead, a smaller Z-value
for the Wald statistic will usually result. Estimates of regression coefficients for variables
measured with error are attenuated. All these features are exhibited in the application in
the next section.

8 Illustration: Skin cancer recurrences in a clinical
trial

Clark et al. (1996) have reported on the results of the “Nutritional Prevention of Cancer”
(NPC) trial which studied the long-term safety and efficacy of a daily 200ug nutritional
supplement of selenium (Se) for the prevention of cancer. This was a double-blind, placebo-
controlled randomized clinical trial with 1312 patients accrued since it started in 1983. Each
patient was randomly assigned to either the selenium (coded as A=1) or placebo (A=0)
group. A number of endpoints were considered, but here we shall concentrate on one of
the primary endpoints — namely squamous cell carcinoma (SCC) of the skin. The results
for this endpoint are of particular interest because Clark et al. (1996) found a negative
(but not statistically significant, P = 0.15) effect of selenium supplementation. This was
opposite to previous expectations, and contrasted sharply with findings of highly significant
positive benefits of the selenium supplementation in preventing a number of other types
of cancers. However, for the SCC endpoint, the original analysis presented in Clark et al.
(1996) considered only the time to first occurrence of an SCC in each subject. Also, neither
random effects nor effects of covariate measurement error were taken into account. In this
section, we reanalyze the data to illustrate the methods we have discussed.

For each patient, the time (measured from date of randomization) of each new occurrence
of an SCC was observed. At randomization, a number of baseline covariates were also
recorded. Of course, the most important of these was the treatment assignment (Se or
placebo), but others included such variables as age, clinic, gender, smoking status, previous
history of skin cancer, and blood biochemical levels, in particular plasma Se status. While
some of these variables are recorded accurately, others, such as plasma Se status, are subject
to measurement error. Even with these predictors, it is likely that there are still remaining
factors influencing the study outcomes of a patient. We ascribe them to the residual random
effect, with respect to a collection of predictors taken into the model. As our first analysis, we
will take the {0, 1}-valued treatment assignment indicator A as the only predictor: Z = A.
We will see how the robust inference based on naive MLE’s can be performed for this point
process regression model on Z with residual random effects.

8.1 Random Effects

The data set for the NPC trial contained records on 1312 patients, with the longest follow-up
period being 4618 days. We take the set of patches as days: K = {1,2,3,...,4618}. The
data set contains the elapsed time in days of each SCC occurrence, counted from the date
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of randomization. For example, a patient with ID number 1001557 had SCC occurrences
on Day 178, Day 286, Day 549, and Day 1018. This patient was followed until Day 2268
(“censoring day”), and was in Se supplemented group (with Z = A = 1, constant in time).
In the formalism of Section 2, the data for this patient can be summarized as, labeling

him as the ith patient, Y;l = O,, Y;z = O, ceey }/;,178 = 1, }/;7179 = O, ey }/;,286 = ]_,
Yiostr = 0, .. , Yisggo = 1, Yisso = 0, ... , Y018 = 1, Yiio190 = 0, ... , Yige18 = 0;
Zin = Zip = .. = Zige1s = 1; Hin = Hip = ... = Hio068 = 1, Hio69 = ... = Hjue13 = 0.

yld

We can form the naive log-likelihood function R in Section 3 and calculate the naive MLE’s
b (here it only has one component §) and Ay(t) = Xt Ay for t = 1,2,...,4618, by using
the partial likelihood estimator and Nelson-Aalen estimator as in Section 3. The results
in Section 4 imply these naive MLE’s are consistent for the original parameters 3 (here
containing only the one component -, the regression coefficient for the treatment assignment
indicator) and Ag(t). The naive asymptotic variance estimates of the naive MLE’s using
(nd)™! are obtained from (8) and (13). The robust variances using the sandwich formulae
come from (10) and (12). The results are summarized as Table 1 and Figure 1.

Table 1: Naive and adjusted analyses of NPC trial SCC data with treatment as the only
predictor: Point estimates and Z-values

Estimate Standard Error Z-value
(Naive) g =0.1180 0.0586 2.0137
(Adjusted) 4 =0.1180 0.1237 0.9539

Note: Naive = ignoring random effects; Adjusted = adjusted for random effects.

From Table 1, we note that the naive analysis using multiple recurrences ascribes a
significant adverse effect of Se supplementation. (This may be compared with the analysis
reported in Clark et al. (1996, Table 2). They reported a larger log relative risk, namely
log(1.14) = 0.131, but this is less significant (logrank test P = 0.15), it being less sensitive
because the data used was only the time to first tumor. Table 1 also shows that when the
extra variability due to patient heterogeneity is accounted for, the point estimate of the
treatment effect (log relative risk) is unchanged but its significance is greatly diminished.

[Figure 1 about here.]

Figure 1 illustrates the estimates of the baseline cumulative intensity, which has now the
interpretation of the expected number of SCC’s increasing over time (in days), for a typical

placebo group patient. Notice that Ay(t) = Ao(t), but the naive analysis yields pointwise 95%
confidence bands that are much narrower than those based on the robust variance formula
(12).

Figure 1 also suggests that a parametric model with a constant intensity rate may be
appropriate, where it is assumed that Aq(t) = texp(f), as in Turnbull et al. (1997). Un-
der this model, the naive MLE’s (130, g) obtained from neglecting random effects are again
consistent, and are same as the adjusted estimates (BO, 4). The reduction of Z-values in the
adjusted analysis also takes place. The results are summarized in Table 2.
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Table 2: Naive and adjusted analyses of NPC trial SCC data with treatment as the only
predictor: Point estimates and Z-values (parametric constant intensity model)

Estimate Standard Error Z-value

(Naive)  §=0.1239 0.0586 2.1143
by = 1.1320 0.0429 26.3780

(Adjusted) 4 = 0.1239 0.1237 1.0018
By = 1.1320 0.0919 12.3226

Note: Naive = ignoring random effects; Adjusted = adjusted for random effects.

8.2 A Covariate Measured with Error

As well as treatment indicator A, we now also include in our model as a covariate the log
baseline serum plasma selenium level Z;. This variable was missing for 26 patients and
so we only include the remaining 1286 patients in the following analyses. The variable Z;
is measured with error, with its hypothetical true value X; unknown. We use the simple
normal additive model (NADD), whereby Z; = X; + U, as introduced in Section 7. For the
parameters of this model we use values ¥x = 0.106%, ¥y = 0.1512. These were obtained
from an internal validation data set based on replicate plasma Se measurements in placebo
patients. The same data set also validated assumptions of the NADD model. The details
are given in Turnbull et al. (1997), but their estimates differ slightly from ours since they
used an earlier and somewhat smaller interim data set. From these values, we obtain the
attenuation factor of Q! = 3.01. In the formalism of Section 7, Z = Zy, X = Xy, b = by
and B = 4, and are all scalars. We may take Z; and X; to have zero means by subtracting
suitable constants.

According to procedure of Section 7, we start with an naive analysis based on Poisson
process with no random effects, and using surrogate Z; in place of the true covariate Xj.
We obtain the naive MLE’s g, by and A, (t) from the partial likelihood estimates and the
Nelson-Aalen estimates from Section 3, and calculate their naive asymptotic variances from
(8) and (13) based on (nl)~!. Because A the treatment assignment variable is randomized
and thus independent of X, we see from Section 7 the naive MLE ¢ for the treatment effect
~v is consistent and equal to the adjusted estimator 4. However, the naive MLEs of by of (1
and Ay (t) of Ay(t) are both inconsistent and must be adjusted using (26) and (27). (In fact,
Ao(t) overestimates Ag(t), as can be seen from (27) taking Cy = 0 as implied by the NADD
model.) The naive and adjusted estimates of the regression coefficients (log relative risks)
along with standard errors based on naive and robust variances are given in Tables 3 and
4. As before, the point estimate of log relative risk for treatment 4 is unchanged, but its
significance is greatly diminished when the robust standard error is used. The log relative
risk for log baseline plasma Se level increases in magnitude when the adjusted estimate is
used, but so does the standard error. However, even recognizing the increased uncertainty in
a model with random effects and measurement error, it remains a highly significant variable,
suggesting that high plasma Se levels are associated with lowered risk of SCC. The results
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in Tables 3 and 4 exhibit the typical features summarized at the end of Section 7.

Table 3: Naive analysis of NPC trial SCC data with treatment A and log baseline Selenium
level X as predictors, ignoring random effects and measurement error in X; : Maximum
likelihood estimates and Z-values

Estimate +/ Avary AN
(Treatment) ¢ 0.1169 0.0592  1.9747

(Baseline Se) b; -0.6897  0.1456  -4.7370

Table 4: Analysis of NPC trial SCC data with treatment A and log baseline Selenium level
X as predictors, adjusted for measurement error and random effects: Point estimates and
Z-values

Estimate +/ Avar Lpgj.
(Treatment) ~  0.1169  0.1253  0.9330
(Baseline Se) [(; -2.0760 0.9632 -2.1553

[Figure 2 about here.]

Figure 2 shows the naive and adjusted estimates of the cumulative intensity function. The

naive MLE A(t) is larger than the adjusted consistent estimator Ay(t) as stated in Section 7
although the difference is extremely small and hard to distinguish. This is because the ratio
of the two estimators given by ez (0)' (@770 — 1 0164 is very close to one. In general,
when this happens, the influence of covariate measurement error on the baseline cumulative
hazard estimator is negligible. In Figure 2 we have also plotted the 95% pointwise confidence
bands for Ay(t) based on the naive asymptotic variance obtained from (13) based on (nf) 1,

as well as bands based on the robust asymptotic variance (29) for the consistent estimator

Ao (t). The plots indicate that although the naive estimates and adjusted estimates are very
close, the robust confidence band is much wider than that obtained from the naive analysis.

A parametric model of constant intensity rate Ag(t) = texp(f,), as may be suggested
by Figure 2, yields much the same results. The results, corresponding to those in Tables 3
and 4 for the semiparametric model, are given in Tables 5 and 6. The results in these two
tables would be the same as Tables 1 and 2 of Turnbull et al. (1997) but differ somewhat
because their results were based on an earlier interim data set.

It should be noted that Tables 4 and 6 ignore the uncertainty in the attenuation factor €2
and treat it as known. In fact, it was estimated from the internal validation data as described
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Table 5: Naive analysis of NPC trial SCC data with treatment A and log baseline Selenium
level X; as predictors, ignoring random effects and measurement error in X; : Maximum
likelihood estimates and Z-values (constant intensity model)

Estimate +/Avary AN

(Treatment) g 0.1218 0.0592  2.0581
(Baseline Se) b, -0.7245 0.1454  -4.9825
bo 1.1226 0.0435 25.8344

Table 6: Analysis of NPC trial SCC data with treatment A and log baseline Selenium level
X, as predictors, adjusted for measurement error and random effects: Point estimates and
Z-values (constant intensity model)

Estimate +/Avar Zpgj.

(Treatment) -~ 0.1218  0.1253 0.9717
(Baseline Se) [3; -2.1807 0.9633 -2.2638
Bo 1.1047  0.0924 11.9521

19



above. Using that data, application of the delta method leads to a standard error for Q-1 of
0.46. The sensitivity of the qualitative conclusions can be examined by repeating the above
analyses with Q! set equal to O+ s.e., for example. However the ¥, the estimate of log
relative risk for treatment and its robust standard error will be unchanged. Also, because
the robust standard error adjusts by the same proportion as the parameter estimate, the
Z-values in Tables 4 and 6 for 3; will also be unchanged.

9 Discussion

The consistency of the maximum partial likelihood estimators of regression coefficients and
Nelson-Aalen-type estimators of the baseline intensity function ultimately comes from the
mean measure specification (1). There are two issues that arise when considering this model.

The first issue concerns the requirement F(Y}|Z, H) = E(Y;|Z) implied by (1). For
recurrent events data, such as for the example of the NPC trial of the previous section, this
would be satisfied if the length of followup or observation time for each subject is independent
of the event process of that subject. However certain situations are excluded, such as for
example when: (i) a subject is more likely to leave the study earlier if he has a higher
frequency of events (here SCCs); or (ii) a subject is withdrawn from the study as soon as he
has experienced a fixed number, r say, of events. In such a case, subjects with higher frailties
(higher event rates) would be less likely to be still at risk at later time periods, resulting in
an underestimate of the intensity function there. Lawless and Nadeau (1995, p.164) propose
several tests of the independent observation time assumption. For our NPC trial data, we
performed their two Wald-type tests which are based on including an extra covariate of
either (a) the length of observation time or follow-up time, 7 say; or (b) an indicator on
whether 7 is longer than the median (here 2795 days). The second test (b) yielded a Z-
value of —0.65 for the new covariate, which is not significant. This indicates no evidence
against the independence assumption. On the other hand, the first test (a) did indicate
a marginally significant negative relation between the event frequency and the follow-up
length. However as Lawless and Nadeau (1995) point out, this test is highly sensitive to
influential observations. We calculated the correlation between the event rate (number of
events divided by 7) and the follow-up length (7). This was done separately for the placebo
and Se group patients. The correlations are —0.0194 and —0.0931 respectively, whereas
the 3% trimmed correlations were +0.0039 and +0.0032. Thus the data seemed generally
consistent with the independence assumption. Also there was nothing in the protocol of
the design or conduct of the followup that would lead to a suspicion that there should be
nonindependence of the event processes and the observation times.

A second issue concerns the interpretation of the regression coefficients in the model
specification (1), in which, being averaged over the frailties or omitted covariates, [ represents
a “population” effect of the covariates Z. An alternate formulation would be to postulate a
model in which

E(Yi|H, Z,0) = Texp(Z'¢ + O'w), (30)

where [’y is a baseline mean measure, and ( and w are regression coefficients. Z and O
are assumed to be constant over k for convenience. By conditioning on O, the parameter (
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represents the effect of Z matching the value of the omitted covariate, or the frailty. Thus
¢ represents an “individual” effect of the covariates Z. Chastang, Byar and Piantadosi
(1988, p.1254) give a good discussion of these two models and argue that (30) is more useful.
Of course, in general O or the frailties are not observed and so an analysis based on (30)
is not possible. However, under the condition E(e®'“|Z, H) = E(e’“), the “population”
parameter [ is actually the same as the “individual” one ({). This can be seen by taking
the expectation of (30) conditional on Z and H and comparing with (1). Such a condition
might be considered reasonable for randomized clinical trials with recurrent events data,
where Z represents a randomized treatment assignment indicator. In this case, in addition
to the independent observation time assumption as in the previous paragraph, it may be
assumed that conditional on the follow-up process H, Z and O are independent. Note
that for survival data, such an assumption might be unreasonable, because those subjects
surviving (all Hy's= 1) on an inferior treatment will be associated with superior frailties
leading to a diminution or underestimate of the apparent treatment effect — Chastang et
al. (1988), Keiding et al. (1997).

Our method is based on large sample asymptotic theory. Although the data set we used
in our illustration was quite large, it would be of interest to investigate finite sample prop-
erties of the procedure. Our method uses a simplified naive model as the starting point,
and corrects any asymptotic biases on the resulting naive likelihood estimates afterwards.
It may not be fully efficient when compared with the method which uses a properly spec-
ified yet more complicated likelihood. Yet it has the advantage of being able to make use
of simple naive partial likelihood estimates and Nelson-Aalen estimates, often available in
standard computer software packages, in a wide variety of multiple events problems, with
effects of random heterogeneity and measurement error explicitly assessed in the procedure.
This method of starting from a simple naive likelihood function has also been used to con-
sider other nonlinear regression models, such as negative binomial regression (Turnbull et al.
1997), exponential regression and logistic regression (Jiang 1996), for the effects of model
misspecification which could arise from the presence of latent variables, random effects, mea-
surement error, omitted covariates, and generally incomplete data.
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Figure 1: Estimate of baseline cumulative intensity function for SCC recurrence data for
NPC trial. The outer dashed lines are the pointwise 95% confidence limits based on the
naive analysis whereas the outer solid lines represent the pointwise 95% confidence limits
based on a robust analysis adjusted for random effects.
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Figure 2: Estimate of baseline cumulative intensity function for SCC recurrence data for
NPC trial. The dashed lines are the estimate and pointwise 95% confidence limits based
on the naive analysis. The solid lines are the estimate and pointwise 95% confidence limits
based on an robust analysis adjusted for random effects and covariate measurement error.
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