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CHAPTER 1

INTRODUCTION

1.1. Introduction.

The purpose of this thesis is to present an axiomatic method for
proving certain properties of parallel programs. The most fund;mental
property is partial correctness: a program is partially correct if
it either cozputes the required result or fails to terminate. Total
correéiness includes the requirement that the program terminates.

Hoare [Ho69) has devcloped axioms and inference rules for proving

the partial correctness of scquential programs written in an Algol-likc
syntax, and with certain adaptations this deductive system can be

;scd ;o establish total correctness (Manna [Ma74)). Its cxtension

to parallel programs (lloare [Ho72]) is the basis of the work in this
thesis.

The importance of correctness proofs for sequential programs has
loag been recognized. The advocates of structured programming have
argued that a well structured program should be casy to prove correct,
aad that programs should be written with a correctness proof in mind.
The neced is even grecater with parallel programs. If scveral processes
are exccuted in parallel, their results can depend on the unpredictable
order in whick actions from different processes aroe executed. For
exazple the two simple processes below can interact in six different

ways to produce four different values for y .
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process l: x:sl ; process 2: x:=2 ;

y:i=x+l ; y:is5=x

Such complexity greatly increases the probability that the programmer
will make mistakes. [Lven worse, the mistakes may not be detected
during program testing, since the particular interactions in which the
errors are visible may not occur. It is important to structurc parallel
programs in a way which eliminates some of this complexity, and to
verify their correctness with procfs as well as by program testing.
A number of methods have been used in preofs for parallel progracs.
The most common is rcliance on informal argumeats -- a risky business
‘given the complexity of parallel program interactions. lMore formal
approaches have included applicaticn of Scot:;s mathenmatical semantics
(Cadiou and Levy [Ca73)), Lipton's reduction method (Li74b], and Rosen's
Church-Rosser approach [Ro74). The work which is most directly related
to this thesis is based on Floyd's inductive assertion method [F167]
for scquential programs. In this approach assertions are attached
to the arcs of a flowchart, and a verification }ondition is developed
which guarantees that whenever control follows an arc the corresponding
asscrtion is true. This verification condition for sequential programs
is fairly simple, but for parallel programs it can be quite complex.
Ashcroft and Manna [As71] express a parallel program as a nondetermin-
istic scquential program. This gives a simple verification condition,
but the number of assertions is an exponential function of the rumber
of program statements. In [As73], Ashcroft uses a similar technique,
but argucs that in practice the number of distinct assertions will not

be too large. Lauer [La73] and Newton [Ne74) attach assertions to



AXTOMATIC PRODF TECHNIQUES FOR PARALLEL PROGRAMS

Susan Speer Owicki, Ph.D.
Cornell University 1975

This thesis presents an axiomatic method for proving certain
correctness propertics of parallel programs. Axioms and inference rules
for partial correctness are given for two parallel programming languages:
the General Parallel Language and the Restricted Parallel Language.

The Genzral language is flexible cnough to represent most standard
synchronizers (e.g., semaphores, cvents), so that programs using these
synchronizers may te verified using the GPL deductive system. llowever,
proofs for GPL programs arc in general quite complex. The Restricted
language reduces this complexity by rcquiring shared variables to be
protected by critical sections, so that only one process at a time

has access to them. This discipline does not significantly rcduce the
power of the language, and it grecatly simplifies the process of program
verification.

Although the axioms and inference rules arc primarily intended for
proofs of partial correctness, there are a number of other important
propertics of parallel programs. We give some practical techniques which
use information obtained from a partial corrcciness proof to derive
;ther correctness propertiecs, including program termination, mutual
exclusion, and freedom from deadlock. A number of examples of such
proofs are given.

Finally, the axioms and infercnce rules arc shown to be consistent
and complete (in a special sense) with respect to an interpretive

1



model of parallel execution. Thus the deductive system gives an
accurate description of program execution and is powerful enough to

yield a proof of any true partial correctness formula.



1.2. Outline of the Thesis.

Chapter 2 is a review of Hoare's axioms and inference rules for a '
sequential programming language (SL). There are no new results here,
but many of the corcepts necded for parallel programs are introduccd
at this time. In particular, an interpretive model for sequential
execution is developed which is later externded to provide for parallel

" computations.

In Chapter 3 we move on to discuss parallel programs. The language
presented here is called the general parallel language (GPL) because
it is powerful enough to represent most of the primitive opcrations
suagested for synchronizing parallel processes (e.g., events, Dijkstra's
secaphores). The deductive system and the model from Chapter 2 are
externded to include parallel operations.

In Chapter 4 we consider a parallel programming laaguage and
deductive system suggested by livarc. This restricted parallel language
(RPL) is more highly structurcd than the one given in Chapter 3, and
this greatly simplifies prograa proofs. Im fact, the size of the
proofs again becomes linecar in the size of the program, as it is for
sequential programs. Once again the interpretive model defined in
Chapter 2 can be extended o cover the new language.

hapter S discusses methods for proving other properties besides
partial correctness. Using both the deductive system and the interpre-
tive model of program execution it is possible to derive casily-verificd
sufficient conditions for guaranteeing mutual exclusion, termination,

and safety froam blocking.



Chapter 6 considers tnc reiationship betwcen the deductive and
interpretive semantics presented in carlier chapters. Tae two methods
are shown to be consistent for all three languages, and the deductive
system for RPL is shown to be complete with respect to the interpreter.

Finally, Chapter 7 summarizes our results and suggests extensions

and arcas for future work.



control points in the flowchart of cach parallel process. This makes

the number of assertions linear in the size of the program. Unfortunately,
the verification condition becomes more complicated, because jt is
nece;sary to check that the statements in one process do not invalidate
the assertions in another. This again introduces an exponential .
coaplexity into the proof process, but in practice all but a few ;f

the checks are trivial.

All of the inductive aséertion methods deal with flowcharts, but
they can be used as the basis of an axiomatic description of parallel
progracming languages. Instead of having assertions attached to points
in a flowchart, they arc applied to program statements according to .
a set of axioms and inference rules. Working with langu§ge statements
rather thaa flowcharts makes it easier to enforce restrictions which
wmake programs intellectually manageable; it is even possible to
completely eliminate the exponential factor mentioned above. The
axioms and inference rules provide a sound formal technique for proving
partial correctness, but they are also intuitive enough to be uscd
as the basis of reliable informal proofs. One of their main advantages
is that they give guidance in structuring programs in a way that makes
them casy to understand as wecll as to prove correct.

Although the deductive system described sbove is designed for
proving partial correctness, it can also be used to demonstrate other
important properties of parallel programs. For example, mutual
exclusion, the property that two or more processes cannot exccuto certain
statements at the same timo, can be proved using axiomatic techniques

and certain theorcms about program execution. Similarly, we can find



practical, sufficient conditions, in terms of the axioms, for showing
that all processes cannot becomc blocked (deadlocked). These results,
combined with Manna's work, make it possible to prove program temination
in many cases.

There are two questions which naturally occur in considering an
axiomatic semantics for a programming language. The first is: do the
axioms and inference rules correctly describe the results of executing
a program? The second: are they powerful enough to make it possible
to prove all truec statements about a program? A partial answer can
be obtained by defining an interpretive model of program execution
and then asking the questions with respect to that model. The first
then becomes: do the axioms and inference rules correctly describe
the results of executing a program under our model? If they do, the
deductive system is said to be consistent with the model. It has been
proved that Hoare's sequential deductive system is consistent with
sceveral models of program execution (Cook [Co7S], Hoare and Lauer
[Ho74b]). The second question becomes: is the deductive system
powerful enough to prove everything which is true about program execu-
tion in this model? If so, it is said to be complete with respect to
the model. Cook [Co75] has recently proved that the sequential axioms
and inference rules are complete in a restricted sense which will
be discussed later. In this thesis, we will show that the axioms
given for parallel processing are consistent and complete in Cook's

sonsc for one model of parallel execution.



calculus. For exanmple the formula {x<y} z:=(x+y)/2 {xs2<y} expresses
the fact that if x <y when the statement z:=(x+y)/2 begins,
X <y <z will be true when (and if) the statement finishes.

Table 2.1 gives two axiom schemas (Al and A2) and four inference

rules (A0, A3-A3) for sequentisl programs. The notation

P,,P 4

172" n
P
for inference rules mecans that P can be proved by proving each of
the Pi and then applying the inference rule.

A1-AS correspond to the five kinds of program statements. Rule A0
requires some additional comment. The notation P } Q mecans that it
is possible to prove Q using P as an assumption. The deductive
system to be used in proving Q from P is not given; it could be
any systen which is valid for the data types and opcrations used in
the programning language. For cxampic, if the programming language
coataids natural numbers and the operations + and « , the deductive
systen could be based on Peano's axioas.

Figure 2.1 gives an cxample of a partial correctncss proof. The

Y

progran power computes 2=x’ if y > 0 (x and y are integers). The

partial correctness condition is
{y>0} power {z=x") .

Lines 1-2 describe the statement labelled init 1, lines 3-4 describe
init 2, and lines 6-10 describe the loop. Finally, the cffect of the

three statezents together is given in line 11.
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{(Prysioy ,okp ,0Fq
(P} s {Q}

A0 conscquence

Al assipgnment (PE) x:=E {P}

X PR -
where PF represents the result of substituting £ for each free

occurrence of x in P . e.g., if P is (a20 V b=l) , P

is
a*d

(avbz0 V bal) .
A2 null (P} ; (P}

. [ \
1Pl) Sl ‘PZ) , (P2) S2 (pS)""‘(Pn' Sn (P“’1

A3 composition

(Pl) begin S S, end (Pnol)

L

(pre)s (Q), (pa=Bks, {Q)

A4 alternation

1
(P} if B then §, else S, {Q}

1

(p A B)s (P}
(P} while B do S, {F A 7B}

AS iteration

Table 2.1. Axioms and Inference Rules for Sequential Programs.



CAPTER 2

SEQUENTIAL PROGRAMS

We begin our study of parallel programs by describing a simple
scquential language which will be the basis of our two parallel
languages. The sequential language is a fragment of Algol, for which
Hoare has given a set of axioms and inference rules. We define a
sizple interpreter for this language and sketch a proof that it is’
consistent with Hoare's deductive system. Chapters 3 and 4 will extend

the language to include constructs for parallel programming.

2.1. The Seauential Propramming Lancuage (SL).

The programming language SL contains five statements:

1. assignment -- x:sE where x is a variable and E is an expression
2. null -- ;
3. compound -- begin Sl;...;Sn end
4. alternation -- if B then S1 clse S2
S. iteration -- while B do Sl
where B is a Boolean expression and the Si are statements.

Note that there are no declaration statements; it is assumed that
all varisbles are globally defined. This simplifies the axioms and
the model of program exccution, but declarations could be included

without changing any of the results. Scs Lauer (La71]} and Cook [Co75])

for the treatment of variable declarations.



we also choose not to specify the syntax of expressions. Most
of the time we will use the standard Algzol syntax for integer and
logical expressions, but the techniques apply cqually well to other
data types and operations.

At times it will be usciul to speak of the relation between a

statement and the statements it contains.

2.1. Definition: Let S be an SL statement. The primary components

of S are

1) none if S 1is an assignment or null

2) S S,,...,S if S is begin Sl;...;Sn end

1’ n
3) Sl‘ S2 if S is if B then Sl else 52
4) s, if S isywhile B do S, .

The proper components of § are the primary components of § and their
proper components. The components of § are S itself and its

proper componcnts.

2.2. The Deductive Scmantics.

Hoare [Ho69) has developed axioms and inference rules for proving
the partial correctness of secquential programs. He uses the formula
{P}) S {Q) to represent the partial correctness of the program S with
respect to assertions P and Q . This means that if P is true of
the program variables before exccuting S , and if S terminates, Q
will be true of the program variables after execution of S |is

complete. P and Q must be formulas of the first-order predicate



{y>0)

power: begin :z:sl; temp:=y;
{temp>0 A z=xY " TEP)
loop: while temp>0 do

. (temp>0 A :'xy-(cmp}

mult: beein z:=x.z; temp:i=temp-i end
{temp>0 A zaxY"TC7P)

{temp>0 A zax¥ TP

A s(temp>0)}
end

(zax"}

Figure 2.2. An Informal Partial Correctness Proof.
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Given pre(S') and post{S') ror cach component S' of S , it is
possible to rccenstruct a proof of (P} S {Q; , if pre(S') and post(S')

satisfy certain requirements.

2.2. Definition: Let pre and post be functions which rmap cemponents

of S to assertions. Then pre and post are assertioa functions for
p

{P} s {Q} iff they obey the following restrictions for each component

S' of S :

1) P} pre(S) and pwt@)fq
2) if S' is x:=E, pre(S') } post(S")}
3) if S' is null, pre(S') f post(S')

4) if S' is berin S ;Sn end

1ieee
a) pre(S') P pre(Sl) and post(Sn) r post(S')

b) post(Si) f prc(Si’l) i=1,...,n-1

-

) if S' is if B3 then S, else S,
a) pre(S')A B } prc(Sl) and pre(S') A 18 f pre(Sz)
b) post(Sl) } post(S*') and post(Sz) f Eost(S')

6) if S' is wnile B do S,
a) pre(S') A B P prc(Sl)
b) post(s,) } pre(S')

c) pre(S') A 0B f post(S')

A proof of {P)} S {Q)} and a puir of assertion functions for {P)} S {Q}
arc very closely related. Given cither one, the other can be derived
as shown in the next two theorems. In general, we will first give

a partial correctness proof, then derive assertion functions froo it.
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power: bezin initl: z:=l; initl: tempisy;
loop: while temp>0 do
mult: begin upzi 2i=x=2;
downtemp: temp:stemp-l
end .

end

1. {y>0 A 1=1) z:=1 {y>0 A z=1} Al

2. {y>0} z:=1 {y>0 A z=1} 1, A0, using y>0 }- (y20 A 1=1)

3. {y>0 A ==1 A y=y)} tempi=y {y>0 A z=1 A temp=y} Al

4. {y>0 A z=1} temp:=y {temp>0 A zax? " TEMP) 3, AO

S. {teop-120 A xezex? " (FCRP)y ooy, {teap-1>0 A axy-(TemP-1)y

6. ltemp>0 A zxx”""¢™P A temp>0} z:ex.z {remp-120 A ax? " (FeRP-1)y g g

7. {temp-1>0 A zex?" (tERP-1)) tempiatenp-1 {temp>0 A zax’ T"P} Al

8. {temp>0 A 2axY"EETP temp>0)} mult: begin z:=x.z; temp:i=temp-1 end
{temp20 A 2ax)"TEMP) 6, 7, A3

9. {temp>0 A 2xY"""P} 1oop: while temp>0 do mult

(temp>0 A zex?""™ A a(recp>0)} 8, A5
16. {temp>0 A 2=x""T™} 1oop {zex") ‘ 9, AD
11. {y20} power (z=x7} 2, 4, 10, A3

Figure 2.1. A Formal Partial Correctness Proof.



Of course this is a very tedious proof of a simple result -- much ‘
like an algebraic proof that (a+b)(a+b) = az + 2ab b2 when every
use of the commutative and distributive laws is prcs;nted. Figure 2.2
contains a more informal version of the same proof -- assertions
enclosed in braces {} are interspersed with the program, while some of
the proof steps are combined or omitted. Most of our proofs will be
presented in this style. When proving programs correct in a practical
manner, we usc the formal methods only in the difficult parts arnd
use less formal techniques on the simple parts. The most diféicult
part of sequential programs is iterative loops, ard it is usually
worthwhile to carcfully apply inference rule A5 to each vhile statement.
On the other hand, assignment statements and begin ... ¢nd blocks
are relatively simple and can often be treated informally.

y-tempy

In Figure 2.2 the assertion P = {temp>0 A z=x appears'

just beforc statement mult. This corresponds to the fact that P wmust
hold whencver mult is ready to be exccuted in a computation which
starts with y > 0 . P can be called a pre-condition of mult, and

y-temp,

Q = {temp20 A z=x is a post-conditicn. A proof of {P} S (Q}

e

gives at least one pre- and post-condition for each component of S.
For cxample, line 8 in the proof of {y>0} power {zex”} gives the
pre- and post-conditions for ﬁult cited above. Lines 9 and 10 give
two post-conditions for loop, namely {temp20 A 2ax?TEERD ~(temp>0)}
and (z=x") .

At times it will be useful to single out a particular pre- (or

post-) condition of a statement S and call it pre(S) (or post(S)).



section uses an operational approach, in which the effect of a program
is described by giving an interpreter for the programming language.
This interpretive model is consistent with the deductive system. [t
will be used extensively in Chapter S when discussing mutual cxclusion
and blocking, which cannot be cxpressed directly in terms of partial
correctness.

The interpreter for an SL progranm consists of a sct of states
ard a state-to-state transition function. A program state has two
coaponents -- a control, which gives the next instruction to be
exccuted, and a variable state which gives the current value of cach

variadble.

2.5. Definition: A program state for a program S is an ordered

pair, s=(c,v) in which

1) the variable state v is a function from variable names of S
to valucs.

2) the control state ¢ is a tree in which every node is labelled
with a statement froa S in such a way thau irf Sl is a

cocporent of S, , and S1 and S, both appear in c , 5, is

a descendaat of S, . (Here cach node is considered a descen-

dant of itself.)

The variable state v 1is a function defined on all program
variables, although the value returncd for an uninitialized variable
is not specified. The notation Efs] will be used for the value of

expression E in state s=(c,v) . Thus, if v assigns 0 to x ,
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(x+i)[s]=1 . For an asscertion P we s2y P is true in -s 1iZf
P[s])=truc .
he control state for a scquential program is a degencrate tree

in which cach node has zero or one sons. The single leaf is the
next statement to be exccuted. In order to simplify notation we will
assign a unique label to each statement and use the statement and its
lzbel intcrchangeably. Figure 2.3 contains examples of states for
the program power of Figure 2.1. Note that the cefinition of control
state guarantces that no statement appears more than once in the tree.
For S 1is a component of itself, and if S appears at nodes m and
n, m must te a descendant of n and vice versa. So msn .

The execution of a statement can affect both components of
the program state. The control is rmodified by rcplacing a leaf by a

(possibly empty) tree.

2,6. Dcfinition: If t and t' are trees, and n a leaf in t ,

replace(t,n,t') is the trce obtained by replacing n by t' in t.

Examole: Tt = ' - ‘/”2\5\\
d b g f
c
replace(t,d,t') = a
AT
g £ ¢
replace(t,c,T) = a
d b

where T is the cmpty tree.



The assertion functions are uscful in proving the consistency of the
deductive systes and in discussing various properties of parallel
programs in Chapter 5. The Key point is that pre(S') must hold whenever
S' is ready to execute and post(S') must hold whencver S' s

finished.

2.3. Theorem: If pre and post are assertion functions for (P} S {(Q} ,
it is possible to prove {pre(S')} S' {post(S')} for each componcnt

S' of S.

Proof: By induction on the structure of S' . Two cases will be

given; the rest are similar.

Case 1: S' is x:=E
1. (post(S')g) st {post(s')} Al
2. {pre(s')) s* {post(s')} 1, A0, and requirement 2 for

pre and post

Case 2: S' is while B do S1
1. (pre(sl)) S1 (post(sl)) induction

2. {pre(s')as) s, {pra(s*)} 1, A0, requirements 6a, 6b
3. {pre(S')} S* {pre(S') A9B} 2, AS

-4, {pre(S')} s* {post(s*)) 3, A0, and requiremont 6¢
2.4. Theorem: I there is a proof of (P} S {Q} , there are assertion
functions pre and post for (P} S {(Q} .

Proof: Pre and post can be obtaincd from the proof; they will be

defined in such a way that {pro(S')} S' {post(S')} is a line in the
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proof, éor cach component S' of S . Since the proof may contain more
than one line which refers to S' , we must specify which line is chosen
to give pre(S') and post(S'). Ve eliminate all lines which do not
contribute to the proof of {P} S {Q} (for example, line 1 in the

proof of {x<y} z:=(x+y)/2 {x<zcy} below).

1. {(x+y)/2>0} 2:=(x+y)/2 {20} Al
2. {xs(x+y)/2sy)} 2:a(x+y)/2 {xgzgy) Al
3. {xgy)} z:=(xvy)/2 {x<z2<y} 2, A0

In this reduced proof there will be one line which refers to S' and
uses one of rules Al to AS. It is from this line that we choose
pre(S') and post(S'). Any other lines with the form {P'} S* {Q'}
must be derived from {pre(S')} S' {post(S')} by one or more
applications of AO. Thus, P! r pre(S') and post(S') } Q .

Now we must verify that pre and post satisfy Definition 2.2. Two
represcntative cases will be considered. If S' is x:=E ,
{pre(S')} x:=E (post(S')} is an application of Al. Thus, pre(S') =
post(S'); and 1 is satisfied. If S' |is gﬁilg B do S1 R
{pre(S')} S* {post(S')} is an application of AS. This ipplies that
post(S') = (pre(S') A 3B) , satisfying 6¢c, and that {pre(S*')AB} S1
{prc(S*)} has been proved. Since {pre(S')AB} 5, {pre(s')} isa
line in the proof, pre(S') A B f pre(Sl) and post(Sl) } pre(s') ,

satisfying Ga and €b.

2.3. The Interpretive Model.

In the last section, the semantics of the Algol fragment SL was

dcefined by axioms and inference rules at a very abstract level. This



[N]
s

c¢' = replace(c,S,T) if S is assignment or null (F is the cmpty tree)

= replace(c,s,lsl) if S 1is becin Sl;"';sn end
s,

lSn
- rcpl:cc(c,s,sl) if S is if B ther S, else s, .and  B[s]=true
- replacc(c,S,S:) if S is if B then S, elsc S2 and B{s]=false
= replace(c,S,Sl) if S isyhile B @o S and B(s])=truc
= replace(c,S,T) if S is while B do S1 and B[s])=falsc .

Examnle: See Figure 2.3.

—_—

we have not described the cffect of next if an arithactic or
Boolean expression can't be evaluated for some recason (for example,
it involves division by zero or an uninitialized variable). There
are two ways in which the interpreter could respond in such a
situation. ne is to stop execution; the other is to choosc some
arbitrary value for the expression, for example, 0 for numeric
expressions and true for Boolean expressions. In the interpreter we
o will Sollow the second alternative. For cxample, the effect of
execuzing the statement x:=4/0 is to assign 0 o x . The axioms
ard infererce rules can be made to reflect this choice by assigning
the same value as the interprezer to expressions which are normally
considered undefined. For the statement x:=4/0 , Al can be anplicd
t0 give a proof of {4/0=4/0} x:=4/0 {x=4/0} or ({truc) x:=4/0 {x=0} .

The deductive system used in the rule of consoquence (A0) must be



chosen in a way which is consistent with the assigament of values to
cxpressions like x/0 , but this should cause no problenms.

Note that {truc) x:=4/0 {x=0} 1is also consistent with an
implementation in which exccution steps on encountering the illegal
division, siace in that case the statement does not terminate, and
{P} S (Q)} 1is truc fcr any P and Q.

For scquential programs there is only one order in which statements
can be exccuted, but for parallcl programs this is no longer the
case. In order to provide a basis for the parallel interpreter, we
define a “computation”, which records the order of statement execution,

and then define some uscful properties of computations.

2.9, Definition: A comsutation a for program S beginring with

variable state Vo is a sequcnce of staterents S1 Sy enn Sn such

that if s, = (S,vo) the scauence of states s ® next (s, S.) is

-1"7i

- < .
If a = RS Sn isa

0
defined, i.¢., S is a leaf in s, .
1 i-1

computation, lect valuc(so,u) =5 - If P is an assertion we say P

—————

is truc after a iff P[value(so,a)]=truc .

Examnle: From Figurc 2.3, « = (power, initl, init2, loop, mult, upz,
downtemp, loop) is a computation for power beginning with state Vo *

4

Valuc(so,o) = s, , z[valuc(so,n)] = 2, and z=x’ is true after a .

g

2.10. Definition: Statement S is ready to execute after computaticn

a iff S is a lcaf in the control of valuc(so,u) .

Examnles: From Figure 2.3, initl is ready to exccute after a = (power)

and init2 is recady to execute after a = (power, initl).
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The variable state can be nodified by an assignment statement. The
new variable state will be the same as the old, except at the variable

which received a value.

2.7. Definivion: If v is a variable state function and E is an

expression, v<a|E> is a new variable state function defined by

x[v<a|E>] = x[v] if x £ a

= E(v] if x=a.

The effect of cach type of statement is defined by the state
ransition function "next". An assignment statement changes both the
control and the variable state; all others change only the control.
Note that if S is a compound statement (begin ... end, if or while),
next(s,S) describes the effect of starting S in state s rather .

than the effect of a complete exccution of S .
2.8. Definition: The state transition function

next: {program states} X {statements) ~ {program states} .
is given by

next((c,v),S) = (c¢',v") if S is a leaf in ¢ .

= undefined otherwise

where

v' = v<x|E> if S is x:«E

-V otherwise



Proof: The proof uses induction on the length of a . If a is

expty, 1) is satisfied because P is true for s, and P } pre(S) .

0
2) does not apply.

For a =a'T, pre(f) is true after o' by induction. Proving

=]

that 1) and 2) are satisfied for a' is a straightforward but tedious
application of the definition of assertion functions. The details

are given in Chapter 6.

2.16. Corollarv: If {P} S {Q)} can be proved, it is true for the

interpreter.

Procf: By Theorem 2.4, there are assertion functions pre and post for

{P} s {Q} . Now suppose & cxecutes S from state s, with
?[sol <« true. Then by the last theorem, post(S)[valuc(so,u)] = true ,
ard Q{value(so.o)] = true since post(S) } Q. So {P}s{qQ is

true for the interpreter.

This finishes our review of scquential programs. Im the next

chapter the axiozs and the model are cxtended to parallel programs.



CHAPTER 3

PARALLEL PROGRAMS

In this chapter we introduce narallel programs by extending the
lunguage of Chapter 2. Two new staterents will be added, cobezin -
cocnd to initiate perallel execution, and & synchronization statement
called await to coordinate processcs executing in parallel. The await
statement is very flexible -- in fact it is too general <o be
inplemenzed in an efficient way. It is incluced here because it can
be used to represent many standard synchronizing primitives, such as
events and secmaphores. Thus, the proof techniques for GPL czn be
applied to prograns which use thése synchronizers.

The language in this chepter is relatively priritive and provides
only limited facilities for structuring the interactiors of processes
using shared variables. We will sce that the axiors for the parallel
and synchronization statements arc casy to understand; they state
quite casily when we can knew that parallel processes don't "interfere"
with cach other. But proofs usine them will be difficult because of
the exponential rnumber of checks that may be necessary o satisfy
this noninterference criterion. In Chapter 4, we present another
language in which the use of shared variables is closely regulated;
this makes proofs of program corrcctness wmuch simpler. However, no
such language is yet in usc (sce¢ Erinch Hansen [Br74]) so the results
in this chapter are morc rcadily applicable to programs written in the

languages which are currently available.



2.11. Definition: If a is a computation for S and S' is a

conponent of S , a finishes S' iff

1) S$' is an assignment or null statement, and S' is the last
statement in a , or

2) S' is while B do S

1 S' is the last statement in a , and
8 is false after a , or
3) S*' is becin Sl;...;Sn end and a finishes Sn , or

$) §' is if 3 then S, else S, and o finishes S, or S,.
Examplc: From Figure 2.3f, a = (power, initl, init2, loop, body,

up:, downterp) finishes downtemp and body.

2.12. Definivion: a executes S iff a is a computation for S

which finishes S .

Exasnle: From Figure 2.3i, a = (power, initl, init2, loop, body,

upz, downtemp, loop) executes power.

Note that for a given initial state o there is at most one compu-
tation which executes S . This is not true for parallel programs.

If S contains an infinite loop, no computation exccutes S .

2.15. Definitien: exccute(s,S) = value(s,a) if S is ready to

execute in s and o is a computation which executes S from state
If S is not ready to execute in s , or no such a exists,

execute(s,S) is undefined.

This completes the description of the interpreter for scquential

prograas. In Chapter 3 it will be oxtended to includa parallel programs.

s



2.4. Corsistency ¢f the beluctive Svsten and the Intersreter.

Sections 2.2 and 2.3 specify the sem;ntics of the language SL in
two different ways. In this section, we state a theorem to the effect
that the two methods are comsistent. To keep the reader frono
getting bogged down in details, we only sketch the proof here, delaying
a complete presentation until Chapter 6. Hopefully, both methods
correspond well enough with the rcader's intuitive idea of program
cxecution that he is willing to believe they are not contradictory.

In order to show that the ceductive system and the interpretive
nodel are consistent, we must show that {P} S {Q} can only be proved

when it is true for the interpreter.

2.14. befinition: {P} S {Q} is true for the interpreter iff any

computation a which executes S from state s, with P(so] = true

0

has Q[valuc(so.u)] = true.

In order to show that a proof of {P} S {Q} implies that {P} S {Q)
is true in the model, we first derive a stronger result using assertion

functions.

2.15. Theorem: If pre and post are assertion functions for {P} S {Q} ,
S' is a component of S, and a is a computation for S from a

state s, with P[so] = true, then

1) if S' is ready to exccute after o , pre(S') is true after a ;

2) if a finishes S' , post(S') is truc afrer a .



P{seam): await sem>0 cthen sca:issem-1 ;

V(sem): await true Then sem:issemel

Lipton {Li73a) describes a nunber of generalizations of semaphores;
all can be irplemented using await statements.

In [Di6Sb], Dijkstra gives a slightly different definition of

the semaphore operations.

P'(sem): sem:=sem-1 ; if sem<0 then the process is suspended

on a qucue 2ssociated with sem.

V' (sex): sem:=sem+l ; if sem<C , awaken one of the processes on

the semaphore's queue.

A possible implementation of these operations uses a Boolean array

waiting, with one clcrment for each process. Initially waiting(i)=false

and waiting[i)=true - process i is on the queue.

P'(sec): await true then
becin sem:=sem-1 ;
if sem<0 then waiting(this process):=true

await -9waiting{this process] rthen;

V*(sez): await true then
begin scmi=scm+l ;

if sem<0 then



Legin cheose i such that waiting(i]=true;
waiting{i):=false;
cnd

cnd

The operations P and V arc an abstraction of P' and V'
There arc some cases in which the effccts of the two are not identical,
but for the preperties discussed in this thesis -- partial correctrness,
mutual exclusion, and dcadlock -- the differences are irrelevant. Sec
Lipren ([Li73a]), Chapter 3) for a comparison of the two kinds of
scmaphore opcrations.

In order to prove the correciness of a program which uses
scinaphores, the semaphore operations can be replaced by the corresponding
await statemernts. The result is an cquivalent GPL progranm, which can
be proved correct using the methods presented in this chapter. There
arc a number of other synchronization prizmitives which can te .
modelled using awvait, and the same technigue can be applied to
programs which contain such primitives. It is this flexibility which

promptcd the name "general parallel language'.

3.2. The Interpretive Model.

The model of scquential program cxccution defined in Sectien 2.3
will now be cxtended to include parallelism. Recall that the inter-
reter had two componcnts: a program state consisting ¢f a control
and a variable state, and a state trarsition functica "next". The

program state is dcfined exactly as before, although exccution of a



3.1. The General Parallel Languace (GPL).

The language of this chapter is the sequential language of

Chapter 2 plus two statements for parallel processing:
P P P P

parallel execution -- cobecin Sl//"'//sn coend

synchronization -- await B then S1

where Si is a statement and B a Boolcan expression. The first
statement initiates parallel exccution of S1 ces Sn . When all of the
Si have finished, the parallel statement terminates and execution can
procced to the next statement. There are no restrictions on the way

in which parallel execution is implemented; in particular nothing is
assumed about the relative speeds of different Si . The primary

coaponents of a cobegin ... coend statement are called parallel

processes.

3.1. Definition: Components T1 and T, of S are in different

processes iff S contains a statement cobegin SI//“'//Sn coend

with T1 and T2 components of different Si . Otherwise, T, and T,

1
are in the same process.

Note that according to this‘definition, the cobcgin statement itself
is in the same process as each of its components. A program can be
visualized as one large process which may contain a number of
diffcrent subprocesscs. Since parallel statements can be nested, any
process may contain subprocesses.

The second new statement, await B then § , is designed to

provide syachronization between parallel processes, and it can oaly



appear inside a colegin statenent. B is a 2oolean expression, and S
is a scquential statement which Jdocs not contain a cobegin or another
await. When a process aticmpts to exccute a synchronization statement,
it is dclayed until the condition B is true. Then the statement S

is cxccuted as an indivisible operation. [f two or more processcs

arc waiting for the same condition B , any one of them may be allowed
to procced when B becomes truc. In some applications it is necessary
to specify the order in which waiting nrocesses are scheduled, for
example on a first-come, first-served basis. For the problems discussed
in this thesis, however, any scheduling rule at all is acceptabdle.

The await statemeat can be uscd to turn any sequential stateaent
into an indivisible operation. This would be quite difficult to
implement, and it is not suggested that the await statement is a
desirable language feature. Instead it is presented because it can
be used to rcpresent a nuaber of standard synchronizing primitives,
such as Dijkstra's semaphore opcrations [DiéSa]. )

A scmaphore is an integer variable which can only be accessed

by two operations, P and V.

P(sem): if sem>0 , sem:=sem-1 ; otherwise the process is
suspended until sem>0 .
V(scm): scem:asem+l

The P and V operations are indivisible. They can be represented

by synchronization statcments as follows.
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it is not. The soluticn is to resirict programs so that the assumption
of indivisibility is « reasonable one. For example, if executing two
actions simultancously is the samc as excculing one ard :hen the other,
it is reasonablc to treat them as indivisible. This certainly is the
case if the actions do not have any variadles in common. If they do,

some carc is required.

3.5. Definition: The variable x is sharec in coherin S‘//"'//Sn
coend if it is referenced in two or more of the Si and changed
(i.e., appears on the left side of an assignment) in at least one

of them.

It is references to shared variables which cause problems when actions
arc treated as incivisible. But ror zctions which rake at most one
refercnce to a shared variaole the assumption of indivisidility is
reasonable. If two such actions are exccuted sirmultancously, ore
of them nust make the first access to the shared variadble. The effect
in parallcl will be the same 2s if this action was executed first
and followed by the other action.

In the interpreter, three kinds of actiors are assuzcd to be
indivisible:
1) an assignment statemcnt
2) evaluating the Boolean cxpression in an if or while
3) syrchronization statcement.
3 is no problem, since a synchronization statement is intended to be
indivisible in parallel execution. 1 and 2 are justified if each

assignment and each if or while coadition contains at most one reierence
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parallel program, unlike a sequential program, can lead to a control
tree with more than one leaf. The function '"next' must be extended
to handle parallel and synchronization statements. next(s,S) is

defined for all statements S which are ready to exccute in s .

3.2. Definition: A statement S is current in the program state

s=(c,v) iff S is a leaf in c .

3.3 Definition: S 1is ready to execute in state s=(c,v) iff S is

current in s , and if S is awzit B then S1 , B[s)=true.

Note that for sequential programs this reduces to the previous

definition of "ready to cxecute".
3.4. Definition: The state transition function

next: {program states} ) {statements} + (program states}
is given by

next((c,v),S) = undefined if S 1is rot rcady to execute in (c,v)

- exccute((c',v),sl) if S is await B then S, , where

1
c' = replace(c,s,sl) (see Definition 2.13)

(c*,v) if S is cobeein S,//...//S_coend, where
—_— "1 n
c¢' is the trec obtained by deleting S in ¢

and adding 51""'5 as sons of S's father, if

n
any, and otherwise as roots of uncoanccted trees.
= (¢',v') of Definition 2.8 if S {is assignment,

null, secquence, if, or while. .
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The definition next((c,v), await B then Sl) = exccute((c'.v).sl)

retflects the assumption that executing-an await statement is an
indivisible opcration.
Figure 3.1 contains examples of the application of next. Note
that in 3.1b the control statc is actually a forest rather thaan a tree.
In this model parallel exccution is simulated by nondeterainism.

Instcad of executing the processes in  cobeein Sl//"'//sn coend

—_—

simultancously, it perforws one action at a time, choosing nordeter-
ministically which process to work on next. This ceans that in the

program

newx: begin x:=0 ;
cobezin A: x:=x+1 // B: x:sx-1 coerd

—l

end .

either A or B 1is cxecuted first -- they cannot overlap., This use
of nondcterminism is standard in models of parallel exccution, but it
requires some justification. For example, the program above, executed
by the interpreter, must finish with x=0 . A true parallel imple-
mentation might finish with x=1 if the actions took place as

follows:

1. A evaluates x+l
2. B evaluates x-1
3. B stores -1 in x

4. A stores +1 in X :

The discrepancy arises from the fact that the assignment x:isxel is

treated as an indivisible operation by the interpreter, when in fact
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Axiecms and Inference Rules for GPL.
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docs not rudify any shared variahics. his mares the processcs com-
pietely independeat, but is 00 sircng a rezuirement. A nmore useful
restriction is that the assertions used in proving {Pi} S. (2.} are
invariant as statemcnts from other processes are cxecuted. For
cxample, the assertioa {xzy! in Si remains true throughout the
exccution of x:isx+l in Sj . ihe iavariance cf ana assertion P over

)
a statement S is cxpresscd by tnc formula.

{Papre(S)} S (P}, where pre(5) is a pre-condition of S .
This invariance relztion is the basis of the interfercnce-Irce criterion.

We will first define interfercnce-free in terms of assertion functions

and then relate it to program proofs.

3.11. Dbefinition: Suppose S° is a GPL program, and pre and post
arc functiors which map compencnts of S to assertions. They are

assertion functions for {F} S (Q) iff they cbey the following

"

restrictions for cach cemponent S' ol S .

1)-6) Same as Definition 2.2

7) if S* is await B then S

1
a) pre(S') A b } pre(Sl)
b) post(Sl) F post(s')
8) if S' is cobcrin Sl//"'//sn coerd
n
a) pre(s') } A pre(Si)
isl
n
b) A post(Si) k post(S')
i=1



to a shared variable. We will only discuss programs which satisfy
these requirements -- for such programs parallel and nondeterministic
execution give the same results.

Because of the rondeterminism in the interpreter, a parallel
progran can be executed in a number of different ways. A computation
gives one possible order in which statements can be executed. Computa-
tions and their properties are derined in much the same way as in

Chapter 2.

3.6. Definition: A corputation for program S beginning with

variable state Vo is a sequence of statements S1 .o Sn such that
e se c 3 . . .S

if so = (S,vo) R t?e sequence of states s; = next(sl_l, 1) .

is)} ... n is defined, i.e., Si is ready to execute aiter S1 tee Sn .

In this case \'alue(so,a)-sn , and an assertion P is true afrer o

iff P[value(so,a)]-true.

3.7. Definition: If e is a computation for S, and S' is a

conponent of S , a finishes S' iff

1) S' is an assign, null, or await statcment, and S' is the last
statezent of o« from the same process as S' , or

2) S* is while B do S1 ,and S' is the last statcment in a

fron the sane process as S' , and B[valuc(so,a)]-false , or
3) S' is berin Sl;...;sn end and a finishes Sn , or

4) S*' is if B then S

1 else S2 and a finishes S1 or S, , or

§) S' is cobegin 51//...//5n coend , and a finishes all the Si

l1<i<n.



3.5. befinition: a exccutes 5 iff a is a corputation for S

which finishecs S

At times it will be uscful to speak of a statement being "in

exccution' in a computation.

3.9. DBefinition: S is in exccution in a computation a iff a

component of S is current afier a . Thus, a statement is in

cxcecution from the time it is current until it has finished.

Finally, we rcview the definition of "true in the interpreter”,

which is the same for SL and GPL.

3.10. Definition: {P} S {Q)} 1is truc for the internreter iff any

computation a which exccutes S from state sy with P[sol-true

has Q[valuc(so,o)]=truc .

3.3. The Dcductive System.

Table 3.1 gives the axioms and inference rules for GPL prograas.
They assume that the program obeys the restrictions on shared variables
discussed in the last section. AO0-A5 are identical to the rules for
scquential programs. A6, the inference rule for synchronization
statements, is quite straightforward. But ruie A7 for parallel state- ~
ments requires some discussion. It basically states that the effect
of executing S1 cee Sn in parallel is the combined effcct of
executing each of the Si by itself, provided that the processes do
not interfere with each other. Of course the key to this statement

is a definition of "interfere". One possibility is to require that 51



§) ¢) pre and post are irterference-free for Sl""'sn i.e.,
if T is a cemponent of Si , and T' 1is an assignment
or await in Sj , (i#i) , and neither T nor T' isa

proper component of an await statement, then
{pre(T)Apre(T')} T' {pre(T)}
{post(T)Apre(T')} T* {post(T)}

can be proved.

The interierénce-frce test in 8c guarantees that the assertions on Si
Tesain truc as statements in Sj are cxecuted. t is only nccessary
to check for invariance over assignment and synchronization statements,
since all changes in data values take place in such statements. Proper
components of await statements are not included in the tests because
await statczents are indivisible operations, and the state of
variables at intermediate stages is not important.

The interfererce-free criterion for proofs, as required in A7,

is definad in terms of assertion functions.

3.12 Jinition: .

3.12. Definition: 'Thc formulas (Pl) S1 (Ql),...,(Pn) Sn (Qn) are
interference-free iff there are assertion functions prey and  post,
for (Pk) Sk (Qk) such that if T is a componeat of S; and T' is
an assignnent or await statement in Sj (i#j) and neither T nor T'

is a proper component of an await statement, then

(prei(T)Aprei(T')} T (proi(T))
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(posti(T)Aprcs(T')} T {posti(T))
tan ke proved.

Just as in Chapter 2, a pregram proo: and a pair of assertion

functions arc closely related.

3.13. Theorem: If pre and post are assertion functions for {P} S (Q} ,
it is possible to prove {prc¢(S')i S' {post(5')} for cach coaponent

S' of S.
Proof: Same as Theorcem 2.3.

3.14. Theorem: If there is a proof of {P} S {Q} , there are assertion

functions pre and post for {P} S {Q} .
Proot: Same as Theorem 2.4.

Exanples: Figurc 3.2 containrs a purtial correctacss proof for a very
simple program. The fact that {x=0Vx=2} S1 {x=1vx=3} and
{x=0Vx=1} S2 {x=2Vx=3} are interfercnce-free can be verified by four

tests.

1. {pre(S1)Apre(S2)} S2 (pre(S1)}
ice., {(x=0vx=2)A(x=0Vx=1)} S2 {x=GVx=2)} , which can be derived from
{x=0} x:ex+2 {x=2} using AG and AO. ‘
2. {post(S1)Aapre(52)} 2 {post(S1)}
3. {pre(S2)Apre(s1)} S1 {pre{S2)}

4. {post(S2)Apre(S1)} S1 {post(S2)}

‘Note that pre(S) F (pre(S1)Apre(S2)) ard (post(S1)Apost(S2)) F post(S) .
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{x=07

S: cobegin
[2.EA3 T ALY

{x=0 V x=2}
S): 3wait true then xX:=x+l
{x=1 V x=3}
i
{x=0 V x=1}
S2: await true then xi=x+2

{x22 V xa3}

Figure 3.2. A Partial Correctness Proof of a Parallcl Program.



As an exampie of a so

progran Findpos 1n Figure 3.3, It is essentiall

Wwhose correctrness was proved Ly itosen [Ro713].

integers, it fings the Iirst rositive componcat
one, using tso parallel processes 19 check

array clements. Figure 3.4 pives the a

realistic probles, cemsider the

<

the <ame 3s A progral
Given an array x of

x[i) , if there is

ssertions used in an axicmatic

proof. It is rnot hard to sce that they cornstitute a proof rroviced

the odd and cver subscripted

that the asscrtions for Oddscarch and Fvensecarch are i terference-£free.

To verify this we must show that for cach statement T in Evernscarch,

and cach assignment T' in 2dscarch

{prc(T)Apr:(T')) T {pre(T)?
(pos:(T)Apre(T')} T' {post(T)}

(The argument that Evenscarch does rot interfe

re with Oddsearch is

synmetric.) The only part of the assertions in Evensearch which could

be changed by an assigament in Oddscarch is

i min(oddtep, eventop)

which might be changed when oddyes sets oddtop:=j . So we must

check

(i min(oddtop,cventop) £ pre(oddyes)} oddrop:=j

(i :.min(oddtop,cvcntop)} .

, »MM
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Findpos: begin integer M, x[1:M]
initialize: i:s2; i:=1; eventop:=oddtop:i=Mel;

search: cobegin
cobeain

evensearch: while i<min(cddtop,eventop)
eventest: if x[i]>0
then evenyes: eventop:i=i

else evenno: irmie2

1/
oddscarch: while j<min(oddtop,cventop)
oddtest: if x[j]>0
then oddyes: oddtop:=j
clsc oddno:  jimje2
coend;

k:ezin(eventop,oddtop)

end

Figure 3.3. The Program Findpos.



Findpos: b

jnitisiize: i:=2; ji=l; cventopi=oddtopi=tiel;
{i=2 & j=1 % eventop=odlicp='ivly '
scurch: cobegin
{ES)
Evenscarch: while i<rin(cdétop,eventop) <o
{ES & i<eventop 2 i<tield

cventest: if x{i}>0

then [0S A i<l A x[i}20} cvenyes: eventop:si {ES}

clse (LS & i<cventop A x[i)<9; everno: i:i=ie2

{ES}
{ES A i>min(oddtop,cventop’}
1/
{0s}
Oddsearch: while j<min(oddtop,eventop) do
{0S & j<oddtop A j<li+l}
oddtest: if x[j]>0
then (GS A jeMe) A x[j]>0} oddyes: oddtop:=j
else {NS A j<oddtap A x[j]<0} oddno: ji=j+2
{0S}
{05 A j>min(oddtop,eventop)}

{0 A £S A izmin(oddtop,eventop) A j2min(oddtop,everntop)

li:-min(oddtop.cver.top)
{k<Nel A Yi(0<i<k = x[(i}<0) A (kSt = x[x]>0)}

end

where ES = {cventop<!l+l A ¥K((k even # Ockei) = x[k]<0) A i even

A (eventop<M = x[eventop]>0)}

0S = {oddtop<i+l A ¥k((k odd & O<kej) = x[k]<0) ~ § odd

A (oddtops< == x[odctop]>0)}

Figure 3.4. Partial Correctness Proof of Findpes.

{ES}

{os}
{0s}
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Since

pre(odéves) = {0S A j < oddtop A x[j] > 0}

*> {j < oddtop}

the test is satisfied.

3.4. Consisterncy of the Deductive Svsten and the Intemrerter.

In Section 2.4 we discussed consistency for the two definitions
y
of the semantics of SL. Here we derive similar rassults for GPL. Once

again a formal proof of the main theorem is delayed until Chapter 6.

3.15. Theoren: If pre and post are assertion functions for (P} S {Q) ,
S' is a component of S , and & is a computation for S from 55

with P(s_ ]=true , then

ol
1) if §' is current after a , pre(3') is truc after a ;

2) if o frinishes S' , post(S') is true after a .

Proor: By induction on the length of a . The details ave given in
Chapter 6. If a is empty, S 1is the orly leaf and pre(S) is true
after a since P,} pre(S) . For « = a'T, if S' is current after
a , it either became current when T was executed or was alrcady
current after o' . In the first case, pre(T) is true after a' by
the induction hypothesis, and starting T makes pre(S') true just as

in a sequential program. In the second case, T and S' arc statcements
froa different parallel processes. By induction, pre(S') is true

after a' , and pre(S') remains true as T is executed because of the

interfercnce-free property.
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35.16. (arollary: (Consistency for GPL) If S {0} can be proved

—

it is true for the interpreter.

Proof: Since (P! S {Q: can be sroved there are assertion functions
pre and post for {Py S {Q} (Thcorem 3.12). Now suspose 3 cxecutes
S from state 5 with P[so}=:'ue . Ther by the last theorem,

(

post(S)(valuc(so,u)}=truc , and Q[valuc(so,u)]-true since post(s)'} Q.

So {P; S {Q) is truc for the interpreter.

As a third cxample of a GPL preaf, we consider a standard prodlem
from the literature of parallel grogramming. A preducer process
generates a stream of values for & censumer process. Since the produce
tion and consumption of valucs proceeds at a variable but roughly
cqual pace, it is profitahlc to interpose a buffer between the two
processes, hut since storage is limited the tuffer can only contain N
values., Figure 3.5 shows onc soiution to this problem. lere the

variable "in'" counts tne number of vaiucs which have becn added to
tie butfer, and bufier(in mcd Y] 1s the next erpty buffer position

(if there is one). The variable "out' counts the numter cf values
which have been reroved, ard buffer[cut rod I} is the next full
rosition. There arc (in-out) valucs in the buffer. The aw2it stateaent
in the producer prevents a valuc from being added when there is no
available space, while the await in the consumer delays removal uatil
there is a value in the burifer to bte removed.

Figure 3.6 ccntains a program 21 which cosputes E[k]) =
£(g(A[k])) , Xk =1 ... M using this prcducer-consuner scheme.

Figure 3.7a-c gives asscertion functions for {M>0) fgl {B[k)=f(z(A(k])),
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£gl: begin
in:=out:=0; i:=j:al;

{I A i=in+l=1 A j=outrl=l}

codegin
{I A i=inel=1} producer (I}
//
{1 & j=outel=1} consumer (I A B(k]=f(g(A[Kk]))), 1<k<M)

coend
(B[k]=£(g(A[X])), 1<kev)

end

I = {(buffer{(k-1) mod N)=g(A{k]),out<k<in) A 0<in-out<N A

1isMel A 1<j<Mel)

Figure 3.7a. Proof of computefgl (main program).



producer: while i< ds
{1 A d=in-1 & 320

bheoin  xi=p(Afi));

——
(1 A d=inel A isy A x=g(alil)}
await in-out<N then;
{1 £ i=inel & i€t & x=g(A[i]) A in-out<N)
add: buficr(in rod N):=x;
{I A i=in+l & i<M & buffer[in mod N)=f(g(a{i))) A in-cut<N)
mariin: in:=ia~l;
{1 A i=in & i<}
iisiel;
{I A i=ine1}
end

I = {(buffer[(k-1) mod X]=g(A[x}), cut<k<in) A O0<in-outs<XN

A 1<isMel A 1<tel)

Figure 3.7b. Proof of computefgl (producer).
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begin comment buffer[0:N-1] is the shared buffer

in

= number of values added to buifer

out = pumber of values removed from buffer

in-out = number of elements in buffer;

in:=cut:=0;

cobegin

producer:

1

consuner:

await in-out<N then;
add: buffer(in mod N]:=next value;

markin: in:isinel;

await in-out>0 then;
remove: this value := buffer{out mod N};

markout: out:=out+l;

Figure 3.5. Producer and Consumer Sharing a Bounded Buffer.
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fpl: bepin  comment buffer[0:N-1] is the shared builer
in = number of clc:cnis added to buffer
out = number of clemeats removed from buffer
in-out = number of clements in buffer;
in:=out:=0;
i:2j:=l;

cobeain

producer: while i<M do
bein x:g(A(i]);
await in-out<N then;
add: huifer{in mod NJ:e=x;
markin: in:aine+l;
it=iel
end
i
consumer: while j<M do
begin await in-out>0 then;

remove: y:sbuffer[out mod N];

. markout: out:soutel;
B[j):=f(y);
jimj+l
end
end

Figure 3.6. Computation of E(k]=£f(g(A(k))), 1<k<M.
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{1 A IC A jsoutelsl}
consumer: while j<M do
{1 A IC A j=outel A j<M}
beein await in-out>0 then;
. {I A IC A je=out+l A j<M A in-out>0}
remove: y:=buffer{out mod N); 4
{1 A ICA jmoutel A jeM A y=g(A[j]) A in-our>0}
markout: out:=out+l;
{I A ICA jeout A j<M A y=g(A[i])}
B(j]):=f(y);
{1 A ICA j=our A j<M A B[j)=f(g(A(i]))}
Jimjel;
{1 A IC A j=outel A jeMel)
end
{I A IC A j=M+l)

{1 & BIK)=£(g(A[K])), 1<keM)

I ((b;.lffer[(k-l) mod N]=g(A[k]), out<k<in) A O<in-out<N

A 1<i<Mel A 1<j<Mel}

IC = {B[X]=f(g(A[X])), 1<k<j}

Figure 3.7c. Proof of computefgl (consumer).



1<k<M} . The reader can verify that the assertions satisfy Definivion
3.11. To satisfy the intcrfc;cncc-frcé criteria, assertions in the
consumer must be invariant over statcments in the p}oduccr and

vice versa. Consider the form of the assertions in the consumer. Each
consists of the invariant I plus some relations between variables

which arc not changed in the producer. In addition, two assertions
contain the clause (in-out > 0). The assignments in the producer leave
these three components unchanged: I is also an invariant in the
producer; the variables in the sccond component are not affected; and
the only assignment that changes (in-out) is markin: in:=inel which
leaves (in-out > 0) true. Similar reasoning shows that assertions

in the producer are invariant over statements in the consumer, so

the interference-free criterion is satisfied.

3.5. Auxiliary Variables.

In many cases the axioms and infercnce rules A0-A7 are not
strong enough to.provc a partial correctness formula which is true.
Figure 3.8 is an example of a program where the deductive system fails.
The formula {x=0} addl {x=2} is true, but it can't be proved using
A0-A7. To sce this, consider post(adda). If the prozram starts with
x30 , it can finish adda with x=1 or x=2 , depending on whether
or not addb has been exccuted. So the strongest possible asscrtion
for post(acdda) is {x=1 V x=2} . The same is true for post(addd).
Since (post(adda) A post(addb)) F post(addl) , the sirongest possible
assertion for post(addl) is (x=1 V x=2) , in spite of the fact that

afvor oxeccuting addl, x must have the value 2.
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{x=0)
add2: becin
{x=0}
y:=0; 2:=0;
{x=y=z=0}
coberin
{x=z A y=0}
await true then begin x:=x+1; y:=l end

{x=2+1 A y=l}

l
{xsy A z=0}
await true then begin x:imx+l; 2:i=1 end
{x=y+l A z«1}

{(x=2+1 A y=1) A (x=y+l A 2=1)}
end

{x=2}

Figure 3.9. The Program add2.
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1. Deleting x:=FE , where x & AV

2. ieplacing awgit trie then x:=E by x:af , provided x:sE rakes
at most onc reference to a srarcd variable. (In this case, X
docs rot have to be an clement of AV.)

5. Replacing begin S end by S .

We will write S=rcducc(5',50) , where S0 is the statcment eliminated

in going from S' o S, i.e., in 1) S is the assigrzent, in 2)

0

the await statement, and in 3) the berin - end.

In our cxample, addl can be obtaired from add2 by repcated
applications of the operations above. Yote that in order to reduce
await true then besin x:i=x-l; y:=1 end to awzit true then x:=xvl
we must first delcte y:=1 (opecration 1), then the becin - cnd brackets
(operation 3). The synchronization statcament camnot be renoved
because x:=x+l contains two references to x . It s safe to rcmove
a synchronization statement when rule 2 applies, because then the
assignment statement can be treated as indivisible anyway.

low we give the inference rule whickh 2llews us to coaclude

(x=0)} addl {x=2)} from a proof of {x=0} add2 {x=2} .

A8 Auxiliarv Variables.

If AV is an auxiliary variable set for S' , S a reduction of S'
with respect to AV, and P and Q asscrtions which do rot contair
free any variables from AV, then

{F} S' {0}
Py s (@
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{x=0}

addl: cobecin

{x=0 V x=1}
adda: await true then Xisxel
{x=1 V x=2}
/"
{x=0 V x=1}

addd: await true then X:iaxel

ix=1l V x=2}

cocnd

{x=1 V x=2}

Figure 3.8. The Program addl.,
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Now consider Figure 3.9, an cxpanded version of addl. The reader
can verify that the assertions in Figure 3.9 are interference-free
and yicld a proof of {x=0} add2 (x=2} . The proof deperds on the
variables y and : . Since adi2 has the same effect on x as addl,
we would like to be able to conclude from this that {x=0} addl {x=2} .
In order to do this we will define the concept of auxiliary variables
and then give a new inference rule to allew their use.

The program add2 has essentially the same behavior as addl,
in spite of the fact that it coatains statements anc variables w#ich
do not appear in addl. This is because the additicnal variables,
snd the statements using them, do not affect the flow of contrel or
the values assigned to x . Variables which are used ia this way

in a program will be called auxiliary variables. The necd for

auxiliary variables in proofs of parallel programs has also been

recognized by Brinch Hansen [Br73) and Lauer [La73].

3.17. Definition: Let AV be a set of variables which appear in S

only in assignment statements
x:=E where x € AV , and any variables may be used in E .

Then AV is an auxiliary varizble set for S .

3.18. Dcfinition: Let AV be an auxiliary variable set for S . S {is
a reduction of S' with respect to AV iff S can be obtained froa S!

by onc of the following operations.



£g2: begin comment buffer(0:N-1j is the shared buffer

—

full = number of full places in buffer (scmaphore)
. enpty = number of empty places in buffer (semaphore);
full:=0; empty:=N; i:sj:=l;
cobegin
producer: while i<M do
begin x:=g(A(i]);

P(cmp:y);
buffer(i mod N):s=x;
V(full);

iiwiel;

/7
consumer: while j<M do
begin P(full);
y:=buffer(j mod NJ);
V(enmpty);
B[j]:=£(y);
Ji=jel;
end
coend

end

Figure 3.10. A Second Version of the Producer-Consumer Program.
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fg2': hepin conment Pempty, Vempiy, Pfull, Vfull are auxiliary variables
full:=0; empty:=N; i:=j:=1;
Pfull:=Vfull:=Pempiy:=Vcmpty:=0;
cobepin
producer: while i<M do
. begin x:=g(A[i]);
await cmpty>0 then
berin empty:scmpty-1; Pempty:=Pemptyl end
buffer(i mod N]:sx;
await true then

berin full:=fullel; Vfull:sViullel end

i:=i+];
end
/
consumer: while j<M do
begin await full>0 then
begin full:sfull-l; Pfull:e=Pfullel erd
y:=buffcr[j4mod N};
await truc then
beain cmpty:=empty«l; Venpty:sVemptyel exd
3(51:=£(y);
jimjel;
erd
coend

end

Figure 3.11. Program £32': A Translation of £g2 into GPL.



In order to establish that this inference rule is consistent with the
interpreter, we must show that if {P} S' {Q} is true for the
interpreter, {P} S {Q} is too. To do this we will show that there

is 2 relationship between the computations of S and S'

3.19. Lezma: Suppose S=reduce(S',So) is a reduction of §' with
respect to AV, and a is a computation for S . Then 3a' , a compu-

tation for S' , such that

1) x[value(so,n')] = x[value(so,c)] for x £ AV
2) if rcducc(T.So) is current after a, T is current after a' ,

where T is any component of S°

Proof: Let a' be like a except that So is cxecuted in a' as
soon as it is ready to be exccuted. The only difference between a
ard a' is that &' may contain occurrcnces of S0 . So may change
the value of a variable in AV, but it has no effect on other values.
The variables in AV do not affect ;he flow of control, since they do
not appear in the conditions of if, while or await statements. Thus,

the flow of control is the same in S and S' , and a' is a

computation for S' for which 1) and 2) above are true.

3.20 Theorem: If (P} S' {Q} is true for the interpreter and the

requirezcents of A8 are satisfied, {P} S {Q} is true for the interpreter.

Proof: Let a be a computation for S with P[s_ ]=true . Let a' be

o
the coaputation for S' from Lemma 3.19. Since {P} S' {Q} is true
in the rodel, Q[value(so,n')]-truo. Then Q[value(so,a)]-truc , since

Q has no variables from AV. Thus, (P} S {Q)} is true in the model.



Auxiliary variables can be a very sowerful aid in program preofs.
Starting with a program such as addl, new variables and statenents
can be added to yield a proyram like add2 for which a proof is possible.
Ther A8 car be applied repeatedly to give a proof for the original
program. If the new statements obey the following restrictions, it

will always be possible to remove them again using A8.

1. assignments must be to the now variables.

2. synchronization statements must contain at most one statement
(and that rust be an assign:ment) froam the original prograr.

3. begpin - end may be used frecly as long as the result is syntacti-
cally correcct.

4. no other kind of statement is added.

As another exampic of the usc of auxiliary variables, consider a
sccond version of the producer and consumer program of Figure 3.6.
The program fy2 in Figure 3.10 uses semaphores "full' and “ecmpty"
to synchronize access to the buffer. Figure 3.11 shows the translation
of the semaphore operations into GPL (as defined in Section 3.1), and
includes auxiliary variables Pempty, Vempty, Pfull, Viull. Figure
3.12a and 3.12b gives assertion functions for {M>0} £32' {8[k]=
f(g(A[k]))),1<k<M} (the producer is omitted, but it is similar to tﬂe
consumcr). The rcader can verify that these assertions satisfy
Definition 3.11; the proof is cssentially the same as for the earlier
version of the producer and consumer. Using A8, the auxiliary
variables can be removed to yield a proof of {M»0} fg2 {B[k}=f(z(A[K])),

1<k<M} . tHabermann [Ha72) presents this solution to the producer-
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consumer problem and provides an informal proof of its corrcctaess.
For the proof he uses special functions which count the numher of P
and \ operations on each semaphore; these play the same role as our

auxiliary variables.

3.6. 'utual [xclusion.

It is often necessary to ensurc that certain critical sect}ons
in separate processes cannot be executed at the same time. Most often
this is because the critical sections manipulate shared variables,
and it is e;sential to prevent them from interfering with cach other.
Ore of the standard ways of ensuring mutual exclusion is the use of
a semaphore mutex, whose initial value is 1. Fach process exccutes
P(mutex) on entering its critical scction and 'V(mutex) on leaving.
Our techniques can be used to show that this disciplinc does indeced
ensure mutual exclusion as long as there are no other operations on
the semaphore mutex.

Figure 3.13 shows a group of cyclic processes containing
critical sections. The statements in the critical and noncritical
sections are not specified, but they do not operatc on mutex. In
Section 3.1 we suggested a representation of the P and V op;rations

as

- P(sem) = await sem>0 then semi=sem-1

V(sem) = await true then sem:ssemel

Thus, the code for implementing mutual exclusion in GPL is



beain
mutex:sl;
cobepin S1 //

64

// Si: while true do

begin noncritical part;

end

// Sn
coend

end

P(rmutex);
critical section i;
V(mutex) ;

noncritical part;

mutex is not changed in the critical and noncritical sections

Figure 3.13.

Critical Sections with Mutual Exclusion.
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full:=0; empty:aN; i:sj:=];
Pfull:=Vfull:ePempty:=Venpty:=0;
{ra VfullsPempty A i=Vfullels] A VemptysPfull A j=Vemptyelsl)

cobegin

{I A VfullsPempty A isVfullelal)
procucer
{1}

1/
{I A Vempty=Pfull A j=Vemptyelsl}
consuner

{1 A B(K])=f(g(A[X]))), 1<k<M)

coxnd
end

(B[K)=£(g(A[K])), 1<kem)

I =« {(buffer(k mod N]=g(A[X]), Vempty<k<Viull) A fullaVfull-Pfull

A emprysNeVempty-Pempty A 1<i<Mel A 1<5<Mel)

Figure 3.12a. Proof of fg2' (main program).



{1 A IC A Vempty=Pfull A jsVemptyel=l}
consurer: while j=<M do
{I A IC A j<M A Vempty=Pfull A j=Venptyel}
hegin await full>0 then
bepin full:iefull-1; Pfull:sPfullel end;
{1 A IC A j< A Vempty=Pfull-1 A j=Vemptyel A Vfull-Vempry>0}
y:=burfer[j mod NJ];
{I A IC A j<M A VempuyaPfull-1 A j=Vempty+l A y=g(A[i])}
await true thea
beain empty:=cnpty+l; Vempty:=Vempty+l end;
{I A IC A j<M A Vempry=Pfull A jaVempty A y=g(A[j])}
B(j):=£(y);
{X A IC A j<¥ A Venpry=Pfull A j=Vempty A B[j)=£(g(A[j])))
Ji=jel; | .
{I A IC A jeMel A Vempty=Pfull A j=Venmpty+l}
end

{1 A IC A j=ded) = {B[k])=f(g(A[k))), l<k<)

I = {(buffer(k mod N}=g(A[k]), Vempty<k<V£Eull) A full=Vfull-Pfull

A enmpty=N+Verpty-Pempty A 1<i<iMel A l<j<Mel}

IC = (B[K)=£(g(A[X])), 1<k<j)

Figure 3.12b. Proof of fg2' (consuzer).
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Since {inCS[k)=1AI} is true throughout the critical scction in
process k , (inCS[i}=l A inCS(j}=1 A 1) is true after o . But
(inCS[i]=1 A inCS(j])=1 A I)= mutex<0 A mutex>0® false. So no such
a exists.

Proofs of mutual exclusion will be discussed more cxtensively in
Chapter S. For now we close by giving an example of the use of mutual
exclusion in a proof of partial correctness. Figure 3.15 is a
rewriting of the program addl of Figure 3.8. llere, instead of
representing x:=x+l as an indivisible stateneni. it is written as
a:sx ; x:=a~l , where a is a local variable. Scmaphores are used
to guarantee mutual exclusion for the critical sections which operate
on x . Figure 3.16 is an extension of this program, using auxiliary
variables. The proof of the interfcrcnce-free.p;opcrt} for the two
' parallel statements makes use of mutual exclusion. For example, to show
that pre(addl) = {x=a=z A y=0 A inCS[1]=1 A I} is invariant over

add2 we must prove
{pre(addl) A pre(add2)} add2 {pre(addl)} .
But pre(addl) A pre(add2) ~~false , so this is the same as proving
{false} add2 (pre(addl})} .

Now {false} S (false} can be proved for any statement S , as can be ’
shown by induction on the structure of S . Since false t P for
any assertion P , {false} S {P} can also be proved. So in particular

we can prove ({falsc} add2 {pre(addl)} . Ia general, an assertion ?
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add3: begin
mutex:sl;
S1: begin P(mutex);
ai=x;
X:=avl;

V(mutex);

//

S2: begin P(mutex);
b:isx;
x:sbel;
V(mutex);

end

coend

Figure 3.15. The Program add3.



65

await mutex>0 then mutex:=mutex-1 ;
critical section i ;

await true then mnutex:rmutexel

In order to prove that this accomplishes mutual cxclusion we will use
an array of auxiliary variables inCS{l:n] . Initially, inCS[i)=0,
1¢i<n , and it will be manipulated on entering and leaving critical

sections.

await mutex>0 then begin mutex:i=mutex-1 ;
inCS[i):=1
end
critical section 1 ;
await true then begin nutex:=mutex+l ;
inCS(i):=0

end

Figure 3.14 shows the program of Figure 3.13 with the auxiliary
variables. The assertion that inCS[i]=0 on reaching the critical
section code and 1 throughout the critical section is justified
because there are no other operations on inCS(i] . Similarly the
assertion that I holds at all times assumes that there are no other
operations on mutex. The interference-free requirement for assertions
in process i 1is easily verified, because cach assertion is a statement
about inCS{i) , which is not changed in Ss if i 4 j , and I, which
is invariant over the statements in process j .

Now suppose that there is some computation a in which Si and

Sj . 1 #j , are executing their critical sections at the same time.
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{truc}
begin mutex:=l; inCS:=0;
{1 A inCS{i)=0, i=l,...,n}

cohegin Sl //.../] Sa cocnd

(false)
end
{false)
{I A inCS[i)=0}
Si: while true do
begin (I A inCS(i]=0}
noncritical scction;
{I A inCS[i]=0)
await mutex>0 then begin mutex:=putex-1; inCS[i]:=1 end;
(I A inCS[i]=1)}
critical section i;
{1 A inCS(i)=1}
await truc them begin mutex:=cutexel; inCS[i]:=0 end;
{I A inCS(i}=0}
noncritical section;
{I A inCS[i])=0}
end
{false}
n
I = {mutex=(1 - kzl inCS[k)) A mutex20 A Vj(inCS[j]=0 or 1)}

mutex and inCS are not changed in the critical and noncritical sections

Figure 3.14. Mutual Exclusion Program with Auxiliary Variables.
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CHAPTER 4

THE RESTRICTED PARALLEL LANGUAGE (RPL)

The programning language presented in this chapter is essentially
a restricted version of the general parallel language of Chaprer 3.
The powerful await statement is rcplaced by another, more limited,
synchronizing statement called withwhen. The use of shared variables
is governed by strict syntactic requirements which guarantee that
only one process at a time has access to a given variable. Sirce much
of the complexity of parallel program behavior is due to interference
between processes accessing a common variable, the result of these
restrictions is that RPL programs are more intellectually manageable
than prograas written in GPL. They are also m;ch casier to prove
correct. The proof of a program in GPL requires that parallel processes
satisfy the interferencc-free property; verifving this is in general
2n cxponential problem. The corresponding property for RPL programs,
called "Einmischungsirei"”, can be verified in linear time. This
saving is accomplished by restricting both the syntax of the language
and the assertions in the proof. It is similar to the simplification
of proofs when the undisciplined use of go to statements is eliminated.

RPL is based on a parallel language defined by lloare [Ho72) and
is_similar to one proposed by Brinch Hansen [Br72a). Hoare gave a
set of axioms and inference rules for his language, however they were
not strong enough to provide proofs in a number of cases. Tho proof

rules AO-A7 in Table 4.1 are derived from Hoare's, but are stronger.
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Together with A8, they form a "complcte; deductive system for the partial
corrcctness of parallel programs in RPL, as will be shown in
Chapter 6.

Scction 4.1 defines the syntax of RPL, and 4.2 and 4.3 give its
semantics in terms of an interpretive rmodel and axioms. Scction 4.4
shows that the interpreter and the axioms are consistent. Much of

this work makes use of results derived in Chapter 3.

4.1. The Languanc.

RPL is defined by adding two statements to the scquential language

of Chapter 2. Parallel cxecution is initiated by the statement

resource rl(variablc list),...,rm(variable list):

—

cobepin SI//"'//Sn cocend

Here the resources Ty «.. T, Aare groups of shared variables, and the
Si arc statements to be exccuted in parallel. Again, no assumption
is made about the way parallelism is implemented, or about the relative
spceds of the 5i . It is legitimate to nest one parallel statemeat

inside another. The only restriction is that the resources in the

two statcments be distinct.

4.1. Dcfinition: Components T, and T, of S are in differert

processcs of S iff S contains a statement

resource T),e..,T ! cobeqin SI//...//Sn coend



{x=0)
addd4: begin y:=2:=0; mutex:=l; inCS(1]):=inCS[2]):=0;
{x=y=2=0 A inCS[1)=inCS([2])=0 A I}
cobegin S1 // S2 coend
{x=2}
end

{x=2}

S1: (x=z A y=0 A inCS[1)=0 A I}

begin {x=2 A y=0 A inCS[1j=0 A I}
await mutex>0 then begin mutex:smutex-1; inCS{1]:=1 end
{x=z A y=0 A inCS[1]=1 A I}
aie=x;
{x=a=z A y=0 A inCS(1]=1 A I}
addl: ximael;
{x=2+1l A y=0 A inCS[I]-} A 1)
y:i=l;
{x=z+1 A y=1 A inCS{1]}=1 A I} .
await true then begin mutex:=mutex+l; inCS[1]=0 end
{x=z+1 A y=1 A inCS[1]=0 A I}

end

{x=2+1 A y=1 A inCS[1]=0 A I}
S2 is symetric: (x=y Az=0AinCS[2)=0A I} S2 {x=y+l Az=1A inCS[2]=0A I}

-

I~ {zutex=(1 - { inCS[k]) A mutex20 A inCS(k])=0 or 1}

Figure 3.16. The Program add4.
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in a critical section is invariant over assigrments in other critical
scctions because the invariance test reduces to {false} S {P} .

Program add4 has auxiliary variables y and inCS . The
statements which manipulate these variables can be removed using A8,
giving a proof of {x=0} add3 {x=2} .

We have only sketched the procf for program add4; a complete
presentation would require verifying that every assignment and aw=ait
in S1 preserved every assertion in S2, and vice versa. Evea for such
a small program this would be a large task, and it is a task which
grows cxponentially in the size of the program. Thus, proofs for GPL
programs quickly become unmanageable. In the next chapter we will
introduce a parallel programaing language in which mutual exclusion is
provided syntactically. This rcmoves much of the complexity in the
interactions between processes and greatly simplifies the process of

proving that a program is correct.



4.3. Definition: A parallel statement in RPL must obey thc following

restrictions:

1) Var(s) = R(SHU V,(5) U...U v (5) ;

2) No variable belongs to more than one resource;

3) if x ¢ R(S) , x appears in Sk only in a withwhen statement
for the resource containing x .

4) If x appears in Sk , X is either a local variable for Sk

or a resource variable.

These requirerents can easily be checked at compile time. Their
purpose is to guarantee that two processes cannot interfere with each
other by simultaneously operating on any variable. Rule 1 rcquires
that every variable is a resource variable or is local to some process
S.'2 , or both. If it is a resource variahle, it belongs to exactly
one resource r (rule 2), and is accessible only in a withwhen state-
ment for r (rule 3), which prevents two processes from using it
sizultancously. If it is a local variable for Sk it is not changed
in any Si if 1 ¥ k , so the reference in Sk is unambiguous. If a
variable is local to more than one process, it is not changed by any
of them, so there is no conflict even if two processes access it
simultancously.

In GPL it was necessary to limit the form of statcments which
referred to shared variables. For example, x:=x+l was not a legitimate
statement if x appeared in more than one process. These restric-
tions were required to ensurc that the interpreter accurately modelled

parallel exccution. In RPL these problems do not arise, since
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refercnces to shared variables are allowed only in critical sections,
and only one process at a time car execute a critical section for a
given resource. Statements like x:=x+l are acceptable, even if x

is a shared variable.

Example 1: Add5 (Figure 4.1) is another version of the prograw of
Figurc 3.8. Mere withwhen statements are used to control access to

the shared variable x .

Example 2: Producer and Consumer sharing a bounded buffer.

Figure 4.2 shows a third solution (due to Hoare [tio72)) for the
producer and consumcr nroblem introduced in Chapter 3. Note the
similarity to the solution in Figure 3.5. The critical scction in the
producer can only be started vhen there is free space in the buifer
(count<N), and the critical section in the consumer can only be

started when the huffer is not empty (count>0).

4.2. The Interpretive Model. .

The interpreter for RPL programs is very much like the one defined
in Chapter 3 for GPL programs. The program state rerains the sare,
and the state transition functicn "next" is cxtended to cover withwhen
statements. This requires a definition of the states in which a withwhen

statcment is recady to be exccuted.

4.4. Definition: A statement S is curreat in the p}ogram state

su(c,v) {ff S 4is a lecaf in ¢ .
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with Tl and T, components of different S.1 . Otherwise, T, and T,

1

are in the same nrocess.

The sccond new statement provides for synchronization and protec-

tion of shared variables.
with r when B do S

has the following interpretation: r is a resource, B is a Boolean
expression, and S 1is a statement which uses the variables of ; .

S 1is called the critical section of the withwhen statement. Execution
of a critical section can only begin when 5 is true, and while it

is being exccuted ro other process can cxeccute a critical section for .
the same resource. If several processes are competing for a resource

r , we rake no assumptions about the order in which they reccive it.
The statement with r when true do S can be abbreviated as with r
do S.

It is possible to implement the statement with r when B do S

using the GPL await statement. One method is

begin await B A -busyr then busyr:=true ;
S;
await true thea busyr:=false

end

where busyr is a new variable which is initialized with the value

false. For a discussion of the implementation of withwhen using
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standard synchronizing operations see oare [lio?2) and Sintzoff and
van Lamsweerde [Si73).

Withwhen statements can orly be used inside coheein statercnts,
and vithwhen statcments for the same resource carnet be nested.

In order to guarantce that operations on shared variables are
‘well-defired, the syntax of the language restricts the way variadles

are uscd in parallel processecs.
4.2. Definition: Let S be the parallel statement

resource rl,...,rm: coheein Sl//...//Sn coend

Then Var(S) = the sct of variables used in S

R(S) = {x: x ¢ LY V x 1is in a resource r declared in a
parallel statement containing S , with S not a
component of a critical scction for r}

R(S) is called the resource variables of S .
Vk(S) = {x: x € Var(S) and no statement of Sj , J Ak assigns

a value to X}

Vk(S) is called the local variables of Sk .
Note that the resource variables of S are those variables which rust
be protected by critical sections when they are used inside S . In

addition to the variables from r r , they include variadbles

1 T
from resources declared in parallel statements which contain S . The
syntactic restrictions on variables are expressed in terms of these

classes.
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4.5. Definition: A resource T is busy in program statec s iff a
proper componeat of a withwhen statement which uses r is current in

s (i.e., iff a critical section for r is in exccution in s).

4.6. Dcfinition: A statement S is rcadv to execute in the program

state s iff

1) S is current in s , and
2) if S is with r when B do S1 , B[s)=true and r is not
busy in s .

4.7. Definition: The state transition function next: {program statcs}

X {staterents} + {program states} is given by

next((¢,v),S) = undcfined if S 1is not ready to execute
in (c,v)
= (¢',v) where c¢' = replacc(c,s,sl) N
if Seuwith r when B do S,
= (¢',v') of Definition 3.4 otherwise.

Note that with r when B do S is not ready to execute if a critical
section for r is already in execution, so only one process at a timeo

can execute a critical section for r .

The concepts of a computation, and of finishing or executing a

statement, are dafined in much the same way as in Chapter 3.

4.8. Definition: A computation o for program S beginning with

variable state Vo is a sequence of statements Sl ces Sn such that
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i * nee of <
if S F (S,vo) » the scquence of states s, = nc;t(si-l..i) , i=1 ...

is defined, i.c., S. is rcady to cxecute afver S1 oo S . In

i i-1

this case vnluc(so,a)ss“ .
—_— n

4.9. befinition: If a is a computation for S , and S' is a

component of S , o finishes S' iff
S' is assign, null, while, besin ... end, if or coberin
... cocnd -- same as Definition 3.7,

§* is with r vhen B do 'S1 and o finishes S1 .

4.10. Definition: {P} S {Q} is true in the internrctive model iff
any computation a which cxecutes S froa an initial state s, in

which P is true has Q[value(so,n)]-true.

In Chapters 5 and 6 we will nced to kncw some properties of
computations and resources. The following lemma is the basis for
this work. It states that if a resource r 1is busy for a computation
a , it must be busy because some process has ‘started a withwhen state-

ment S, for r and has not vet finisheé it., From the time that §

1

was started in o , no other process can have access to T .

1

4.11. Lemma: 1 is busy for a iff a can be written

a =y S1 A, eee Sk ap where

1) S is with r when B do S' , and S' is in exccution for a ;

2) Sl,....S are from the same process;

K
3) none of the statements in LITERRTL arc from the samc process

as S1 ;
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adds: resource rx(x): cobegin

adda: with rx do x:=x+l;

//
addb: with rx do x:mxel;
coend

Figure 4.1. Program adds.
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begin
comment inpointer = position of next empty space in buffer
outpointer = position of next full space in buffer
count = number of elenents in buifer;
count:=inpointer:=outpointer:=0;
parallel: resource Bufman(inpointer.outpoin:er,count,buffer[O:N-l]):
ccbegin
procucer: . . .
add: with Bufman when count<N do
begin inpointer:=(inpointer+l) mod \;
buffer[inpointer]:=snext value;
count:iacountel

//
consumer: . . .
remove: with Bufian when count>0 do
begin outpointer:=(outpointer+l) mod N;
this value:=buffer(outpointer);
count:=count-1
end
coend

end

Figurc 4.2. Producer and Consumer Using a Bounded Buffer.



{P'} S* {Q'} of the proof of {Pi) 8 (Oi) be only those variables
Which process Si has a right to access at S' . 7These are, roughly,
the local variables of Si » plus the variables for resource r if

S is a component of a critical section for r . For a precise

definition of Einmischungsfrei, we need the concept of the proof-

variables of a statement or resource.

4.12. Defirition: Let S' be a statement and r a resource in
program S , with r declared in the parallel statement T , and let

T* Dbe the statement which immediately contains S' . Then

Proof-var(r) = {x: x is not assigned a value in T except in a
critical section for 1)

Proof-var(S') = variables of S , if S'=§S

Vk(T‘) N Proof-var (T*) is S' is the k™M process

in parallel statement T'

Proof-var(T') U Proof-var(r), if T' is with r when

B do s'
= Proof-var(T') otherwise.

Note that Proof-var(r) includes all the variables which belong to
resource r , and may also contain other variables. The variables in
Proof-var(S') are either local to the prdéess containing S' or
belong to Proof-var(r) , where S' is a componcnt of a critical

scction for r . .
4.13. Decfinition: Suppose S is the parallel statement

H eed//S C
resource rl""‘?m cobecin Sl// // n coend

———
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Then (P} S {Q} 1is Einmischunasfrei iff it has a proof in which

1) all frce variables in l(rj) arc elcments of Proof-var(rj) .
1<j<n

2) if S' s a component of S, and {P'} S' (Q')} is a linme in
the proof, then all freec variables in P' and Q' are in

Proof-var(s').

The variables in Proof-var(S') are exactly those which caanot
be changed by another process when pre(S') and post(S') are

expected to hold, i.e., when S' is ready to execute or has finishec

4.14. Lenma: Let S and T be statements in different processes
of a program S' , and a be a computation for §' . Suppose S s
current after o , or a finishes S . Then, if .T is ready to

execute after a , T docs not change a variable in Proof-var(S) .

Proof: Since S and T are in diffcrent processes of §' , :hcré
is a statement T'sresource LEUEERYS S cohcein Tl//"'//Tn coend
with S a conmponent of Ti and T a component of Tj , L A5 .
Suppose T changes variable x . Then «x 4 Vi(T‘) , s0 if x ¢ Proo
var(S) it must belong to a resource 7 » with S a proper cozponent
of a withwhen statcment SX for r. T must also be a proger
componént of a withwhen 52 for r , because of the syntactic restri

tions of RPL. Sl # S, , since they arc in different processes, and

both are in cxecution for a . This is not possible, so x £ Proof-v

Rules A6 and A7 are presented in a way which makes it casy to

produce proofs which are Einmischungsfrei. The pre- and post- assert
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4) If T is in 9y (i21) the variables in r are not referenced

in T.

Proof: r is busy for a iff a critical section vhich uses r is in

execution, and this can only happen if a withwhen statement appears

in o and is not finished by a . Then a can be written in the
fora above, satisfving 1-3. To see that 4 is also satisfied, recall
the synractic restrictions of Definition 4.3. If T uscs a variable
from r, T must be a component of a withvhen statement for r.

But then if T appears in a; » two critical sections for r are

in execution at the same time, and this is not possible.

4.3. Axioms and Inference Rules.

Table 4.1 gives the axioms and inference rules for the restricted
parallel language. They are similar to the axioms for parallel programs
given by Hoare [H072]. However, Hoare does not provide for auxiliary
variables, and his version of A7 is more restricted in the variables
which can be used in assertions. A0-AS and A8 are the same as the
corresponding rules in Chapter 3, while A6 and A7 give the semantics

of the two new statements. Both rules use the resource invariant I(r) ,

.an assertion which describes the acceptable states of the variablés

in resource r . A7 iacludes the provision that the proof of
(?i) 5 {Qi) be Einmischungsfrei. This condition is rclated to the
interference-free requirement for GPL programs, but it is more casily

verified. It requires that the variables used in each line
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Prs{oy, pEe ., q}o

A0 conscquence

(P} s {Q}°
Al assignment (P;) x:=E {P}
A2 null {p; ; {r}
(Pl} S (Pz} , (Pz) 5, {Ps.‘,....{Pn) S, {Pn’l)

A3  composition
(Pl' beuir Sl:...;Sn end (Pn*l)

{PAB}S (Q}, {p =B} S, {Q}

A4 alternation !
{P} if B then S) else 5, Q)

{P A B} S {p}
{P} while E do S {P A =B)

AS iteration

{(PABAIMIS DA I(r))

{P} with r when 8 ¢o s {Q}

A6 critical section

(Pi) S, (Qi} is Einnischungsfrei, l<i<n

A7 parallel
(P1 AooA Pn A I(rl) LS I(rm):

resource rl( ),...,rm( ): coberin Sl//"‘//Sn coend

(Q1 Aoo h Qn A I(rl) A...A I(rm)}

A8 auxiliary variables
If AV is an auxiliary variable sctr for S, S a reduction of §S'

with respect to AV, and P and Q assertions which do not contain
{P} s' {0}
{P} s (q}

free any variables from AV

Table 4.1. Axioms and Inference Rules for the Restricted Parallel Language.
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Example 2: Figure 4.4 contains a program which computes

B[k]) = £(g(A[K))) , k=1,...,M using the producer-consumer scheme

of Figure 4.2. Figure 4.3a-c gives the cutline of a proof for-this
program. Note the use of auxiliary variables sent and rcceived. The

variables in the program fall into the categories below:

Var(par f g) = fA,B.inpointcr,outpointer,count,x.y,i.j,scnt,received)
R(par f g) = {inpointer,outpointer,count,buffer}

vV (par £ g) = {A,inpointer,x,i,sent}

Vz(par fg)s (A,B.outpointcr,y,j,reccivcd}

Proof-var (Bufman) = {A,inpointer,outpointer,count,sent,received,y}

The reader can verify that the assertions in Figure 4.5 are
Einmischungsfrei, and that they lcad to a proof. The only noatrivial

part is showing that
buffer[k mod N]=g(A[k]), received<k<sent

is true after the prodbcer's critical section; the fact that sent-
received=count<N is needed to show that the store operation does not

erase a value which is still nceded.

It is often useful to express a program proof using assertion

functions like the ones defined in the last two chapters.

4.15. Definition: Suppose pre and post are functions which map
coaponents of a program S to assertions, and I maps rosources to

assertions. They are assertion functions for {P} S {Q} iff they obey

the following restrictions for each component S*' of S .
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£g3: beein

inpointer:=outpointer:=count:=0;

imjial;

par f g: resource Bufman(inpointer,outpointer,count,buffer): cobegin

producer: while i<M do
begin x:=g(A[i]);
add: with Cufman when count<N do
begin inpointer:=(inpointer+l) mod N;

buffer[inpointer) :=x;

ccunt:i=count+l
end
iimiel;
erd
/1
consuner: while j:y' do
begin remove: with Bufaman when count>0 co
beqin outpoint:-(outpo{nterOX) mod N;
y:=buffer(outpointer];
count:acount-1
end
B[j):=f(y);
jimjel
end
end

Figurc 4.4. Computation of B[k] = £(g(A[k])), kX = 1,... M.
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of the parallel statement will usually contain an assertion about

the local variabics of each process (V and an asscrtion about

W)
each resource. The resource invariant holds when parallel exccution.
begins, and is preserved by each critical section. Since its variables
are only modified inside critical sections, this mcans that the
invariant holds whenever no critical section is in execution; in
particular it holds when parallel cxccution ends.

Inference rule A6 reflects the fact that a process may assume
that the invariant holds when it gains access to the resource, buf
that nothing else is known about the shared variables. When the
process leaves the critical section it cannot make any assumptions

about the state of the resource, since that may be changed unpredictably

by another process.

Examnle 1: Figure 4.3 gives an informal proof of the program addé ,
which is oltained from addS by inserting an auxiliary variable
y[1:2) . The program variables are x and y , and the variable

classes of Definitions 4.2 and 4.12 are:

Var(par) = {x,y}
R(par) = {x} Proof-var(rx) = {x,y(1],y[2]}
Vl(par) = {y[1]} Proof-var(adda) = {y[1)}

V,(par) = {y[2]} Proof-var (addb) = {y[2]}

The reader can verify that the proof is Eiﬁmischungsfrci. Repcated

application of A8 gives a proof of {x=0} addS {x=2} .
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{x=0})
begin comment  y{l], y[2) are auxiliary variables;
y{1):=y(2]:=0;
{y[1)=0 p y[2]=0 A I(rx)}
par: resource rx(x): cobcgin
{y[1]=0}
adda: with rx do
{y[1}=0 A I(rx)}
bepin  x:=xel; y[l]:=1 end
{y[1]=1 A I(rx)}
{r(1]=1}
/1
{y[2]=0}
addb: with rx do
{y[2)=0 A I(xx)}
begin x:isx+l; y[2]:al end
{y[2]=1 A I(xx)} .
{y[2]=1}
{y[1]=1 A y[2]=1 A I(xx)}
erd

{x=2}

I(rx) = {x = y[1] + y(2]}

Figure 4.3. An Informal Proof of {x=0)} add6 {x=2)} .
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{jsreceivedel=l A JeMe1)

consumeTr:

while j<M do

* {jereceivedel A JSMA B(k)=£(g(A[K])), 1gkei)

begin

{jereceivedsl A j<M A BN =E(a(A[X])), 1<k<j}
remove: with Bufman when count>0 do
{jereceivedsl A jM A BIK]=£(g(A[K])), 12k<]
A I(Bufman) A count>0}
95312.outpointcr:-(outpointer'l) mod N;
y:-buffer[outpointcr];
count:=count-1;
_received:=receivedrsl;
end
{j=received A jM A B{k)=£(g(A[K])), k< A y=g(A(3])
A I(Bufman)};
{j=received A j&M A B(k]=£(g(A[X])), 1sk<j A y=g(A[i1)}
B(j):=£(¥)3
{j=received A jSM A B(k]=f(g(A[X])), 1<k<j}
ji=jelg

{j=receivedel A j<Mel A a[x)=f(g(A[X]D)., 15k<j}

{jareceivedel A JMe1 A (B[X]=£(g (A[k])), 1gk<j) A A3}

{recoivedsM A B(k)=£(g(A[X])). 1<k<M}

Figure 4.5¢c. proof of fg3 (conmsumor).
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7) if
a)
b)

8) if
a)
b)

c)

d)

4.16.
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Same as Definition 2.2 for sequential programs
§' iswith r when B do S, then
pre(8t) AR A1) } prc(Sl)
post(S,) f post(S') * I(?)

S' is resource T ,,r_: cahevin S //...11 S coerd then
e m et l n ———

e
pro(s') | (pre(s)) A .oe b pre(S)) A L(r)) A oo b 1(r,))

(post(S)) A ... & post(s,) A L(r)) A ..o A l(rm))l— post(S')
if T is a proper compenernt of S' , the free variables in

pre(T) and post(T) are elements of Proof-var(T)

the free variables of I(r) are elements of Proof-var(r) .

Theorcm: I1f pre , post ard 1 are assertion functions for

(P} s {Q} , it is possible to prove {(r} s {Q} .

Proof:

1.17.

similar to proof of Theorcm 2.3,

Theorer: 1f (P} S {Q} can be proved without using A8, there

arc assertion functions for {p: s {Q}.

Proof:

If the proof of (P} S {Q) uses A8 it is not always possible to find '

Similar to proof of Theorem 2.4.

assertion functions for (P} S {Q} . For example, the proof of

{x=0} addé {x=2} gives assertion functions for addé , with

pre(adda) = {y[1)=0}

post(adda) = {y[1]=1} .



{M>0}
fg3: bepin conment sent and received are auxiliary variables;
inpointer:=outpointer:=count:=0;
iteji=];
sent:areceived:=0;
{I(Bufman) A i=scntel=l A jereceivedel=l A M>0}
par f g: resource Bufman(inpointer,outpointer,count,buffer):
cobegin producer // consumer coend
{I(Bufman) A receiveds)M A B(k]=f(g(A[k])), k=1,...,M)
end

{B[k)=f(g(A[X])), kel,..., M}

where I(Bufman) = {0O<count<N A count=sent-received A inpointer=sent mod N
A outpointer=received mod N A buffer(k mod N] =

g(A[K]), received<k<sent}

Figure 4.5a. An Informal Proof of £g3 ‘(main program).
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{i=scnt+lal A i<Mel}
producer: while i<M do
{i=sentel A i<M}
begin  x:xg(A[i]);
(i=sentsl A i< A x=p(A[i])}
add: with Bufman whcn count<N do
tlasent+l A igM & x=g(A[i]) A I(Bufmar) A count<N)
begin inpointer:=(irpointer+l) mod \;
buffer[inpointer]:sx;
count:i=scount+l;
sentisscntrl;
end
{i=sent A i<M A I(Bufman));
{i=sent A i<M}
iizie];
{i=sentvl A i<Mel}
end

{i=sentel A i<Mel A S(icM))

Figure 4.5b. Proof of fp3 (nroducer).
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CIAPTER S

ADDITIONAL PROPERTIES OF PARALLEL PROGRAMS

So far our work has been directed toward proving partial correct-
ness as expressed by the forrula {P} S {Q} . A number of other
properties are relevant to parallel programs. Four of these -- mutual
exclusion, blocking, deadlock, and termination -- will be discussed in
this chapter. The techniques for verifying cach of these properties
rely on the assertion functions defined in Chapters 3 and 4, so the
first step in each case is a partial-correctness proof.

Mutual excluﬁion is discussed in 5.1, blocking and deadlcck in
S.2, and termination in 5.3. In most cases GPL and RPL programs

are covered separately.

S.1. Mutual Exclusion.

Two statements in a program arc mutually exclusive if they can

not be executed at the same time.

—————

S5.1. Definition: Components S1 and S2 of S are mutually
exclusive iff there is no computation for § which has both S1 and

52 in execution.

The next two sections present methods for proving mutual exclusion in

GPL and RPL programs.

95



96

5.1.1.  GlL.

Mutual exclusion for GPL programs was discussed informally in
Scction 3.5. At that time the primary intcrest was in using mutual
exclusion in verifying that parallel processes are interference-free.
Now we provide a general technique for proving that mutual exclusion

is accomplished.

S.2. Thcorem: Let pre and post be assertion functions for {true) s {Q}.

Consider statements S1 and Sz . Let P1 and P2 be assertions

such that

pre(Sl') = P1 for all componcats Sl' of S1
) .
prc(S2 ) = P2 for all components S2 of S2

Then if P1 A P2 = false, Sl and S2 are mutually exclusive.

Proof: Assume that there is a computation a which has both S1 and

S2 in execution. Then some componcnt Sl' of Sl is current in a ,

and so is some component Sz' of S2 . By Theorem 3.15,

prc(Sl')[value(so,u)]=true , and pre(Sz')[value(so,o)]-:rue . Then
(PIAPZ)[value(so,o)]-true , but this is impossible since PlA P2 = false.
1 and SZ are mutually exclusive. .

As an example of the application of Theorem 5.2, consider the proof

So no such a exists, and S

for mutual exclusion using semaphores presented in Figure 3.14. Here

S1 and S2 are the critical sections in processes i and j , with

ifj; pp= (IAinCS(i]=1} and P, = {IAinCS{j]=1} . Since

P, A P2 => false , S1 and S2 are mutually exclusive. This proof
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But these are not assertion functions for addS , which does not
operate on y , and in fact there are no assertion functions for

{x=0} ad¢5 {x=2} . This will be reflected in the proof of Theorem 4.20.

4.4. Consistency.

Rules A0-A8 are consistent with the interpretive model, i.e., if

{P} s {Q} can be proved, it is true in the model.

4.18. Theorem: Suppose S is an RPL program, and pre , post ,-and I
are assertion functions for {P} S {Q} . Let S' be a component of
S and a be a computation for S from state 5o with P[sO]-true .

Then,

1) if S' is curreat after a , pre(S') is true after a ;

2) if o finishes S' , post(S') is truc after a R

3) if resource r is declared in a statement which is in execution
for o , and r 1is not busy for a , then I(r) is true after

a .

Proof: By induction on the length of & . The details are given in

Chapter 6. The argument is much the same as for Theorem 3.1S.

4.19. Theorem: (Consistency of AS) If (P} S' {Q)} 1is true for the
interpretive model and the requirements of A8 are satisfied, then

{P} s {Q} is true for the interpretive model.

Procf: The same as Theorem 3.20, which expressed the consistoncy of

A8 for GPL programs.



4.20. Theorem: (Consistency for RPL) If {P} S {Q} can be proved,

it is true in the interpretive rodel.

Proof: Usec induction on the number of uses of AS in the proof of
(P} s {Q} . If therc are none, let pre and post be assertion functions
for {P} s {Q} . Now suppose o exccutes S froa state o with
P[50]=truc « Then by Theorerm 4.18, ard the fact that post(S) f Q.
Q[valuc(so,n)]=truc , so {P} S {Q! 1is true in the rmodel.

If the proof of (P} S {Q} wuses AB, it can be rewritten so that
all the steps using AS appear at the cnd of the proof. Let {P} S' {Q}
be the last step which does not use A8. {P} S' {Q} 1is true in the
model. By Thecorem 4.19, each application of A8 preserves this

property. So {P} S {Q} is true in the model.
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fork 0

philosupher 4 philosopher 0

fork 1
fork 4

philos-
opher 3

philos-
opher 1

fork 2
fork 3

philosopher 2

Figure 5.1. The Dining Philosophers.
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af(i] is the number of forks available to prilosopner i;
af:=2;
resource possforks(af): cobesin

phil 0 //...// phil 4
coend

end

phil i: while true do
getfork i: with possforks when af(i]=2 do
begin af(ibl)=af[iOl] - 1;
af[isl]=af(idl] - 1;
end;
eat i: '"cat'";
releaseforks i: with possforks do
begin af(i0l)=af(iGl) + 1;
af[i@l1)=af[i31]) + 1;
end;
think i: “think"

end

9 and © indicate arithmetic modulo §

Figure §.2. Program for the Dining Philosophers.



depends on the auxiliary variable inCS , but the next theorem can be
used to show that the critical sections in the original program

(Figure 3.13) are also mutually exclusive.

5.3. Theorcm: Suppose Sl‘ and Sz' are mutually cxclusive
coaponents of a GPL program S' , and S is obtained by reduction of

§' as in inference rule A8, without eliminating either Sl' or Sz' .

Then Sl and SZ , the corresponding reductions of Sl' and 52. R

are mutually exclusive.

Proof: 1If not, let a be a computation for S which has S1 and S2

in execution. By Lemma 3.19 there is a corresponding computation a'

for S' which has Sl‘ and Sz' in exccution. But this is impossible,

since Sl' and Sz' are mutually exclusive. So S

mutually exclusive.

1 and 52 are
In the semaphore example of Figurc 3.14 the references to the

suxiliary variable inCS can be removed one by one, to yield Figure

3.13. Applying Theorem 5.3 at each step shows that mutual exclusion

is preserved.

S§.1.2. RPL.

The RPL withwhen statement is designed to provide mutual exclusion
for statements which operate on shared variables. However, there are
tizes when the programmer must control the scheduliﬂg of resources
directly and must provide his own code for mutual exclusion. In such

cases mutual exclusion can be verified using techniques much like those
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used for GPL, but the problem is complicated by the restrictions on
variables used in the assertion functions.

As an example, consider a standard synchronization problen, the
five dining philosophers. Five philosophers sit arourd a circular
table (sce Figure 5.1), alternately thinking and eating spaghetti.

The spaghetti is so long and targled that a philosopher needs two forks
to cat it, but unfortunately there are only five forks on the table. The
only forks which a philosopher can usc are the ores to his imrediate
right and left. Obviously two neighbors cannot eat at the same time.
The problem is to write a program for cach philosopher to provide this
synchronization. Hoare's solution [Ho72) is given in Figure 5.2. The
array af(0:4] indicates the number of forks available to each
philosopher. In order to cat, a philosopher must wait until two forks
are available; he then takes the forks and reduces the nuzber available
to each of his neighbors. Figure 5.3 gives pre- and post- asscrtions
for some of the statements in the dining philoscphers progran. Note
the usc of an auxiliary array variable, eating{0:4] . The statements
labelled "eat i" and “think i" do not change cither cating cr af .

We would like to use the assertions in Figure 5.3 to prove that
mutual exclusion is accomplished, i.e., that two neighbors do not get
to cat at the samc time. The technique used will be essentially the
samc as for a GPL program: assume that the statcments arc not outually
exclusive and derive a contradiction. So suppose there is a
computation a for which both cat i and eat i3l are in execution.
For this computationa, ecating(i)=1 A ecating[i®l}=1 . If I(possforks)

is also truc, we havo the desired contradiction, for
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Proof: First show that S1 does not change any variables used in S, .

To sce this, suppose Sl changes the value of x . If x is not a
resource element, the syntactical restrictions prevent x from

appearing in S2 . If x 1is an element of resource T , S1 must

be a component of a critical section for r . Since 0151 does not

finish this critical section, r is busy in alSl . By Lemma 4.11,

S2 does not refer to X .

By similar arguments, 52 does not change any variables used in
Sx , and S1 and S2 are not both withwhen st;tcmcnts for the same
resource.

Now 1-2 can be proved using induction on the length of ay - If

17172
not modify each other's variables, they can be executed in either

a, is empty, @ =a,SS, and 6 = uIS_.S1 . Since Sl and Si do

order with the same result, and 1 and 2 are true.

- ' - “ . R .
If oy a'S' , let s value(so,alslszo ) By induction,

value(so,ulS,Sla') = s . Then, S' 1is ready to cxecute in s , and 8
is a computation. Also, value(so.s) = next(s,S') = value(so,a) , and

1 and 2 are satisfied.

5.5. Leama: If a = alslaz is a computation for S , where S1
" is not the last statcment in a critical section, and tho statements in

@, arc not from the same process as S1 , then

1) 8 = 00, is a computation for S , and

2) if T is current after a , and T is not from thc samo process

as S T is current after 8 .

1
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Proof: Lemma S.4 can be applied several times to obtain the computation
‘ ‘i s i
B' = oluzsl with value(so.u) = value(so,. . Letting B = a,a,

satisfies 1 and 2.

This is cquivalcent to "backing up" one statement in the process

containing S1 .

5.6. Lemma: I[f a statement S , which does not properly contain a
withwhen statement, is in cxecution for o , there is a cormputation 8

such that

1) S is current after B ;
2) if T is current after o and T is not in the same process

as S, T is current after B8 ;

Proof: Lemma 5.4 can be applied several times to "back up" umntil S
is current. (Since S does not properly contain a withwhen, none
of the statements to be deleted finishes a critical scction.) At cach

step the deleted statement is a component of S, so 2 is preserved.

Provine Mutual Exclusion.

wWith this background we can state ard prove a gereral theorea which

can be applied to prove mutual cxclusion for the dining philosophers.

5.7. Decfinition: r is a simple resource in S iff no withwhen

statement for r in S properly contains another withwhen statezent.

5.8. Theorem: Suppose S is an RPL program with asscrtion functions
pre, post, and I for {truc} S {Q}, S, and S, are corcponents of S,

and P, and P

N , are asscrtions such that
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{true}
dining philosophers: beein comment cating[0:4] is an auxiliary array,
eating[i]=] iff philosopher i is eating, 0 otherwisc;
af:=2; eating:=0;
{esource possforks(af): cobegin phil 0 //...// phil 4 coend
end

{false}

{eating(i})=0}
phil i: while true do
begin {eating[i]=0} .

getfork i: with possferks when af{i]=2 do
{cating(i]=0 A af{i]}=2 A I(possforks)}
begin af[iBl):=af[i61)-1; af(iAl]:=af[i01])-1;

eating[i):=1;

end
{cating(i]=1 A I(possforks)};

{eating[i)=1}

eat i: "eat";

{eating(i])=1}

releascfork i: with posstorks do
{eating(i)=1 A I(possforks)}
becin af[i6l]:=af(i01]+1; af[i01]):=af(iB1]+1;

eating(i]:=0;

end
{cating(i]=0 A I(possforks)};

{cating(i])=0}

thirk i: "think"

{eating[i]=0}

. erd

(false}

.I(possforks) = {[O<cating[j]<l A (eating[j)=l => af(j]=2)
A af[j)=2-cating[jOl]-cating(j8l]], 0<j<d}

Figure 5.3. Assertions for the Dining Philosophers.



catingi)=1 A catingli®i)=1 & I(possforks)
= af({i)=2 A af[i]<2 = false
Unfortunately I(possforks) is not nrecessarily true, since some other

philosopher may be in the midst of executing a critical section for

possforks. Nevertheless, we will show that
cating(i]=1 A cating[i6l]=) L I(possforks) = false

guarantecs that eat i and eat i3l are mutually exclusive. This will

be donc by deriving from o« another computation 8 for which

(cating[i)=1 A eating[idl])=1 A I(possforks))[valuc(so,a)]-true .

Since this is a contradiction, the original computation o did not

exist, and cat i and eat id)l are mutually exclusive.

*Backina up" a Computation.

The technique used in obtaining 3 from a 1is the deletion of
somc elements of a in a way which is cquivalent to "backing up" some
of the processes. This technique, which was suggested by Lipton‘s
reduction method [Li74b]}, will be used again in Chapter 6. It is

justificd by the following lermmas.

5.4. Lerma: If a = ulslszaz is a computation for S , where S1
is not the last statement in a critvical section, and Sl and S2 are

from different processes, then

1) 8 = «,5.S a, is a computation for S , and

2) valuc(so,a) - value(so,ﬁ) .
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writer must have exclusive access. Figure S.4 gives a solution to

the rcaders and writers problem due to Brinch Hansen (Br72a]; it gives
a higher priority to the writers. Figure §.5a-c shows some pre and
post asscrtions for the program using auxiliary variables rcading,
waiting, and writing. Applying Theorem 5.8 we can sce that roader 1

excludes writer j , sinco

reading(i)=1 A writing[j)=1 A I(control)

=> ar>0 A aw>0 A (ar=0 V aw=0) = false .
Also, writers exclude cach other, since

writing[i]«l A writing(j)=1 A I(control)
=> aw>2 A aw<l => falsc
if i A 3j . So, the code provided does synchronize access to the file

as required.

Suppose now that the null statements labelled "read i'' and

“write j" avre replaced by statements which actually operate on the

file. In order to obey the syntax requircments of RPL, they must uso
withwhen statements, even though this prevents reader processes from
using the file simultaneously. Actually the withwhen statements are
redundant; the statements which use "control" are like a programmer-
defined withwhen statement for the file. This suggests an extension of

RPL to include programmer-dcfined critical scctions. The prograzmor

could specify the code to be executed when acquiring and relcasing a
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RW: begin wwimar:=0;
resource control (ww,ar): coberin
rcadcrl 7y rc:\dcrn //
_wril:c:r1 11..:11 writer,

coend

reader i: while true do
startread i: with control whken wws0 do ar:sarel;
read i: ;
finishread i: with control do arisar-1;

end

writer j: while true do
begin
ask write j: with control do wwiswwel;
start write j: with control when ar=0 A awa0 do awieaw+l;
write j: ;
finish write j: with control do hegin aw:saw-1; wwimaw-l end

end

ww = number of waiting or active writers
ar = nurber of active readers

aw = number of active writers

Figuro 5.4. Rcaders and Writers.
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pre(sl') = P1 for all components Sl' of S, .
pre(S,') = P2 for all components 52' of S

Let R = {r: r is a simple resource declared in a statement con-

taining S, and 52 , aad neither S, nor S, isa

1 1

proper component of a withwhen statement for r} .

Then if Pl A P2 A (A I(r)) = false, SX and S2 are mutually
reR

exclusive.

Proof: Suppose S1 and S, are not mutually exclusive. Then there

is a computation a such that Sl and S2 are in execution for a .

We will derive a computation 8 which has Sl and S2 in execution,

. and if reR , r 1is not busy in B8 . Then by Theorem 4.18,

(A I(r))[value(so,B)]-true .
rcR

By Lemma 4.11, if r is busy in a some withwhen statement for
r , say SO , is in execution for a . Since r 1is a simple resource,

Lerma 5.6 can be applied to back up until S0 is ready to exccute.

If a' is the new computation, r is not busy in. a' . Since Sl

and S2 are not components of S0 , they are still in execution for

"a* . Also, if r' is a resource which is not busy in a , it is not

busy in &' , since no statements which eond critical sections were
deleted. So this operation can be rcpeated for cach reR to derive
the desired computation 8 .

Since S1 is in execution for B8 , some componcnt Sl' of S1
is current for B8 . Then by Theorem 4.18, pre(Sl)(valuc(so,s)]-truc .
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Similarly, pre(S,)[value(so,é)]=:ruc . But then

(Pl I Pz A(A I(r)))[vuluc(so.ﬁ)]atrue . Since this is impossible,
rekR

Sl and 52 are mutually exclusive.

Examnle: Returning to the dining philosophers problem, let

P1 = {cating[i}=l}

P, = {eating[is1]=l)
R = {possforks}

Then Pl A P2 A (A I(r)) = falsc , and "eat i" and "eat i6l" are
ek

mutually exclusive in the program with auxiliary variables. To show
that they are rutually exclusive in the origiral program we need the
following theorcm.

5.9. Thecorem: Suppose Sl. and S.,' are mutually exclusive

components of an RPL program S' , and S 1is obtained by reduction

of S' as in inference rulc A8, without eliminating either Sx‘ or

S,' « Then Sl and 52 , the corresponding reductions of Sl' and

S,' , are mutually cxclusive.

Proof: Same as Theorem S5.3.

User-Defined Critical Scctions.

Arother standard synchronization problem, called the readers and
writers problem, involves a number of processes sharing a file. Any

number of recaders may have access to the file at the same time, but a
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{waiting(j)=writing(j)=0)
writer j: while true do
{waiting[j)=writing[j]=0}
ask write j: with control do
begin wwi=wwel; waiting(j):=1 end;
{waiting(j]=1 A writing(j]=0}
start write j: with control when ar=0 A aw=0 do
begin aw:=awsl; writing(j]:=1 ggg;.
{waiting(j]=writing{j]=1}
write j: ;
{waiting(j)=writing[j]=1}
finish write j: with control do
bepin wwisww-1; awi=aw-1; waiting(j]:=writing[(j]:=0 221,
{waiting[j)=writing[j]=0}
end

{false}

I(control) = {ar = E reading[i) A ww = ] waiting[j] A aw = I writing(j)
i bl j

A 0<aw<l A (ar=0 V aw=0) A (writing[j]=1 == waiting[j]=1)

A O<waiting[j], writing{j], reading[i)<1}

Figure 5.5c. Assertions for Readors and Writers (writor j).
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resource. As long as this code guarantecd mutual exclusion, the
programmer-defined critical sections could be used in programs and

nroofs in the same way as the standard withwhen.

Therce are a number of ways in which such an extension could be
incorporated in RPL. Onc possibility is the declaration of a ronitor
somewhat like lioare's (l!¢74a) for cach resource. The prﬁgra:mer could
cither provide his own code for the monitor or accept a standard system
implementation. We are currently working on syntactic comstructs to

provide for this feature.

5.2. Blocking.

Another problem which is peculiar to parallel processes is that a
progran can be forced to stop before it has accomplished its purpose.

This can happen in GPL or RPL programs because of the await and withwhen

statcments.

5.10. Definition: If S' 1is a component of a GPL or RPL prograa S ,
and a 1is a computation for S, S' is blocked for a iff S' is
in execution for a but no component of S' is rcady to execute

after a .

In other words, at least onc component of S' is current for a , but
none of the current components of S' are ready to execute. For a
CPL program this mcans that all the current components of S' are

awair statements; for an RPL progranm they must be withwhen statements.
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{true)
begin ww:i=ar:=0;
comsent reading(i)=1 if reader i is active, 0 otherwise
writing(i]=1 if writer i is active, 0 otherwise
waiting[i)=1 if writer i is waiting or active,
0 othervwise;
reading:=swriting:=waiting:=0;
{I(control) A Vi(rcading{i]=0) A V¥j(waiting(j]ewriting[j]=0)}
resource control(ar,ww): cobegin
reader ) //...// reader n //

writer 1 //...// writer m

coend
end
{false}

I(control) = {ar = J reading(i] A fove } waiting(j] A aw = I writing(j]
i j j

A 0<aw<l A (ar=0 V aw=0) A (writing(i)=l = waiting[i]=1)

A O<waiting{j), writing[j), reading(i}<1}

Figure 5.5a. Assertions for Readers and Writers (main program).



S
119
{rcading(i)=0j
rcader i: while true co
{reading(i}=0)
start rcad i: with coatrol when ww=0 do
begin ar:=arvl; rcading(i]:=1 end;
{rcading[i])=1}
read i: ;
{rcading(i]=1}
finish read i: with control do
" begin ar:=ar-1; reading[i):=0 end;
{reading[i]=0}
cnd
{false}
I(control) = {ar= ): reading(i] A ww = § waiting(j] A aw = X writirz(j] A
1 )

0<aw<l A (ar=0 V aw=0) A (writing[j]=1 => waiting(j]=1) A

O<waiting(j],writing[j],reading[i)<1}

Figure 5.5b. Assertions for Readers and Writers (reader i).
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In the mutual exclusion program (Figure 3.14) each Si has two

await statements:

T, = await mutex>0 then ...
T, = await truc then ...

Then,

N
D, = A (post(S)) V (pre(T]) A mutex<0) V (pre(Ty) A false))
ix1

N
= A (falseV (prc(Ti) A mutex<0) V false)

iel
N
w A (I AinCS[i}=0 A mutex<0)
i=1
N
o nutex<0 A mutex=1 - ] inCS[i) A Vi(inCS(i])=0)
i=1

=> nutex<0 A mutex=l
= false .

Thus, this method of using semaphores to implement mutual exclusion is

safe from blocking.

Ke next consider blocking in programs with nested parallel state-
ments. This is cssentially the same as the case with no nesting, but

the details are more cumbersome.

5.13. Theorem: Suppose S is a GPL program with assertion functions

pre and post for {P} S {Q} . For cach parallel statcment T=
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cobegin TL//"'//Tn coend in S, let T; = await B; then ... Ye

the await statemeats in Ti which are not coaponents of ancther
parallel statcment inside Ti . Let

D,(T) = A (post(T) V (V (ere(riy A 1))

i

j).

D, (T) =VV (prc(T%) LB
2 ij j
Then, if DI(T) A DZ(T) = false for all parallel T in S, S cannot

be blocked with initial condition P .

Proof: Suppose S is blocked for some computation a which starts
“with P true. Then at least orc parallel statement is blocked for a .
Let T be a parallel statement which is blocked for a with no
parallel statement inside T blocked for a . Then T mnust be

blocked at one or more of the T; , and DI(T) A DZ(T)[value(so.a)]-truo
as in Theorem S.12. Since this is a contradiction, S cannot be

blocked.

Exanple: Figurc 5.6 is a program which uses 2 semaphores for mutual
exclusion. In an earlier example we showed that single parallel state-
rents which use semaphores in this way cannot be blocked. Similar
rcasoning can be applied to cach of the parallel statezents in the
program nestedl; since neither of them can be blocked, the prozram

cannot be blocked.

Unfortunately Theorem 5.13 is not strong enough in many cases.

Figure 5.7 shows a program "nested2” which cannot be blocked. However,



5:11. Definition: If S' is a component of the GPL or RPL program § ,

S' can not be blocked with starting condition P iff there is no

computation which starts with P truec and has S* blocked. S$' can

not be blocked if it can not be blocked with starting condition ({true} .
—_—

In many cases blocking is harmless: an await or withwhen statement
may be blocked and then unblocked many times during program execution.
However, if an entire program is blocked, or if a set of parallel
processes is decadlocked in acquiring resources, the program cannot
recover. In Sections 5.2.1 and 5.2.3 we describe techniques for proving
that programs cannot become blocked, while in 5.2.2 a well-known method

for avoiding deadlock is related to RPL programs.

5.2.1. Procram Blocking in GPL.

A GPL program can become blocked if every parallel process is
stopped at an await statement whose condition is false. In order to
prove that blocking is impossible in-a particular program we assume
that it occurs and derive a contradiction. We first consider the

relatively easy case of a program with only one parallel statement.

Single Paraliel Statement:

5.12. Theorem: Suppose GPL program § contains one parallel statement
T = cobegin Tl//...//Tn coend , and let pre and post be asscrtion
functions for {P} S {Q} . Let T; = await B; then ... bo the await

statexents in Ti . Then if
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n i i
D= A (post(T,) V (V (pre(T.) 2 B3)))
1 a i j ) ;

D, =V V (pre(T}) a 8})

and l)l A D, => false , S cannot be blocked with starting condition P .

Proof: Suppose S is blockee for the computation a which starts with
P true. Since S «can orly be blocked at await statements in T,

@ has begun parallel exccution of the Ti . For each process Ti ,

either a has finished Ti ard post(Ti)[valuc(so,o)]-truc~ (Theorex
i
j

10})[value(so,u)]=true . So Dl[valuc(so,a)]-truc . Since at least one

3.15), or Ti is blocked at one of T; and (pre(T;) A
Ti is blocked for a , Dz[value(so,a)]-truc . But this is a contra-

diction, since D1 3 D2 => false , so no such a exists.

Note that if S contains no zwait statements, D, is the eapty

union, which conventionally has the value false; in this case S cannot

become blocked.

Examples: Chapter 3 contained scveral exanmples of programs in G?L.
Findpos (Figurc 3.3) cannot be blocked since it contains no await
statements. In addl (Figure 3.8) both of the await statczents have

n; = true . The expression 02 becomes

D, = (prc(adda) A atrue) V (pre(addb) A atrue)

= false .

Then D1 A D, = false , and addl cannot become blocked.

2
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the parallel statement "inner" can be blocked when S! {is executing
its critical section, so Theorem 5.13 does not apply. The following

more general theorem can be used in such cases.

5.14. Theorem: Suppose S 1is a GPL program with assertion functions
pre and post for {P} S {Q} . For each parallel statement T =
cobegin T //+..//T, coend let T; - await s? then ... be as in
Theorenm 5.13, and let Si be the parallel statements in Ti which

are not componeats of another parallel statcment inside Ti . Let

i i i
D(T.) = (V (pre(T.;) A 9B.) V (V D, (5.))
i j j b] k 1Y%k
DT = A (post(Ty) V D(T))
DZ(T) - z D(Ti) .

Then, if DI(T) A Dz(T) = falsc , for every parallel T which is
not contained in another parallel statement, S cannot be blocked

with initial condition P .

Proof: Suppose S is blocked for some computation a which starts
with P true. First we will show that if T is a parallel component
of S which is blocked for a , Dl(T) A DZ(T)[valuc(so,a)]-true .
First, suppose that T contains no nested parallel statements. In
this case, DI(T) and DZ(T) reduce to Dl and 02 of Thcorem

5.13, and D, A szvaluc(so.a)]-true . If T contains nested parallel

1
statements, consider the state of each Ti after a . There are

three possibilities:



120

1) a finishes Ti , and pos:(Ti){value(so,u)]=true .
2) Ti is blocked at cne of the T; , and (pre(T?)'A \B;)[value(so.u)]-
true

3) 'l'.l is stopped inside some S; , and by induction

(Dl(Si) A Dz(Si))[value(so.o)]-true .

This gives Dl(T)[value(so,u)]=truc , and since at least.one Ti rRust
be blocked for a , Dz(T)[valuc(so.a)]=true . Then if T 1is blocked
for o , Dl(T) A Dz(T)[valuc(so,a)}-true .

Now if S is blocked for a , at least one of the outermost
parallel statements T' {is blocked for a , and Dl(T') A DZ(T')-
[valuc(so,o)]strue . But th}s is a contradiction, so no such a exists.

Note that Theorem S5.13 describes the special case of Theorea 5.14
in which DI(T) A DZ(T) = false for all parallel T .

This thcorem can be used to prove that the program nested2 in
Figure 5.7 cannot be blocked. Figure 5.8 shows some pre and post
assertions which can be derived by expressing P and V with await

statements as donc in Figure 3.14. Then
Dl(inncr) = [post(S2) V (pre(wait2) A mutex<0)]

A fpost(S3) V (pre(wait3) A mutex<0)]

= (inCS[2)=inCS(3]=0) A I

Dl(outcr) = {post(S1) V (pre(waitl) A mutex<0)]
A [post(inner) V Dl(inner)]
=> (inCS[1)=inCS[2]=inCS[3)=0 A I)

=> mutexs=l
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nestedl: ESEiE nli=m2:=];
outer: cobegin
Sl:hggﬂ P(ml);
critical section };
V(ml)
end
//
§2: begin P(ml);
critical section 2;
inner: cobegin
S21: begin P(m2); critical scction 3; V(m2) end
/" 522: begin P(m2); critical section 4; V(m2) end
coend; '
V(nl)
end

end

Figure 5.6. Nested Parallel Statements 1.



,
nested?: hegin ml:i=i;
outer: coheein

Sl:

beein  waitl: P(ml);

critical secticn 1;

V(ml)

en

//

inner: cobepin

$2: begin
end
7
§3: begin
end
coend
coend

end

Figure 5.7.

wait2: P(ml);
critical section 2;

V(ml)

wait3: P(ml);
critical section 3;

V(nl)

Nested Parallel Statements 2.



resource rl,r2: cobegin

=2
(%)
[
(=]
.

wit

o

Sl: with rl ¢ T

// 82: with r2 with vl do. ..

&

coend

If Sl acquires rl and S2 acquires r2 neither statement can

proceed and the program is deadlocked.

5.16. Definition: An RPL program S 1is deadlock-frce iff there is

no computation for which S is deadlocked.

There is a well-known technique for avoiding deadlock; cach
process must request and release resources in some standard order. In
an RPL program this can be accomplished by restrictions on the nesting

of withwhen statements.

S.17. Theorem: An RPL program S is-deadlock-freec if its resources
can be put in an order ri .....ri such that no withwhen statement
1 ‘M

using L properly contains a withwhen statement using Ty with
j ' k

k<j.

Proof: Suppose S is deadlocked for the computation a . Let Si .

1<i<n be the components of S which are deadlocked, and let j be

the largest irdex of a resource such that one of the Si is blocked

at a withvhen statement for L Then some Si is blocked inside
j

a critical section for r, sayata withwhen statement for T

. b] k

Then k > j , but this contradicts the choice of j . So § cannot

be deadlocked.



0f course, there are other ways of avoiding deadlock, but the
technique ‘above is especially convenient since it can be checked
syntacticaliy. Note that a program with no nested critical scctions

is dcadlock-frcé.

Erxamnle: Figure 5.9a and b gives two additional solutions to the
dining philosophers problem; they are also due to lMoare [Ho72). The
first is in danger of deadlock, since if the five philosophers simul-
tancously pick up the fork on the right no one will be able to pick up
his second fork. The next solution aveids this problem by following
the discipline of Theorem 5.17, so it is deadlock-free (the order is
fork0, forkl, ... , forkd4). ‘lowever, it has the undesirable feature
that when philosopher 4 is eating, the other four may be forced to
wait'until he has finished. The solution in Figure 5.2 is preferable,
because it does not stop a philosopher from eating unless one.of his

neighbors is eating.

5.2.3. Program Blocking in RPIL.

Deadlock is onec way in which a program can be blocked; blocking
can also occur if all processes are waiting at withwhen statements for
conditions which arc not satisfied. This situation is rclated to
blocking in GPL programs as presented in S$.2.1, but it is complicated
by the fact that the statement with r when B do S can be blocked
cither becavse r 1is busy or because B is false. When a deadlock-free
program is blocked we can assume that at least one statement is blocked

because B is false.
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{I A inCS{i)=0}

Si: begin
{I A inCS[i)=0}
wait i: P(ml);
{1 A inCS(i)=1}
critical section i;
{I A inCS[i]=1}
V(zl);
{1 A inCS{i}=0}
end

{I A inCS[i)=0}

Ie{ml=1-74rcS[i] A m120 A (0<inCS{i]<1), i=1,2,3}
i .

Figure S.8. Some Assertions for Si of Figure 5.7.



N,(outer) = [pre(waitl) A nmutex<0] V [pre(wait2) A mutex<0]
V (pre(wait3) % mutex<0]

=> mutex<0

Dl(outcr) A D, (outer) = false .

So the program cannot be blocked.

This completes the discussion of blocking in GPL prograzs. In the

next two scctions we consider two kinds of blocking for RPL programs.

5.2.2. Dcadlock in RPL.

Deadlock is a particular kind of blocking which can occur when
parallel processes arc competing for resources. It occurs when a
set of processes reach a state in which cach is trying to acquire a
resource which is already controlled by another. In an RPL program
resources are acquired by withwhen statements, and deadlock can be

related to withwhen.

5.15. Definition: An RPL program S is deadlocked for a computation
a iff thero are compornents Si , l<i<n of S such that each Si

is blocked at a withwhen statement for a resource T and sonme Sj

is blocked inside a withwhen statement for ri , i.e., Sj has

already acquired LA

As a simple cxample consider the program



D1 - i (post(Ti) \'} D(Ti))

D, =V V (prc(T%) A wB% A X(ri))
25 j T

D, = A I(r)
3 TeR

Then, if D, A D, A D, = false , S cannot be blocked with ini;ial

1 3

condition P .

Proof: The argument is essentially the same as for Theorem S.12.
Suppose S is blocked for a which starts with P true. First,
note that if r 1is a simple resource, control cannot be blocked inside
a critical section for r , so r 1is not busy for a . Thus,
Ds[value(so,a)]-truc .

Each of the -Ti is either finished or blocked after o . If Ti
is blocked, it is trying to enter some T; , SO pre(T;)(valuc(so,a)]-
‘true . If r isa simple resource, it is not busy for a , so T is
blocked because B;[valuc(so,a)]-false . Thus, if Ti is blocked,

DCTi) is true. Since each T, is ecither finished or blocked, D

i 1

is true, and by Lemma 5.18, D, is true. So, D1 AD, A Ds[value(so.a)]-

2

true . But this is impossible, so S cannot be blocked.

There arc several examples in Chapters 4 and S of programs which

cannot be blocked.

Dining Philosophers (Figure 5.3): The program has no nested withwhen

statements and so is deadlock-free.
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R = {possforks}

D(phil i) = (pre(getfork i) A af([i]#2)

V (pre(rcleasefork i) A false)

cating(i)=0 A af{i}A2

D, = A (post(Ti) V D(phil 1))
i

A (false V (cating[i])=0 A af{i)#2))
i

A (cating[i)=0 A af[i]£2)
i

D, = I(possforks)
=> (O<cating[i]<) A af[i)=2-eating[i01])-eating[idl])

D, AD, => A (af(i]A2 A af[i)=2) = false .
i

so the dining philosophers program cannot be blocked.

Readers and Writers (Figure 5.4): A very similar proof shows that

this program cannot be blocked.

Producer and Consumer (Finufe 4.5): Again, there are no nested withwhen

statements, and the program is deadlock-free.



125

resource fork 0, fork 1, fork 2, fork 3, fork 4:

cobegin phil 0 //...// phil 4 coend

phil i: while true do

with fork i do with fork i6l do ‘“eat"

Figure S.9a. Dining Philosophers -- Solution 2.

if 0<i<3
phil i: while true do

with fork i do with fork i61 do ‘“eat"

phil 4: while true do

with fork 0 do with fork 4 do ‘'eat"

Figure 5.9b. Dining Philosophers -- Solution 3.
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S.!s. lemma: If S is a dcadlock-free RPL program which is blocked
for a , there is at least one statement S' = with r when B do ...

which is blocked for a with (pre(5') £ 1B A I(r))[value(so,o)]=:ruc .

Proor: Lect Ti = vith L when Bi do ... be a list of the withwhen
statements at which S is blocked. If all the r, are busy for a ,
S is decadlocked, so therc is at lcast one L whick is not busy

for a . This implies that I(ri)[valuc(so,u)]=true . Also, since §

is blocked at Ti , (prc(Ti) A ﬁBi)[value(so,u)]atruc .

Now we derive some results which can be used to prove that RPL
prograns do not becomec blocked. The first case considered is programs

with only onc parallel statement.

Singlc Parallcl Statement.

5.19. Theorem: Suppose S is a deadlock-free RPL program containing
a state = HUT ces : cobegi .
onc parallel statement T = resource T, ,¥ ¢ cobegin Tl// //Tn

coend , and pre, post, and I are assertion functions for {P} s {Q} .

Let the withwhen statements in Ti be T; = with r; when B; do ...
Define

R = {r: r a simple resource of S (Definition 5.7)}

Pl . 15% , if e R

) ) J

= truc, otherwise
i i
D(T.) =V T.) AP
(1) =V (pre(T}) A P))

)



' (ope(TH i <
p(T,) - (; (pre(T;) A PJY) V (\1: b, (5,))
D, (T) = I; (post(T,) V D(T,))
D,(T) = v (pre(T* A =B A I(r))

T'=with r when

B do ...
a component of T

DJ(T) - A I(x)
reR(T)
Then if DX(T) A DZ(T) A DJ(T) = false for each parallel T which
is not 2 proper component of another parallel statement, S cannot

be blocked with initial condition P .

Proof: Suppose S is blocked for some computation & which starts
with P true. First, we will show that if T 4is a parallel componcnt-
of S which is blocked for a , DI(T) A DZ(T) A D3(T)(va1uc(so,u)]-
true .

First, note that no prccess can be blocked inside a critical
scction for a simple resource, so no simple resource is busy for a ,
which implies DS(T)[value(so,a)]-true .

Next, by Lemma 5.18, Dz[valuc(ss.u)]utrue .

Finally, DI(T) holds after o . If T does not contain any

nested parallel statement, DX(T) reduces to D, of Theorcm 5.19,

1
and by similar reasoning Dl[value(so,o)]-true . If T does contain

parallel statements, there are three possible states for each T1

1) a finishes T1 , and post(Ti)[value(so,a)]-truc .



2) Ti is blocked at soie T; , and (prc(T;) A P})[value(so,a)]-true .
3) 7, is blocked inside some S, » and by induction

01(5;)[valuc(so,u))=true .

Combining 1)-3) yiclds Dl(T)(valuc{so,a)]-truo .

Now, if S is blocked for a , at lcast one of the outermost
parallel statements in S, say T' , must be blocked for a , and
Dl(T') A DZ(T') A DS(T')[valuc(sO.u)]=true . But this is a contradic-

tion, so no such a cxists and S cannot be blocked.

§.2.4. Auxiliary Variables.

All of the programs which were shown to be safe from blocking in
Scctions S5.2.1 and 5.2.3 have included auxiliary variables. The next
theorem shows that the programs are also safe from blocking if the

auxiliary variables arc rcmoved.

5.21. Theorem: Suppose S*' 1is a GPL or RPL program which cannot be
blocked, and S is obtained by reduction of S' according to

inference rule A8. Then S cannot be blocked.

Proof: Suppose S 1is blocked for some computation a . By Leaza 3.19
there is a corrcsponding computation a' for S' which is also

blocked. Since this is impossible, S cannot be blocked.

By repcatedly applying Theorem 5.21, all references to auxiliary

variables can be deleted, and the resulting program cannot be blocked.



R = {Rufman}
D(producer) = pre(add) A count>N
=> sent<M A count>N
D(consumer) = pre(remove) A count<0
=> received<M A count<0
D, = (post(consumer) V D(consumer)) A (post(producer)
V D(producer))
= (sent=M V (sent<M A couat>N)) A (received=M V (roceived<\
A count<0))
D, = D(consumer) V D(producer)
=> sent<M V received<M
D. = I(Bufman) = count=ssent-received

Consider the value of D1 A 02 A 03 for the two cases of Dz .

Case 1: sent<M

Dl A sent<M A D3 => (scnt<M A count2N) A
(received=M V (received<M A count<0)) A counts
sent-received
. => sent<M A countiﬂ A received=M A count;scnt-rcccivcd,
if N>0

=> count>N A count<0 = false, if N>0 .

Case 2: reccived<M
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DA reccivedeM A 03
= (scnt=M V (scat<M A count>N)) A (rcceivcd<§ A count<0)
A countssent-received
= scnt=" A received<M A count<0 A count=scnt-received, if N>0
= count<d A count>?d

= false .

So Dl h 02 h n3 = false if N 0 . This lcads to the recasonable
requirement that the buffer used for communication must have at least

one clement so that the program cannot be blocked.

Nested Parallel Statements.

Theorem 5.19 applies only to programs in which there are rno nested
parallel statements. The theorem below is more general, and is

analagous to Theorem 5.14. o

5.20. Theorem: Let S be a deadlock-frce RPL progras with assertion
functions pre, post, and 1 for {P} S {Q} . For cach parallel
component T = resource rl,‘..,rm: coberin TI//"'//Tn coeend , let
Si be the parallel statcments in Ti which are rnot proper cozponents

of another parallel statement inside Ti , and let T; be the withwken

: . . . i .
statements of Ti which are not contained in any Sk . ' Define

R(T) = {r: r a simplc resourcc declared in a statement

which contains T}
P: ), if rl ¢ R(T)
J ) J

= truc, otherwise
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way, while others require a model in which there arc definite rules
for scheduling competing processes. Hopefully, future work will
broaden the range of properties which can be proved with axiomatic

methods.



CHAPTER 6

CONSISTENCY AND COMPLETENESS OF THE DEDUCTIVE SYSTEM

Throughout this thesis two different methods have been used to
describe the semantics of a programming language. The deluctive syster,
consisting of axioms and inference rules, is convenient for proving
that a program performs correcctly. The interpreter is a model of the
way statements are executed on a real machine, and provides ccnsiderably
more detail than the deductive system. In this chapter we discuss
the relationship bc}wccn these two metheds. Either one could be taken
as the primary definition of the semantics of the languages. Here we .
have chosen the interpreter as the basic definition, since it is closer
to our intuitive understanding of what parallel prograzs “mean”. Fron
this point of view the consistency theorcms in Chapters 2, 3, and 4
state that the deductive system is correct, in the sense that it
accurately describes the results of program execution. Section 6.1
is devoted to rather lengthy proofs of these three theorems. Their
meaning could be summarized as "anything which can be proved is true".

The converse of consistency is completeness, or "anything which
is true can be proved". The axioms and inference rules give signifi-
cantly less detail about program cxecution than the interpreter. If ~ °
the deductive system is complete with respect to the interpreter, we
are justified in saying that no essential information is lost by using

the axioms. Section 6.2 considers the completeness of the deductive

136



S.3. Termiration.

Prograa temination is an important property for both parallel
and scquential programs, although there are correct parallel programs
which do not terminate. Various techniques have been suggested for
proving termination of sequential progrems (lloare (lio69]), Manna [Ma74]),
ard the same nethods can often be appiied to parallel programs. A
sequertial program can fail to termirate for two recasons: an infinite
loop or the execution of an illegal operation such as dividing by zero.
Wizh parallel programs there is an additional possibility: the
program can be blocked. (It is even possible that a program can be
blocked for one computation and loop infinitely for another.) But if
a program cannot be blocked, termination can be proved just as it
would be for a scquential program.

One approach to proving terminztion is to show that cach statcment
terminates provided that its primary components terminate. We will
not attempt to present general rules for doing this, but will give
sufficient conditions for proving that a parallel statement terminates.

For similar conditions for scquential statements sce Maana (Ma74]).

5.22. Definition: T terminates conditionally if it can be proved

to terminate under the assuzmption that it does not become blocked.

5.23 Theorem: If T is a cobegin statement in a GPL or RPL program
S which cannot be blocked, and T 1is not a component of another
parallel statement, T terminates if cach of its primary components

teminates conditionally.



Proof: Suppose T does not terminate. None of its processes can
loop indefinitely, so after a finite time each one either finishes

or is bhlocked. At that point T 1is blocked, and since it is not a
proper component of a parallel statement, S is also blocked. Since

this is impossible, T must terminate.

Example: Consider the producer and consumer program in Figure 4.S.

We have alrcady proved that it cannot be blocked, so we need only show
that the producer and consumer processes terminate condi:iohally.
Assuming that the operations required to compute g(A[i]) do not

stop execution, the producer rust cither becore blocked or perforn

M iterations of the loop 2nd terminate. So the producer process
terminates conditionally, and the consumer process is similar. By
Theorem 5.23 the statement par f g, and thus program fg3 ,

nust ferminate.

Note that in this cxample the producer can be blocked at "add"
when count=N . llowever, it cannot be blocked there forever, since
the consumer is not blocked and will ceventially remove a unit frea
the buffér. In general conditional termination implies termination

if a process can only be blocked temporarily, as is the case here.

This concludes the discussion of correctness proofs which include
properties besides partial correctness. There are many other pro-
perties which could be considered: priority assignments, progress for

cach process, blocking of some subset of the processes in a program,

ctc. Many of these properties are difficult to define in a uniform
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in Chapter 2, in connection with the rule of consequence). This
consistency implies that if P } Q and P is true, then Q is also
tree.

Proof of 1): Induction on the structure of S§* . If &' is an assign,
null or 53113 sfatemcnt, S' = T and 1) is true by assumption. If

§* = begin ... Sn end , a nust finish Sn , and by induction post(Sn)
is true after a ., Since post(S ) P post(S') , post(S') is true

after a . If §' is if B then S. else S, , o finishes either

1 2

1 °F Sz . In either case, post(Si) is true after a , and

pos:(si) } post(S') , so post(s') 1is true after a .

S

Proof of 2): By Lemma 6.2, S' = successor(T) . Considering Definition
6.1, either S°' = while B do T' , or §' follows T' in a scquence
of statements. In either case, o finishes T' , making post(T')

true after a , and post(T') } pre(Ss') . Thus, pre(s') is true

after a .

6.4 (2.15) Theorem: If pre and post are assertion functions for

(P} s {Q} , S' a component of S, and a a computation for S from
a state s, satisfying pre(S) , then 1) if S' is ready to exccute
after a , pre(S') is true after « § and 2) if o finishes s,

-post(s') is true after a .

Proof: Usc induction on the length of a . If a is empty, 1) is satisficd
bacause S is curreat initially and pre(S)[sn]-true . 2) does not apply.

If o = a'T consider the cases for T .

a) T is xi=E. Then o'T finishes T .

pro(T)[value(so,a')]-truo by induction
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post(T);[va!ue(so,o')]-truc since pre(T) } post(T)z
post(T)[valuc(so,n)]-truc, since cxecuting x:=E assigns the value
of E to x.

3y Lemnma 6.3, 1) and 2) are satisfied.

b) T = null . By induction prc(T)[valuc(so,a'))-true . Now
pre(T) } post(T) , and T docs rot change any variables, so
post(T)[valuc(so,n)]-true. Applying Lemma 6.3 shows that.l) and
2) are satisfied.

.

-

¢) T is 9221& Tl;"‘;Tn end . T is current after a' , sO by induction
pre(T)[value(so.a')]-truc . Then, pre(T)[value(so.n)]-true , since
T dJocs not change any variables, and pre(Tl)[value(so,c)]-true .
since pre(T) } pte(Tl) . Thus 1) is satisfied, and 2) does rot
apply.

d) T is if B then T, else T, - By induction pre(T)[value(so,c')]
etruec . If B[valuc(so,u')]-true R T1 is current after a'T .
Also, (pre(T) A B)[value(so,u‘T)]-true , giving prc(Tl)[value(so.G)]

strue . If ﬂB[value(so,a')]strue , T, is current after a'T

2
and pre(Tz)[value(so,u)]-true . Thus 1) holds and 2) does not
apply.

e) T is while B do T1 and B[value(so,a’)]-true . This is

handled in the same way as case d).
£) T is yhile B do T1 and B[value(so.a')}-false. Then a = a'T

finishes T , and postCT)[value(so,u)]-truc since (pre(T)

A =B) f post(T) . Then by Lemma 6.3, 1) and 2) are satisfied.
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system for RPL. We will show that the axioms and inference rules given

so far are complete in a special scnse defined by Cook.

6.1. Consistency.

In this section we will give proofs for Theorems 2.15, 3.15,'5nd
4.18, thus establishing the consistency of the deductive systers and
the interpreters for SL, GPL, and RPL. The proofs follow the same

pattern in all three cases.

Sequential Language.

The proof of Theorem 2.15 (and also of the other consistency
theorens) requires a rather tedious analysis of computations and program
states. A few preliminary definitions and lemmas are necessary. The
following definition gives a characterization of successor(S), the

statement which is next to be executed after S finishes.

6.1. Definition: If S' is a component of an SL program S and a

primary componeat of the statement T , then

successor(S') = T if T = while B do S'
w T if T = begin ... S'; T' ... end

= successor(T) if T = if B then S' else T'

If S' =S, i.e., S' 4s not a primary component of any T , § has

NO SUCCessor.
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6.2. iLemma: If a is a computation for an SL program S , and a

finishes S' , then successor(S') is current after a .

Procf: This anounts to showing that program flow in the interpreter
follows the usual pattern. Use structural induction, starting with
S* = S . In this case, a cxecutes S , and no statement is curreat
after a , just as S has no successor.

Now if S' is a primary component of soze statemeat T, consider
the cases in the definition of successor(S') . In the first two
cascs, next(s,T) creates a control trec in which S' is a son of
successor(S') . Thus, when S' 1is finished, successor(S') is a leaf
in the control trce and is current. In the last case, when a finishes
§' it finishes T , ard by induction successor(S') = successor(T)

is current after o .

The next lemma will be used to show that pre(S) and post(S) hold

at appropriate times during program execution. .

6.3. Lemma: Suppose pre and post are assertion functions for {P} S Q1.
and T is an assign, null, or while statement in §. If a is a
computation for S which finishes T , and post(T) is true after o,
then

1) if a finishes S' , post(S') is true after a ;

2) if S* is current after a , re(S’ is true after a .
P

Proof: The proof of this lemma rclies on thc consistency of the

deductive system for the data types of the program (this was discussed



6.10. (3.1S) Theorem: If S is a GPL program with assertion functions

pre and post for (P} S {Q} , S*' is a component of S and a a

compttation for § from s, with P[s ]=true , then

0 O]

1) if S' 1is current after a , pre(S') holds after a ;

2) if a finishes S' , post(S') holds after a .

Proof: By induction on the length of a . If a is empty,
pre(S)[value(so.n)]-pre(s)[sol-truc by assumption, and no other
statenent is current after a . Also a does not fiuish any statement,
so 2) does not apply. If a = a'T , there are two cases to consider.
Cass 1: S*' and T are from the same process. This is just the

sace as the sequeniial problem. It is only necessary to consider the

two new cases of T .

g) T = cobegin Tl Y7/ Tn coend . Then cach Ti is current after

a'T , and since pre(T) f (A pre(Ti)), pre(Ti)(value(so,u)]-true.
i
This makes 1) hold, and 2) does not apply.

h) T is await B then T By induction and the fact that T is

e
ready to execute after a' , (pre(T) A B)[valuc(so,a')]-truc , and
pre(Tl)[valuc(sb.o')]-true , since pre(T) A B } prc(Tl) . Now

value(s 'T)=execute(value(s,,a), T,) , and by Corollary 6.6,
0 1

0'°
post(Tl)[vzlue(so,c)]-true . But then postCT)[valuc(so,u)]-true N
since pos:(Tl) F post(T) . Applying Lemma 6.9 shows that 1)

and 2) hold.

Case 2: S' and T are from different procosses. Noto that if §'

is current after a'T , S' is current for a' and by induction



prc(S')[valuc(so,u')]=truc. If T is a null, if, beein, while, or
parallel statcment, the variables have the same valute in o'T as in a'
s0 prc(S')[valuc(so,u)]=truc . If T is an assigrrment or aw2it
statement, {pre(T) £ pre(S')} T {pre(S')} can be proved (this is the
interference-free property). Now by incuctior, (pre(T) A pre(S*))-
[valuc(so,a')]=true , SO prc(S')[value(so,a'T)]-true .

If o'T finishes S' , a' also finishes S' , and by induction
post(S')[valuc(so,u')]-truc . Oace azain the interference-free property
guarantces that post(S‘)[valuc(so.o'T)]:true . Thus l? and 2) hold

in case 2.

6.11. (3.16) Corollarv (consistency of AD-A7 for GPL): If S is a GPL

program and {P} S {Q} can be proved, it is true in the interpretive

model.

Proof: 1In Chapter 3.

6.12. (3.20) Thecorem (consistcncy of A8 for GPL}: If S' is a CPL

program and S is a rcduction of S' which satisfies the auxiliary

variable rule, then {P} S {Q} is true in the model.

Proof: In Chapter 3.

The Restricted Parallel Language.

Consistency for the RPL deductive system can be proved in much the

same way as for GPL.
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6.5. (2.16) Corollaryv: If (P} S {(Q} can be proved, it is true in the

interpretive model.

Proof: Given in Chapter 2. This is the basic consistency result for

sequential programs.

The following corollary will be uscful in the discussion of GPL

prograns.

6.6. Corollary: If S' is current in program state s , and

pre(S*)[s])=true , then post(S')[execute(s,S')]=truc .

Proof: Rccall from Definition 2.13 that execcute(s,S')=value(s,a) ,
where a executes S' . Applying Corollary 6.5 yields post(S')-

[value(s,a)]=true .

The General Parallel Language.

Next, we prove the consistency of the deductive system for GPL.
The first step is to generalize the definitions and lemmas of the

last section to include await and parallel statemcnts.

6.7. Definition: If S' 4is a component of a GPL program S , and a

primary component of T ,

successor(S') = successor(T) if T = awvait B then S' or

cobegin ... //S'// ... coend

= successor(S') from Definition 6.1 otherwise.



6.8. Lemma: If a is a computation for a GPL program S , a {inishes
S' , and a statement from the same process as S' is current after a ,

then that statement is  successor(S') .

Proof: Esscntially the same as Lemna 6.2. Therc are two new cases for
T , where S*' is a primary component of T . If T 1is a parallel
statement, finishing S' will not necessarily finish T , since other
processcs of T may still be in exccution. In this case, however,
no statement from the same process as S' is current. If o finishes
T , by induction successor(T) = successor(S) is current in a .

If T is await 8 then S' , the interpreter executes T
indivisibly, and S' ncver appears in a computation. So this case

does not occur.

6.9. Lemma: Suppose pre and pcst are assertion functions for
{P} S (Q} , and a 1is a computation for S which finishes T , where
T is an assign, null, while, or await statement. If post(T) holds

after a , and S' and T arc from the same process, then
1) if a finishes S' , post(S') is truc after a.

2) if S' is current after a , pre(S') is true after a.

Proof: 1) The same as Lemma 6.3, with two new cases for S' . If -

S' = await..., then S' = T and 1) is true. If S' = cobezin S1

//...1/ Sn coend and o finishes S' , a finishes each Si . By
induction, (A post(Si)) is truc after a , and since (A post(si))

i i
f post(S') , post(S') is truc after a .

2) Same as Lemma 6.3,
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Also B(vnlue(so,u‘)]-true , and by induction pre(T)[value(so.n')]ctruc .
Then pre(Tl)[value(so.o)]-true » since (pre(T) A B A I(r)) f prc(Tl) R
and starting T does not mnodify any variable values. So 1) holds,

and 2) does rot apply.

Case 2: S' and T are from different processes. Note that if S'

is current for a'T (or a'T finishes S$' ), S' is current for a'
(or a' finishes S' ) and by induction pre(S')[value(so.aj)]-true
(or post(S')[value(so,a')]-truc ). By Lemma 4.14, T does not

change a variable in Proof-var(S') , so pre(S')[value(so.o)]-true

(or post(S')[value(so,n)]ttrue ).

Finally, we must show that 3) holds. Let T' be the parallel
statement in which r was declared. If T is not in exccution for
a'T , 3) does not apply, so assume T' is in execution for o'T . If
-

T is current for a , prc(T')[value(so,u)]-true and I(r)-

[value(so.o)]-true since pre(T') f I(r) . If not, T' is in

execution for a' , and by induction, 3) is satisfied for a' . There

are two ways in which a'T could fail to satisfy 3).

a) T changes a variable which is frce in I(r) . But in this case r

is busy in a'T, so I(r) does not have to be true.
b) a'T finishes a critical section for r , i.e., T makes r not

busy. But then from case 1 above, I(r)[value(so,u)]-true .

6.17. (4.20) Corollarv (consistency for RPL): If S 4is an RPL program

and {P} S {Q} can be proved, it is true in the interpretive model.
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Proof: In Chapter 4.

The consistency results of this section imply that if (P} s {(Q}
can be proved, it is true for the interpreter. If the interpreter is
a pood model of parallel exccution on a rcal machine, thea the deductive
system is also valid for rcal machines.

Therc are scveral ways in which a real implementation might differ
from the interpreter. The most fundamental is that the interpreter does
%ot allow true parallel exccution, but simulates it by nondeterminisnm.
In this respect it is a model of nultiprogramming, but not of rulti-
processing. In Chapter 3 and 4 we have argued that the languages GPL
and RPL arc defined in a way which guarantees that nondeterminism and
parallelism give the same results for all programs.

A sccond possible difference is in the trcatment of expressions
which are normally considered to be undefined, such as those involving
division by zero; this was discussed in Chaptér 2. The interpreter
gives these expressions an arbitrary value, but it would also be
reasonable to stop cxccution as soon as such an expression was encountered
The axioms and inference rules arc also consistent with this treztzent
of the problem, since any. formula (P} S {Q} is true if S does not
terminate.

A third area in which a particular implementation might differ
from the intcrpreter is by specifying in more detail the way parallel
processcs are scheduled. For example, processes which are competing

for a resource might be guarantced to receive it on a first-cooe, first-



6.13. Definition: If S' is a component of an RPL program S , and

a primary component of T ,

successor(S') = successor(T) if T is resource LORTTRTE A
cobecin ... //S'// ... coend
or with r when B do §'

= successor(S') from Definition 6.1 otherwise.

6.14. Lemna: If a is a computation for a GPL program S which
finishes S' , and a statement from the same process as S' is current

after a , then that statement is successor(S') .

Proof: As in Lemma 6.8, consider the cases for T , where S' is a
prizary component of T . If T is one of the five sequential
staterents, or a cobenin statement, the proof is the same as Lemma 6.8.

If T is with r when B do S', a finishes S' , and by

induction successor(S') = successor(T) is current after a .

6.15. Lemma: Suppose pre, post, and I are assertion functions for
{P} s {Q} and T is an assignment, null, or while statement in S .
If a = a'T is a computation for S which finishes T , and post(T)

holds after a , then
1) if a finishes S' , post(S') holds after a ;

2). if S' is current after a , prec(S') holds after a .

Proof: 1) Consider the cases for S§' . If §' is assign, null,

while, begin, if, or cobegin the argument is the samc as for Lemma 6.9.




If S' is with r when B do S, , a finishes Sl , and by
induction post(Si) nolds after a . Since post(Sl) f post(s*) .,
post(S') holds after a .

2) Samc as for Lemma 6.9.

6.16. (4.18) Thcorem: Suppose S is an RPL program, and pre, post, and

I arc assertion functions for {P} S {Q} . If a is a cocputaticn

for S from state s, with P[s. ]J=true , then

0 0]

1) if S' is current after a , pre(S') holds after a ;
2) if a finishes S' , post(S') holds after a ;

3) if resource r is declared in a statement which is in execution

for a , and r is not busy for a , I(r) holds after a .

Proof: By induction on the length of a .

If o is empty, pre(S)[valuc(so,a)]atrue by assumption, and no
other statement is current in a , so 1) holds. o does not finish
any statements, so 2) does not apply. If 3) applies, S rmust be a
parallel statement in which r is declared, and 3) holds because
pre(S) f I(r) .

If a = a'T , we first show that 1) and 2) are satisfied. Consider
TWO cascs:
Casc 1: §' and T are from the same process. This is the same as
case 1 of Theorem 6.10 if T is cobegin or one of the five scquential
statements. The other possibility is that T is with r when B do
T* . After a , T' is current. Since T is ready to execute after

a' , r is not busy for a' , and by induction X(r)[valuc(so,a')]-true .
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for GPL and SL are also relatively complete, but that will not be proved

here.) As a first step we prove relative completcness for programs

in a language which contains the natural numbers with <,=,+,«, and ||

(concatcnation, to be defined shortly). The language I used for

assertions in a program proof will be the first-order predicate

calculus language whose nonlogical symbols are (<,-,v,',||,0,l,...) .
Concatenation is an operation which is useful for rcpresenting

sequences of natural numbers: it is included in the programming

language operations becausc it will be necessary io introduce auxiliary

variables which store sequences.

6.18. Definition: The operation of concatenation, written x||y , is

defined by

x|ly = 10ex + 2, if y =0

= (10+x + 1) ||(y-1) , otherwise

A finite sequence M) Ry,eee,n can be represented by the integer
(...((Ollnl)llnz)...)llnk - Here cach number n, in the sequence is
represented as n 1's followed by a 2. For examplo, the soquence

2,0,4 is expressed as
(oll2)y1]oy}]4 = 112211112

Note that 0 represents the null sequence.

6.19. Theorem (Relative completeress of RPL): Let T be a program in

a version of RPL whose data domain is the natural numbers with <,=,+,=, and || .



Let D' be a complete proof system for the ratural nunbers
(d' will not be effective). Then if {P} T {Q} is true in the inter-

pretive model, it can be proved using D' and A0-AS.

Proof: Sections 6.2.1-6.2.3 arc dcvoted to a proof of this theorem for
the cuse in which T contains at nost one cobecin statement. If T
contains more than one cobegin the principle is the same; although the
details are more complicated. The approach used in the proof is

outlined below:

6.2.1. Construct a program Te by adding auxiliary variables to T .

Show that {P} T« {Q} is true in the interprotive model. "
6.2.2. Decfire pre, post, and I for Ts .

6.2.3. Show that pre, post, and I are assertion functions for
(P} T= {Q} , which implies that (P} T+ {Q} can be proved.
Then A8 can be applied to remove auxiliary variables, giving

a proof of (P} T (Q} .

The crux of the proof is defining asscrtion functions pre(s) ,
post(S) , and I(r) which depend only on the variables in Proof-var(S)
and Proof-var(r) , respectively. In program T , which contains a

single coberin statement T0 -

LO: FESOUTCE T),e.., Tyl cohegin Lx: ’l‘1 //...11 LN: TN coend

Proof-var(rj) = {x: x 1is not assigned a value in T except in a

0
withwhen statement for rj}

Proof-var(S) = {variables of T) if S is not a proper component of T
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served basis. Such an implementation is corsistent with the interpreter,
so it is also consistent with the axioms and inference rules.

All of this suggests that the deductive system accurately
describes the behavior of parallel programs when executed on a real
machine. To prove that this is true for any particular machine requires
a proof that the implementation of the language on that machine is
correct with respect to the semantics defined by the interpreter. Such
a proof would be a major undertaking, but a similar result has been

obtained for the implementation of a sequential language [Mi72).

6.2. Completeness.

The last section established the consistency.of the deductive
systeam and the interpreter; now we would like to show that the deductive
system is also complete with respect to the interpreter. Unfortunately
we canaot hope to do this in general, as the following example shows.

If the programming language SL operates on data types which
include the natural numbers and the standard operations on them, it
can be used to encode a Turing machine. Let S be a program which
encodes a Turing machine that does not halt on any input; then S
does not terminate from any initial state. For such a program
{true} S {false} is trivially true. The set of Turing machines which
do not halt on any input is not recursively cnumerable, but the set
of ‘provable formulas is, so in general {true} S {false} cannot be
proved. ,

Although the deductive syétem cannot be complete for any programming

language which includes the integors, this does not nccessarily mean



that the axioms and inference rules are inadequate for describing the
programming language. Part of the problem is the fact that there is
no complete first-order deductive systen for the natural nusbers.

Recall the form of A0 (the rule of consequence).

(P} s{Qs.PFP, 0 }Q
ir} s {Q}

AO:

In order to usc this rule, it is necessary to prove P' from P and
Q from Q' , using some deductive system D for the data types of
the programming language. When we presented A0 in Chapter 2, we made
no assumptions about the choicc of D except that it is consistent
with the data types of the language. D cannot be complete if the
¢ata types include the natural numbers, by the Gsdel inzompleteness
theorem, so the incomplctencss of the deductive system for prograzzing
languages is not surprising. Now suppose D' is some complete

proof system for the data types of the language (in general D' will
not be effective). If using D' in AO yields a complete proof
system for the programming languaﬁe. we will say that the origiral

deductive system is relativelv comnlete. Relative completeness suggests

that the axioms and inference rules give 'cnough” inforzation about
program execution, and that the incomplcteness of the deductive
system is duc to the incompleteness of D . This approach is due
to Cook [Co7S), who used it to prove the relative completeness of a
deductive system for a sequential language.

In this chapter we give a proof of the relative completeness of

A0-A8 for RPL programs with a wide class of data domains. (The rules



155

precedes 31, or Bl precedes Al, or their execution overlaps. The same
is true for A2 and B2, so the 6 possibilities in Figure 6.1 represent
all of the interesting cases.

In order o prove {true} AorB {Afirst=l V Bfirst=1} , it is
necessary to add auxiliary variables to AorB. Figure 6.2 shows the
augme;tcd program AorB' and Figure 6.3 gives the final variable values
for the six computations of Figure 6.1. Note that the final values
of the variables Altime , Altime , gltime , 82time make it possible
to reconstruct the order in which statements were executed. The rule
is that if xtime<ytime , statement x was executed before statement y .
If xtimesytice , the two statements wc?e executed at about the same
time, with the exact order irrelevant. In the first computation,
for exazple, we can tell that Al was the first statement executed,
and it was followed by A2, Bl, and B2 in that order. For the secondu
cozputation, the final values show that Al was executed before A2
and B2, and that Bl preceded A2 and B2. We cannot tell whether or
not Al preceded Bl, or A2 preceded B2, but this is unimportant because
the final variable values are the same in any case.

Figure 6.4 gives some assertions for {true}l Aor3' {Afirst=1 V
Bfirstsl} . The reader can verify that they are correct. This is
quite straightforward except fcr showing that (post(A) A post(B) A
I(rl) A I(r2)) } (Afirst=l V Bfirst=1) . To verify this, assumo

(post(A) A post(B) A I(rl) A I(r2)) . This iamplies:

1. A2time>Altime A B2time>Bltime

2. Altime/B2time A BltimeAA2time -
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AorB': bepin
Atime:=Brime:=ritime:=rtire:=0;
Altimc:=A2time:=Bltimc:=B2time:=(;
doncAl :=donell :=0;
resource rl{doneAl,rltime),r2(doneBl,r2time):
cobepin
Al: with rl do
begin Altime:=l+max(Atime,rltime);
Atimc:arltinc:=Altime;
doneAl:=1
end
A2: with r2 do
begin A2time:=lvmax(Atime,r2time);
Atimc:=r2tinc:=A2time;
Bfirst:=doneBl
end
end
//
B: begin
Bl: with r2 do
begin Bltime:=l+max(Btime,r2time);
Btime:=r2time:=Bluime;
doncBl:=1
end
B2: with rl do
begin B2time:=lemax(Btize,rltime);
Btime:srltime:=B2time;
Afirst:sdoneAl
end
erd

end

Figure 6.2. Program AorB'.
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Proof-var(Tk) = {x: no statement of Ti , i # %k, assigns a value to x}

Proof-var(S) = Proof-vnr(Tk) u( Y] Proof-var(r))
S a proper comporent
of a withwhen for r

The details of the proof depend heavily on the opecration of the RPL
interpreter, and the reader may wish to review Section 4.2, especially

Definition 4.4 to 4.10.

Section 6.2.4 considers the implications of the relative complete-
ness theorem, and shows how it can be broadened to apply to the

standard prozramming language data types.

6.2.1. The Progran T« .

In this section we will define a program T+ by adding auxiliary
variables to T . Before describing the gencral construction for Te ,
however, we present a simple example which illustrates the techniques

involved.

An Example -- The Proecram AorB.

Consider the program AorB in Figure 6.1. For this program
{true} AorB {Afirst=l V Bfirst=l} is true in the interpretive model,
because any computation must execute Ai before B2, setting Afirsts=l ,
or Bl before A2, setting Bfirst=l . This is illustrated in Figure 6.1
by listing several computations and the final variables values in each
c;su. Note that not all computations are included, since Al and B1,
as well as A2 and B2, can be executed in parallel. Since Al and Bl

have no variables in comnon, the rcsults are the same whether Al
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AorB: bcuin doneAl:=doneBl:=0;

resource rl(doncAl), r2(done2l): ccbeein
A: bepin
Al: with rl do doneal:=l;

A2: with r2 do Bfirst:sconeBl;

end
/1
B: begin
Bl: with r2 do doneSl:=l;
B2: with rl do Afirsti=doneAl;
end
coend
end
Firal Values
Computation Afirst Bfirst
1. Al A2 Bl B2 1 0
2. Al Bl A2 B2 1 ' 1
3. Al Bl B2 A2 1 1
4. Bl A} A2 B2 1 1
S. Bl Al B2 A2 1 1
6. Bl B2 Al A2 0 1

Figure 6.1. Program AorB and Secveral Computations.
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3. B2time>Altime = Afirst=l

4., Altime>Bltime = Biirst=l

Assune Afirstfl . Then from 3 and 2, Altime>B2time ; from 1,

A2time>Bltine ; and from 4, Bfirst=1 . Thus,

.

(post(A) A post(B) A I(rl) A I(r2)) f (Afirst=1 V Bfirst=1) .

The use of variables in the proof is legitimate, since

Proof-var(A) = {doneAl,Bfirst,Atime,Altime,A2time)
Proof-var(B) = {doneBl,Afirst,Btime,Bltime,B2time)
Proof-var(rl) = {doneAl,Afirst,ritime,Altime,B2time}

Proof-var(r2) = {doneBl,Bfirst,r2time,Bltime,A2time}

The auxiliary variables Altime ... B2time are particularly useful
because each belongs to the proof-variables of a process and a “
resource. Thus Altime , for example, can be used in pre and post
assertions for statcments in process A , as well as in I(rl) . Since
the "time" variables encode enough information to determine the order
of statcment execution, they make it possible to prove that if Al did

not precede B2, Bl nust have preceded A2.

The Definition of Tw».

The construction of an augmented program Tw» for an arbitrary
program T containing at most one cobezin statement is accomplished
by adding two kinds of auxiliary variables'to T . The first type arc
“eime' variables, like those in  AorB' ; the second are "histvory"
variables, used 10 record the values of program variables at key

points during progranm execution.
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6.20. Definition: Recall that program T of Thcorem 6.19 has at

most one cobeain.statement T0 =

L.: resource r

0

1N cobeain Ll: T1 /1...11 Lx: TN coend .

Let S be any comporent of T . Then

rescurces(S) = {rj: S is a propcr component of a withwhen state-

ment for rj}
var(S) = {variables of T}, if S is not a proper component of T°

= {x: x docs not appcar on the left side of an assignment

statement in Ti , 14Kk}, if s = Tk

= var(T, ) U ( U r) , if S is a proper
reresources (S)

component of Tk

Note that var(S) is the set of variables which may legally be

used in S , according to Definition 4.3.

6.21. Decfinition: The a2uxiliary variables to be added to the progran
T of Theorem 6.19 are defincd as follows. If T contains ro parallel
statement then T requires no auxiliary variables. If T contains

the parallel statemeat T0 -
LO: resource rl,...,rM: cobegin L1: Tl /]...11 LN: TN ccend ,

the auxiliary variables are:
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{true} begin )
Atime:=Btime:=rltime:=r2time:=Altimc:=A2tize:=Bltime:=B2tire:=0;
doneAl:=donedl:=0;

{all variables have the value 0}
resource rl(doncAl,rltime), r2(doncBl,r2tize): codbezin
A: {Altime=A2timc=Atine=0}
begin Al: with rl do
begin Altime:=l+max(Atime,rltine);
‘Atime:i=rltime:=Altime;
doneAl:=]
end
{A2time=0 A AtimcsAltime>0}
A2: with r2 do
bezin A2time:=l+max(Atime,r2time);
Atime:=r2time:=A2time;
Bfirst:=loneBl;
end
{A2timcsAtime>Altime>0}
end
{A2tinc>Altime>0}
1/
{Bltime=B2time=Btime=0} B {E2time>Bltime>0}
(processes A and B are symmetric)®
coend
{Afirst=1 V Bfirstsl}
end
{Afirst=l V Bfirst=1l}

I(r1) = {(Altime>0 => doneAl=1) A (rltime>Altime A rltime>B2tire) A
(Altimc=B2time = both arc 0) A (82time>Altime>0 => Afirstel)}

I(r2) = {(Bltime>0 => doneBl=1) A (r2time>Bltime A r2tice>A2tine)
(A2time=Bltime => both are 0) A (A2time>Bltime>0 = Bfirsts=l)}

Figure 6.4. Informal Proof of {truc}AorB'{Afirstsl V Bfirsts=l}.



clear as the proof proceeds. For now, rote that part of their useful-

ness stems froz the variety of assertions in which they can appear:

Loinitial x belongs to Proof-var(L,) , 1<k<N , and Proof—var(rj) B
155<M , since it is not modified at all inside the cobeein

statemcnt To .

L history x , where L is a withwhen statement for resource rj in
process Tk , belongs to Proaf—var(Tk) and Proof-var(rj) since

it is changed only inside the statcment L .

The variables added in creating T+ are auxiliary variables, as
they satisfy Definition 3.17. This means that (P} T {Q} can be
proved by first proving (P} T+ (Q} and then using A8 to rcmove the
added statements. The following thcorem shows that {P} Te Q) is

"true for the interpretive model.

6.25. Theorem: Let AV be an auxiliary variable sct for an RPL
program S' , S be a reduction of S' with respect to AV , and P
and Q' be assertions which do not contain free any variables from
AV . Then if (P'} S {Q'} is true for the interpreter, so is

(P'} s* {Q'} .

Proct: This is the converse of Theorem 4.19, and the proof is very
similar. We nust show that if P'(so]-true and a' exccutes S

then Q'[value(so,a')]-true . Given o' which executes S' , lot a
be a computation for S which is like a' except that the statement
removed from S' is removed from o' . Now a and a' have the same

flow of control and the samo effect on the variables in P* and Q'



(sce lemma 3.19). Then P'[so]-true = Q'[value(so.u)]-true (because
{P'} $'{0'} is true in the model), and thus Q'[valuc(so.a')]-true .

So (P'} S {Q'} is true in the interpretive rodel.

6.24. Corollary: (P} T {Q} is true in the irterpretive model.

Procf: (P} T {Q} 1is true for the interpreter, and T can be obtained

from T« by repeated reduction steps.

6.2.2. The Functions pre, post, and I for T- .

Having constructed the program T+ , our next step will be to
define assertion functions for (P} T= {Q} . First let us consider
a statement S which is not a proper component of the cobegin

statenent.

6.25. Definition: Let S be a component of Te , but not a proper
corponent of a cobegin statement. The predicates pre’(S) and

post'(S) defined on program states are

pre'(S)(s) £ 5 a program state 50 and a computation a for T=
such that P[sol=true ard S is current after a aad
x(s]-x[valuc(so,a)) ¥x.
post'(S)(s) = 3 a program state e and a computation a for Te
such that P[solatrue and o finishes S and

x[s]-x[value(so.a)] Y x.

Informally, pre'(S)(s) is true iff it is possible to start Te
with P truc and reach § with variables as given by state s .

\



1. thi:e,...,Lrtine - used like Atime and Btime in the program

Aor3d’

2. ritime,...,r“time -- used like rltimc and rztimc in Aors'

3. for each variable x in T, Loinitial X -- records the value

of x at the beginning of statement Lo

k

B do Sl , and each variables x cvar(Sl) U (thimc,rjtimc) R

4. for each statement in process T, with the form L: with rj when

L historv x -- records the sequence of values of x at the

beginning of each execution of L .

Of course it is assumed that none of thesc variables occur in the

original program. If this is not truc, some variables must be renamed.

6.22. Definition: The program T« recquired in the proof of (P} T {Q)

is obtained by adding auxiliary variables to T as described below:

1. if T contains no cobegin statement, TwsT

2. otherwise replace the cobegin statement

Lo: resource rl,...,r

W cobegin LI: T1 Y/ LN: TN coend

by
begin rltimc:-rztime:-...:-thimezso;

L time:=L time:=...:=L time:=0;

1
L history x:=0; (for each L history x of Definition 6.21)

N

L.initial x:=x; (for each xecvar(T))

0

resource rl(...,rltinc),....r“(...,r time):

M

cobegin L. : Tl' /]...01 LN: TN- coend

1

end



ilere TK' is the result of adding auxiliary variables to Tk .

Next, replace each statement L: with rj warn 3 do Sl in process Tk

by
begin thxmc:=1vmax(th1mc,rjtxme);
L history x := L history x || x; (for each xe¢ var(Sl-))
S,*;
rjtxmc:sttxme;

flere Sl' is the result of adding auxiliary variables to S1 .

The time variables arc used as they were in AorB' to give information

about the order in which critical sections are executed. Sexting

k

any critical section which has already been started in process Tk

L timcxlomax(Lk:imc,rjtimc) records the fact that L was started after

and after any other critical section for TS which has already been
exccuted. Because S1 may contzin a withwhen statement for another
resource, thimc is updated before starting Sl' . Sirce no other

withwhen for rj can be started until L is finished, rjtime is

updated after S * , just before rcleasing control of . .

1 j
The L history and Loinitial variables are used to record
variable values at key points. L initial x is the value x had when

0

the most recent exccution of the ccbegin statement L0 began.

L history x contains the sequeace of values assumed by x at the
beginning of cach execution of statement L (i the most recent execu-

tion of LO). Tho purposc of introcucing these variables will becoce
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2. for 1<is<n
a. S, 1is current in s,
i i-1
b. if Si is with r when B do S, B[si]-true

c. s -next(si_l,si) except that if x ¢ var(Si) . x[si] may

i

take on any value

If B8 is a local computation, let valuc(s)=sn .

PSS

Note that a computation and a local computation are very similar.

There are 3 main differences.

1. In the local cooputation, 2c allows the values of nonlocal variables
to change arbitrarily, reflecting the fact that other processes may
nodify their values while Tk is being executed.

2. In a computatioa for Tk , each state s5 is uniquely defined by
si-ncxt(si_l.si) , so the computation is determined by the initial

state and the sequence of statements. In a local computation, s, is

not uniquely determined by s; and Si , so the local computation

-1
consists of a sequence of statements and program states.
3. In a computation, S.1 must be ready to execute (Definition 4.6) in
$i.1 ° In a local computation 2a and b are similar to ‘'ready to
execute"”, but it is not necessary to require that r is not busy, since
we are only considering thé execution of a single process.

If o is a computatioa for T« it is always possible to derive
a local computation for process Tk which cxecutes the statemen:is of Tk

in the same order as a . But it is not always possible to find a

computation for T« consistent with a given local computation for Tk .
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This is because Definition 6.27 may allow ronlocal varizbles to

assume values that never could arise in a real computation.

6.28. Definition: A local computation £ for -Tk is accegptahble iff
its initial state s, has prc(To)[so]-true , where To is the
parallel statemcnt of T» . This implies that it is possidle to

start T+ with P true and reach the beginning of Tk in state sy

A local computation contains only statements from one process. A
related concept is the resource computation, which contains only

statements which operate on a particular resource.

6.29. Definition: A resource comoutaticn y for a resource rj is

a sequence s, (Sl'sl) aes (Sn.sn) , 0<n , where s; is a progran

state, 0O<i<n , Si is a component of a withwhen statement for rj R

1<i<n , and

1. the control state of s

o 1s empty .

2. if S, is L: with rj when B do S' , 1gi<n
a. the control of si.1 is empty
b. the control of S5 is the single node S'

c. x[silnx[si_l] vV xer

3. if S, isnota withwhen statcament for LI 1<i<n .
a. Si is current in s,
b. if Si is with r when B do S, B[si]-true

= if
c. s; ncxt(si_l,si) except that if x ¢ var(Si) N x[si] may

take on any vaiue;

If y is a resource computation, let value(y)-sn .




Post'(S)(s) is true iff it is possible to start T« with P true and
finish S with variables as given by state s .

Now pre' and post' as defined above are recursively cnumcrable
predicates, and as such can always be expressed as first-order formulas

in the language L whose nonlogical symbols are ({<,=,+,»,||,0,1,...} .

6.26. Definition: For S a component of Te , but not a proper
coriponent of a cobepin statement, let pre(S) and post(S) be first-
order formulas of L which express the predicates pre'(S) and post'(S),

i.e.,

pre(S)(s] = pre'(S)(s)

post(S)(s] = post'(S)(s) .

Pre and post as given above satisfy the definition of assertion
functions (Definition 4.15). As an exanple, consider the casc where §
is the assignnent statement y:=E . Part 2 of Definition 4.15 requires.
that pre(S) f post(S)g . The first step in verifying this is to show
that pre(S) = post(S)g - Let s be a state with pre(S)(s)=truc .

Then pre'(S)(s) 1is true, and

kS Spe9 such that P[so]-truc and S is current after

a , sand x[s]-x[valuc(so,n)] ¥V x.

Since S is current after a, oS is a computation, and value(so,cS)-
value(so,n)<y|E> . Then aS is a computation which finishes S , and

x[value(so,aS)]-x[value(so,a)<ylE>]-x[s<y[E>] VY x , giving
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post' (S)(s<yi>)struec . Thus, pre(S)(s) = post(S)[s<ylE>] , or
pre(S) = post(S)E .

Since pre(S) = post(S)g is true for the natural numbers,
pre(S) f post(S)g using D' , the complete proof system for the

natural numbers of Thcorem 6.19.

This definition of pre and post is not acceprable for a state:eﬁt
S which is a proper componcnt of a cobeain statement, for then pre(S)
and post(S) can only refer to variables in Proof-var(S) . In order to
define pre and post for such statements we nced the concept of a local
computation for the parallel process contairing S . Consider a
computation o for the program T+ . If £ is the subsequence of a
consisting of all statcments frcm process Tk » B can be called a

local computation for T, . But where a uniquely determines the

k
final values of the variables in Proof-var(T+) , 8 does not deterwine
the values of variables in Proof-var(Tk) , because these may deperd

on the values of resource variables which are changed unrredictably

by other processes. For this reason a local computation cannot be

just a sequence of statcments, but must be a sequence of statements and

program states. Morc formally:

6.27. Definition: Let T, be one of the parallel processes in
program T . A lccal computation £ for Tk is a sequence

. .c . i <
50 (Sl'sl) .. (Sn,sn) , 0<n , where s; 1s a progran state, O:j_p.,

S1 is a component of Tk . 1lgi<n , and

1. the control state of S5 contains the single node Tk
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post'(S)(s) & The state s 1is compatible with somc local computation
which finishes S . If S is a proper componcnt of a
withwhen statement for r , s is also compatible with

some resource computation for r which finishes S .

I'(r)(s) = The state s is compatible with some resource computation
which is not in the midst of executing a critical scction

for r .

Since pre'(S) , post'(S) , and I'(r) are recursively enumerable
predicates, they can be expressed by first-order formulas in the
language L containing the nonlogical symbols (<,-,',-,]|,0,1,...) .
Moreover, the formulas for pre'(S) and post'(S) can be written so
that all free variables belong to Proof-var(S) , since pre'(S) and
post'(S) depend only on the values of variables in Proof-var(S) .
Similarly, the formula for I'(r) can be written so that all free

variables belong to Proof-var(r) .

6.32, Definition: Let pre(S) , post(S) , and I(r) be first-order

formulas of the language L which express pre'(S) , post'(S) , and
I'(r) of Definition 6.31. The frece variables in pre(S) and post(S)
should belong to Proof-var(S) , and the free variables of I(r)

should belong to Proof-var(r) .

6.2.3. Assertion Functions.

The functions pre, post, and I of Definition 6.32 arc assertion

_functions for {P} T« {Q} . In order to provc this we must show that

they satisfy Definition 4.15. Most of the roquirements in this
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definition have the form Pl |r PZ , where Pl and Pz 2re expressions
involving pre, post, and I . In order o show l’l }- P2 , i.e., that
P:, can be proved from Pl using the deductive system D' of

Theorem 6.19, we first show that P; = P2 is a true statezent about

the natural numbers. Then P1 can be proved from P2 using D',

since D' is a complete proof system for the natural nusbers.

The following theorem shows that for cach formula P1 l- P2 of

Definition 4.1S, P1 = Pz is true.

6.33. Theorem: The (universal closures) of the following formulas

are true for the natural numbers:

1. P =»pre(Te) and post(T=) ==Q .
2. pre(S) = post(S)E’ for all assignments S (y:=E) in Te -
3. pre(S) => post(S) for all null S in T«

4, for all S = begin § ;S e;r_xg in T»

1o 35, .
a., pre(S) =°prc(Sl) and post(Sn) = post(S)
b. pos:(Si) = prc(Si_l) , l<i<n-1

S. forallS-_i_iB_t_rﬁrlslgﬁz_Sz in T«
a. (pre(S) A B) = prc(Sl) and (pre(S) A 2B) = pre(Sz)
b. post(Sl) = post(S) and post(Sz) => post(S)

6. for all S =while B do S, in T» .
a. (pre(S) A B) = pre(Sl)
b. post(Sl) => pre(S)

c. (pre(S) A 1B) => post(S)



A resource computation Yy for r represeats the execution of a
sequence of withwhen statements -- the only statements where the
viriables of r are accessible. It has the form Y = Y Yo -eo Yy o
where Y is a subscquence of y which cxccutes one withwhen statemeat
for rj - Part 2 of the definition describes what happens when a new
withwhen statezment L is started, while part 3 (the same as 2a-c for
a local cozputation) describes the remainder of the exccution of L .
Because of a, a new withwhen for rj cannot be started until the
previous one is finished.

If o 1is a computation for T« , it is always possible to derive
3 resource computation for r which executes critical sections for
T in the sane order as a . But it is not always possible to find
a cozputation for T+ which is consistent with a particular resource
computation, since 2c and 3¢ allow nonlocal variables to assume

arbitrary values.

6.33. Definition: A resource computation y is accentable iff its

initial state g has pre(To){sO]-truc , i.e., it is possible to

start T« with P true and reach T, in state sp *

0

Now pre(S) , post(S) and I(r) can be defined using local and
resource computations. The first step is to define predicates pre'(S) ,

post'(S) and I'(r) on program states.

§.31. Definition: If S is a component and r a resource of T» ,

let the predicates pre'(S) , post'(S) , and I'(x) be defined as

follows. If S is not a proper component of the cobesin statement
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TO , prc'(S) and post'(S) arc given in Definition 6.25. If S is

a component of process Tk ,

pre*(S)(s) = 4 an acccptable local computation & for Tk with S
current after 2 and x[s)=x[value(3)] ¥ xeProoi-var(S) ,
and V reresources(S) 3 an acceptable resource cozputation

Y, for r with S current after Y and x[s]=

x(valuc(yr)] ¥ xeProof-var(S) .

post'(S)(s) = 3 an acceptable local computation 38 for Tk which
finishes S , and x{s]=x[value(2)] ¥ xeProcf-var(S) ,
and V reresources(S) 3 an acceptable resource computation
Y, for r which finishes S , and x[s]-x[valuc(yr)]

¥ xeProof-var(S) .
For all resources rj R

I'(rj)(s) = I an acceptable resource computation y for r , with the
control of value(y) empty, and x[s]=x[value(y)]

Y xeProof-var(r) .
These definitions can be informally summarized as:

pre' (S)(s) = The state s is compatible with some local ccmputation
which rcaches S . If S 1is a proper component of a
withwhen statement for r , s 1is also compatible with

some rcsource computation for r which reaches S .
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Then B(s)=truc A 3 an acceptatle local computation B8 for process

Tk with S current after 8 ard x[s]=x[value(f)] Y xeProof-var(S) ,

and V rcresources(S) , 3 an acceptable resource computation Y.

for v with S current after Y. and x[s]-x(valuc(yr)] v

xcProof~var(S)AA 3 an acceptable resource computation y for Ty with

the control of value(y) empty and x[s]=x{value(y)] V xeProof-var(r) .
Let 5' = B(S,sl) , where s, is the state whose control part

is the same as the control of next(valuec(B),S) , and whosc variable

part has x[sl]-x[s] ¥ x . Then B' is an acceptable loca{ computation

for process Tk (sce 2a-c of Definition 6.27) with S, current after

1
8' and x[s}=x[value(8')] V x:Proof-var(Sl) .

For reresources(S) , let yr' - Yr(s’sr) , where the control of
s, = control of next(valuc(yr),s) , and x[srl-x[s] Y x . Then Yr.
is an acceptable resource computation for r (sce 3a-c of Definition

6.29) with S, current after yr‘ and x{s]-x(value(yr')] \J

1
xeProof-var(S) .

is the single

Finally, let y_ "' = (S,s,) where the control of s
T 2 2

node 5 and x[s,)=x[s] ¥V x . Then v ! is an acceptable resource
= 0

computation for ro (see 2a-c of Definition 6.29) with S1 current

after v_ ' and x[s)=x[value(y_ ')] V¥ xeProof-var(S) .
To . To

Thus 38' and (Yr':r:rcsources(sl) (=resources (S) U (ro)))

which satisfy pre'(Sl)(s) , and (pre(S) A I(r) A B) = pre(sl) .
b. Show post(Sl) = (post(S) A I(ro))

Suppose s is a program state with post(Sl)[s]-true . Then 3

an acceptable local computation 8 for process Tk which finishes Sl ,
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and x[s)=x[valuc(B)] ¥ xeProof-var(S) , and V¥ rcresourccs(sl) , 3
an acceptable resource computation Y. which finishes Sl with
x[s]sx(valuc(yr)] ¥ xeProof-var(S) .

Since a , Y, finish S they also finish S . Also, since

1
Yro finishes S , the control of valuc(yro) is ¢rmpty. Then 3 an
acceptable local computation £ for process Tk which finishes S ,
and x[s)=x[value(B)) V xcProof-var(S) (since Proof-var(S) C
Proof;var(sl)), and V¥ rercsources(S) (-resources(sl) "~ (ro}) 1 an
acceptable resource computation Yr which finishes S and has

x[s]-x[value(yr)] V xeProof-var(S) , and 3 an acceptadble resource

- computation Y, with the control of value(yr ) empty and
0

0
x[s]-x[valuc(Yr v xcProof—var(ro) s post(S)(s] A I(ro)[s] H
0

So post(Sl) = (post(S) A I(ro)) .

8. T0 is the parallel statement

L : resource T,,...,r,: cobegin L.t T, //...// L, T, coead
M 171 N® N ——

0 —— 1 et

a. We must show that pre(To) = (pre(Tl) AcoA pre(T‘) A

I(rl) A...A I(r“)) )

Suppose s is a program state with pre(To)[s]-true . Let s,
1<k<N , be the state whose control part is the single node Tk and ’
whos¢ variable part has x[sk]-x[s] Vx. Let 8.=s . Thea 8, is
an acceptable local computation for Tk (ek has initial state Sy

and no statcments cxccuted) with Tk current after Sk and

x[s]-x[valuc(sk)] V¥V x . Thus, pre(Tk)[s]-truc , 1<keN .



=

7. for all S = with r when B do S1 in T»

a. (pre(S) A3 A I(r)) = prc(Sl)

b. post(Sl) = (post(S) A I(r))
8. for T0 = L: resource TioeeeTys cobepin LI: ’I‘1 /.77 LN: TN coend
a. pre(To) = (pre(Tl) Ao LA prc(TN) A I(rl) AcA I(r“))
b. (pos:(Tl) AcoA post(TN) A I(rl) AooA I(rM)) = post(To)
Proof:

1. We nust show P[s] => pre(T=)(s] , post(T+)(s] == Q[s]) . ~

pre(Te)[s] = 3a,so such that P[50)=true and a is a computation for

Te with T+ current after a and x[sl-x[valuc(so,o)] Vx.

Letting a be empty and Sg=s , gives P[s] = pre(T«)(s] .

post(T+) [s] Ha.so such that P[so]=truc and a finishes Tw» and
x[s]-x[value(so,n)] Y x.

= Q[s] , since (P} T» {Q} 1is true for the interpreter.

2.-6. The five sequential statements are treated in much the same way.
As an example we show how to deal with assignment statements. If
S is y:=E , we must show pre(S) = pos:(S)g .
a. The case when S is not a proper component of the cobegin
statement was given earlier.
b. Let S be a component of process Tk of the cobegin statement,

and suppose s is a state such that pre(S)[s] is true.
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pre(S)[s] = 3 an acceprable local compu:ationv € for process Tk »
with S current after & arnd i[s]-x[value(s)] A4
xcProof-var(S) , and for all reresources(S) , 3 an
acceptable resource computation Y, for r with §

current arter Y, and x[s]-x[valuc(yr)] Y

xeProof-var(S) .
Let  s'=s<y|E>

8' = g(S,next(value(R),S))

yr‘ = yr(S,ncxt(valuc(yr).S)) for reresources(S)

Now B' is an acceptadlc local computation for process T, which

k
finishes S , and x[s'}=x[value(e')] V x Proof-var(S) . (To check
that €' is an acceptable local computation it is only necessary to
verify 2a-c of Definition 6.27 for the new element (S,next(value(3),S))
in the sequence.)

For all reresources(S) , Yr’ is an acceptable resource cozputa-
tion which finishes S ard has x[s‘]=x[value(yr')] V xeProof-var(s) .
(To check this, it is only nccessary to verify 3a-c of Definition 6.29
for the new clement of the sequence.)

But this implies post(S)[s']=truec , giving pre(S)[s] =

post(S) [s<y|E>] or pre(S) = post(S)g .

7. S is with ro when B do S1 , S in process Tk

a., Assume s is a program statec with (pre(S) A B A I(ro))[s]-true .
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variable thine , but if S is a withwhen statement, the "time" for

S is (lomax(thimc,r time)) , which will be assigned to L, tine as

j k
soon as the first statement of the critical section is exccuted.

6.355. Definition: Let a, be a sequence of statcments obtaincd by

werging the statements of Bl,....B\I in a way which preserves the
order of statexents within a single Bk , and puts the ith occurrence
of § froz Tk before the jth occurrence of S' from Tm if

tine(S,i,Bk) < timc(S',j,sn) . (Since time is nondecreasing within

Bk , these two rcquirements do not conflict.)

We rust show a = n1502 satisfies b and ¢ from (») . The

following lerma is the basis of the proof.

6.56. Lemma: a = 01502 is a computation for T« with

x[valuc(so,u)]-x[value(Bk)] Y xcvar(Tk) » 1<ks<N , “

x[value(so,n)]-x[value(yj)] v xcrj P L5 3 N
Proof: Here we sketch the proof; a formal proof is given in Scction
6.2.5. Basically, a yields the same-values as By for the appro-
priate variables beéause a, exccutes statements from process Tk
in the saae order and with-tha same variable values as 8, . a, also
executes statcaents for resource rj in the same order and with the
sace variable values as Yj .

It is clear from the definition of oy that it executes statements

from T, in the same order as 8y - To sce that a, oxocutes
~N -
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statements for resource rj in the same order as Yj , let L bea

statement with T vhen B do S, in process T, . Once L siarts

1
exccution, the way in which it executes is determined Ly the variables
in var(Sl) , since these arce the only variables which can be used in

Sl . The auxiliary variables L history x , xcvar(Sl) , record these
values cach time L begins execution. Because

L history x[valuc(ﬂk)]-L history x[s]=aL history x[value(yj)] .

L is exccuted the same way in Bk and Yj . This is true for each
withwhen statement for rj » SO gy, which is derived from the B's ,
contains the same statemcnts as Yj . Moreover, thecy have the sa:é
order in uz as in Yj because '‘time' increases throughout Yj , and
statements in a, are ordered by "tine".

To see that the final values of a, are those given in the lexza,
let a,' be an initial segment of ay - Let Bk’ and yj' b¢ the

corresponding initial segments of 8, and v, , 1<ken ,  1<§eM .

Then by induction on the length of az' R
x[value(so,alToaz')]-x[valuc(Bk')] \J xcvar(Tk) R

x[value(so.alTéaz')]-x[value(yj')) v x:rj .

2 1

since all the B's and Yy's start with the initial state given by

If a,' is empuy, valuc(so,c Toaz‘)-value(el')-value(ﬁk‘)-value(yj') »

Loinitial x(s) . If az' - az"S , where S 1is from process Tk N



* Xext let s' be the program state whose control part is cmpty and
variable part has x[s]=x[s']) ¥ x . Let yjss' , 1<j<M . Then Yj is
an acceptable resource computation for rj (Yj has initial state s
and no statements executed) with control of valu;(yj) empty and
x[s]=x[value(yj)] Y x . This gives I(rj)[s]-true , 1M . So

pre(To) = (prc(Tl) A...A pre(TN) A X(rl) Ao A I(rM)) .

b. We must show

(post(T!) Ac.A post(Tx) A I(rl) A...A I(rM)) - post(To) .

Suppose s is a program state with

(post(Tl) AioA post(TN) A I(rl) Ao..A X(rM))(s]-true .

Then froz post(Sk)[s] » 1<k<N , 3 an acceptable local computation
£ which finishes Sk and has x[s]=x[va1ue(3k)] v xcProof-var(Tk) .
From l(rj)[s] , 1<j<xM , 3 an acceptable resource computation 75
with the control of value(Yj) empty and x[s]-x[value(yj)] v '

x:Proof-var(rj) .

To prove post(To)[s] we need s,,0 such that

a. P[sol-trué
(«) { b. a 1is a computation for T« which finishes T0

c. x[s]-x[valua(so,u)] ¥ x.

s, and a can be derived from 51""'5N .

0
' sg » let s, be the initial state of the local
computation Bl (any Bk , 1<k<N , would do). Since 81 is

First, to find
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acceptable, prc(TO)[s]]atruc , i.e., ids such that P[solntrue N

0%
and o is a computation for T=- with TO current after % and

x[sl]=x[valuc(so,ul)] v x.

This yields s, which satisfies z) above. For a , take a =

0

, where a_ is obtained by merging the statements of

%) Tg%2 2

81""'5q . Bccause of the auxiliary variables in T« it is possible

to define a, s0 that the subscquence of a, consisting cf statements

from process Tk contains the same statements as Bk , while the

subsequence of a, consisting of componcnts of withwhen statescents
for resource rj contains the same statements as Yj . This is done
by defining a, by merging the statements of al,...,aﬂ in a way
which is consistent with the "time" at which statements were executed.

More formally:

6.34. Dcfinition: Let & be a computation (standard, resource, or

local) and S a statement from process Tk of Te .
If S occurs less than i times in 6 , time(S,i,6) =0 .

If S occurs at least i times in & , let s be the progras state in

§ just afrer the ith occurrence of S . Then

time(S,i,6) = thime[s] , if S is not a withwhen statement

- (lvmax[thimc,rjtinc))[s] , if S is with rj

when B do S1 .

Thus, time(S,i,6) represeats the "time' at which S was executed

for the ith time in 6 . In most ccses "time" is givern by the
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of addition, multiplzcation, and concatenation. |In this scction, we
generalize this result to Programs with any of the usual data domains
and then Jdiscuss the significance of relative completencss for proofs
of progran correctness.

Let us consider a Program T in 3 language with data type(s)

. which include a set of values A and operations {o],...,on) . This
language may differ from the one of Theorem 6.19 both by failing to
include the natural numbers with (<.-,v,-.|l) and by containing
additional data values and opcrations.

Firse, supposc the language does not contain all of the natural
nucbers and (<,-,0.-,I|) « This is a common Case, as most real program-
uing languages have only a finite subset of the natural numbers and
do not include our kind of concatenation. The power of the natural
aunbers was required in the partial correctness proof for the statements
which panipulate the "time" and “history" auxiliary variables. So we
will simply expand the Programaing language to data types A' with
operations (ol....,on) by adding (<,m,+ .=, [],0,1,...} , with the
restriction that new operations and data values can only be used in
Statements for auxiliary variables.

If A* and (ol,...,om) contain data types and operations which
were not in the Programming language of Theorem 6.19, there are two
areas of concern. The first is the auxiliary variable L history x ,
vhich rust be able to encode a sequence of values of x . We have
shown how to encode a sequence of natural ;umbcrs, and the techniques

can be applied 1o encode any sequence of values from an enumerable



domain, If Ar is an cnumerable Set, let e:A'sN be ap enuzeration
of the elements of A' . A sequence al;...,ak of values from A’

can be represented by
(...((OIlc(al))l!e(az))-.-)!!e(ak) .

So by adding‘thc operation e() o M (3again to be used only with
auxiliary variables), we can represent the auxiliary variables
L history x .

The sccond problem is that it must be possible to express the
assertions pre(s) , post(S) , and I(r) as first-order foriulas over
the domain of the programming language. This was possible when the
language contained {<,-,',',ll,0,l,...} » because then the assertions
represented recursively enumerable Precicates. Now if A is ar
enumerable set, and the operations (ol....,om) are recursive, the
assertions for a program using A' gand (ol,...,om) are also -
Tecursively ¢numerable, and pre, Post, and I can be expressed as
first-order formulas, -

This discussion leads to the following theorem.

6.38. Thecorem: The Proof-rules A0-AS are relatively ccnplete for
—==-__-ncorem
programs in any version of RPL which has ap enuzerable domain and

recursive operations.

Proof: The domain may be extended by adding the natural numbers, « .

"0l ,and e, Lo p be a complete proof systeam for this



adding S to Sk" has the samc effect as adding it to «a," because

the variables on which S operates arc the samc in both cases.

We observed when local and resource computations were defined
that it is not always possible to find a program computation which
is'co:patible with a given local or resource computation. The fact
that we can find o, which is compatible with all the B8's and ¥'s

is due to the auxiliary variables of T« .

Given this lerma, b) and c) of (+) follow easily. b) is
satisfied because & is a computation for T« which finishes S
(since each Sk finishes Sk)' c¢) is satisfied becausc all the
variables of T» belong to some var(Tk) or rj (see the RPL syntax
rules, Definition 4.3). If xcvar(Tk) ) x[valuc(so,a)]-x[value(ﬂk)]-
x(s] . If xcrj . x[v;luc(so,u)]-x[value(yj)]-x[s] . So,
x[valuc(so,n)]-x[s] for all x in T« . This establishes that 50

aad a satisfy a,b,c so post(TO)[s]-true . Thus

(pos:(Tl) A..A postCTN) A I(rl) Ao..A I(rM)) > post(To) .

This finishes the proof of Thecorem 6.33. Wo next show that pre,
post, and I are assertion functions.

6.37. Corollarv: Let D be the proof system consisting of A0-A7,
and D' , a complete proof system for the natural numbers. Then pre,

post, and I of Definition 6.32 are assertion functions for {P} T« {Q} .



Proof: ¥e must show that pre, post, and I satisfy Definition 4.1S.
Most of the criteria arc casily verified, since for each condition

Pl } P, in the definition, P, =P is truc (Theorer 6.33) so that

2

P, can be proved from P, wusing D' . Requirement 3c restricts the

1
frce variables in pre(S) and post(S) to elements of Proof-var(s) ,
and this is satisfied by Definition 6.32. Similarly, 8¢ restricts

the free variables of I(r) to those in Proof-var(r) , and this

requirement is also satisfied by Definition 6.32.

6.19. Theorem (Relative Cornleteness of RPL): If {P} T {Q} is true

in the interpreter, where T is a progran in a version of PPL whose
data domain is the natural rumbers with <,s,+,», and ll , then
{P} T (Q} can be proved using A0-A8 and a complete proof system D'

for the natural numbers.

Proof: Given T , first construct a prograa T+ by adding auxiliary
variables to T as donc in Definition 6.22. Then by Corollary 6.24,
{P} T» (Q} 1is also true for the interprecter.. By Corollary 6.37,
pre, post, and I of Defirition 6.32 are assertion functions for

(P} T« {Q} using the deductive system D' . Then by Theoren 4.16,
there is a proof of (P} T= {Q} wusing D' , and by repeated applica-
tions of A8 the auxiliary variables can be removed to give a procf

of (P} T {Q} .

6.2.4. Implications of the Relative Comnletencss Theoren.

Theorem 6.19 states that the RPL proof rules A0-A8 are relatively

complete for programs which usc the natural numbers and the operations



187

resource r_, the L' history x variables rccord the value of xer
when L' starts execution. Since L' history xe Proof—var(Tk) n
Proaf-var(rj) (L' history x is changed only within L , a withwhen

statement for rj)

L' history x[value(sk)]-L' history x[s]=L' history x[valuc(yj)] .

and Sk and Yj obtain the same values for xer, when they start L' .
Thus, Bk and Yj execute statement L the same number of times,
ard each time they start with the same variable values; this implies

that they execute L identically.

6.41. Lerma: The statements in a, for resource Ty aro in the

saze order as the statements in Yj .

Procf: The statements of a, come from the Bk's , 1<k<H . Each

\

L: with rj vhen B do S1 in Tk is exccuted the same way in 8,

and Yj . So o2 contains the same statements for rj as Yj docs.

They are in the same order because o, is ordered by "time". Recall

that

1.2 ‘n
Yy ®YY e Y o
b}
where each ym is a subsequence which executes a withwhen statement
for rj . Now if S and S' occur in Yj , with the i‘h occurrence

of S tefore the kth

occurrence of S' , cither S and S' are
in the same ym or timo(s,i,yj) < time(S',k,Yj) , because rjtimc is

updated at the end of each y" . By Lemma 6.40, time(S,i,y,) <
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timc(S'.k,yi) inplics that timc(S,i.em) < time(S',k.En) . 2ecause

the nerping of statements from 8 which yields a, preserves both
the order of statements frem a single process and the tire order, the
th

- .t
i occurrence of S precedes the j h occurrence of S' in oy

¢.42. Lemma: Let «

15j<M be the corresponding initial segments of 8 » Yj . Then
1. o' = ulTOOZ' is a computation for T» .
2. a. x[valuc(so,u')]=x[value(8k')] Y xcvar(Tk) . 1:}:}1.

b. if S is current after Bk' , S 1is current after a' .

3. x[value(so,n')]tx[valuc(yj‘)] A2 x:rj . 1Mo,

Proof: By induction on the length of az‘ .
If a,' is empty:

1. a'' = ale is a computation for T« because a; is defined-as a

computation for T« with TO current after a -

2.a. By the definition of a x[valuc(so,ol)]=x[valuc(51)] ¥ x .

Now Bk , l<k<N , is an acceptable local coaputation, so its initial.
state Sy satisfies prc(To) . This means that the time and history
variables have the value 0 in 'sk , and Y xevar(T) , x[sk]- .

0

before L0 begins). Since LO initial x cProof-var(Tk) s 1gkeN , .

L, initial x[sk] (the auxiliary variables receive these values just

L, initial x[value(ek)]-l.o initial x[s] .

,' be an initial segnent of a, , and 8", Yj' .



extenced domain. Then the proof of Theorem 6.19 (with the operations

on L history modified as suggested above) becomes a proof of 6.38.

Since any implementable programming language must operate over
an enunerable data domain with recursive operations, Thcorem 6.33
irplies the relative completeness of RPL for ary reasonable choice of
data types. This seems to indicate that AN-A8 are an adequate sat
of prooi-rules in the sense that they capture all the information
about program statements that is relevant for partial correctness. Since
AC-AS arc not complete in the absolute sense, there are programs for
which valid partial corrcctness formulas cannot be proved. Our main
interest, however, is in proving the partial correctness of programs
written by prograrmers who understand .thea and why they work. In
such a case the programmer knows how to prove the nccessary facts
about the program domain. The relative completcress of A0-AS implies
that in this case it is possible to prove the program's partial

correctness.

6.2.5. Proof of Lemma 6.31.

In Section 6.2.3 we gave an informal proof of Lemma 6.31. We now
give a rore detailcd'proof using four subsidiary lemmas. Reccall that s
is a program state with po;t(To)(s]=true i 8, 1is an acceptable
local computation for process Tk , with x[valuc(Bk)]-x[s] v xcvar(Tk) .
1<k<N 3 Vj is an acceptable resource computation for rj with the
coaztrol of v:lue(yj) empty and x[value(yj)]-x[s] v xcvar(Yj) Posge0

are defined in such a way that pre(To)[value(so,al)]-true , and the
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initial state of B1 is valuc(so,ul) ; u, 1is a seguence of statements

2

obtained by merzing the statements of the 2's in a way which preserves

the "time” at which the statements were exccuted.

6.39. Lemma: The statements in o, for process T,

2 arc in the same

k
order as the statements of Bk .

Proof: Obvious from the definition of a, .

6.40. Lemma: If L: with rj when B do S, is a statement in process

1
Tk ,» L is exccuted in the same way in Bk as in 75 , i.c., the
subscquences of statements from L in Bk and Yj are identical.
Morecver, if ak' is an irnitial segment cof ﬁk which has S , a cozporent
of S1 , current, and Yj' is the corresponding initial segment of
Yj , then

x[valuc(ak')]=x{valuc(yj')] Y xevar(S) .

Proof: Note that

L history x[valuc(ak)]uL history x[s]=L history x[valuc(yj)] ,

v xcvar(Sl) , becausc history xcPrcof—var(Ty) f\Proof-var(rj) .
This means that L is executed the same number of times in ﬂk as in,
Yj » and that cach time the initial variable values arc the same in
both computations. If L does not properly contain any withwhen
statements, this implies that L is executed in exactly the saze way
in Bk
thosc in var(Sl) . If L does contain a withwhen statemeat L' for

and Yj , since the only variables accessible inside L are
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x[value(so.o")] = x[valuc(ﬂk")] Y xevar(S) (provad in 2 above)

- x[value(yj")] V xevar(S) (Leama 6.40)

So S has the same effect on variables in a, and Yj , yielding 3.



CHAPTER 7

CONCLUSIONS AND COMMENTS

In this thesis we have prescnted a method for Qerification of
parallel programs. Our techniques are based on Hoare's axiomatic approach
for proving partial correctness. We first provided axioms and inference
rules for two purallel languages: a General Parallel Language and a
Restricted Parallel Langzuage. GPL is not a realistic prsgramning
language: it is introduced bécause it is powerful enough to represent
most of the standard synchronizing operations. Thus, the deductive
system for GPL can be used to establish the correctness of a progran
which uses semaphores, events, or any of the other common synchronizing
tools. Unfortunately, these proofs may be quite complex because the
verification of the interference-frece property requires that each
assertion be tested for invariance over each assignment statement from
another process.

RPL avoids this complexity by restricting the use of shared variables
to critical sections, so that only one process at a time has access to )
a particular variable. This gives RPL programs a structure which
makes them casy to undcrstand and to verify. Ina proving the corrcctness
of an RPL program onc must first define the invariant for each resou;cb .
(possibly adding auxiliary variables to do so). The rest of the verifi-
cation process requires only sequential reasoning, and is much siazpler

than a GPL proof.

192
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So all sk's start with the same initial state, i.c.,

x[value(sk‘)]-x[sklzx{sl]-x[valuc(so,o‘)] vV x.

2.b. The only statement current after B8 ' is Tk (sce Definition

k

6.27), and T, 1is also curreat after a'

13

3. The initial state of cach Yj » 12j<M s also identical to

value(so,u') + the proof is the same as for 2a.

Induction step: If uz' = a,"S , assumc the lemma is satisfied for 02“

and the corresponding sk" ard yj” . Let S belong to process Tk .

1. a' = alTouz“S is a cemputation iff S is ready to execute after

a" = ulTouz" . This requires two conditions to be satisfied.

a. S 1is current after a" . Since S is the next statement

after Bk" in Bk » S 1is current after Sk“ (sce
Definition 6.27). By 2a of the induction hypothesis this
inplies that S is current after a" .

b. If S is with T vhen B do S, , ¥ is not busy in a,"
and B[valuc(so,u")]-true . Since Yj finishes one withwhen
statement pcforc it starts another, and a, executes state-
nents for rj in the same order as Yj R rj is not busy in
a," . To sce that B[value(so,o")]=true , note that

B[value(ak‘)]-true by part 2b of Definition 6.27. Now
x[value(so.uz")]-x[valuc(sk")] V xevar(S) (proved in 2 below)
-x[valuc(sk‘)] V xevar(S) , since S does not

change any variable values.
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x[value(so.az“)]=x{va:uc(vj")] ¥ xr.rj (induction)
-x[valuc(yj')] 14 x:rj , since S does not
change any variable values

=x[valuc(ak')] v xcrj (Lemma 6.40)

So x[value(so,az")lsx[value(ﬁk'H 12 xcvar(Sl) , and

B{value(s 2”)]=:rue .

0
2.2 and b. S has the same effect in a," as in ek" if all the

variables in var(S) have the same values in both computations. Now

var(S) = var(Tk) U ( U r) .
reresources(S)
8y induction x[value(so,u”)]-x[valuc(ﬁk")] v xcvar(Tk) .

For rj € resources(S) ,

x[valuc(so,a”)] =x[valuc(yj")} Y xr.rj (induction) .

=x{value(8,")] V xer. (Lcmma 6.40)
k b]

3. If S is not a component of a withwhen statement for rj , 3is

satisfied by induction, since S does not affect the variables of rj .

If S is L: with rj wvhen B do S S does not change any

1’
variables whenadded to o' and ﬁj“ , S0 again 3 is satisfied by

induction.

If S is a proper component of L: with rj wken B do S1 .



Finally, the results of this thesis should be very applicable to
automatic program verification. “e visualize an approach in which th;
prograrner works with an interactive system, like the one described
by Good, et al. [Go75]. He first gives his program, possibly with
auxiliary variables, and defines resource and loop invariants. The
verification systen is then left with the mechanical problem of
checking whether the invariants and input and output conditions are
consistent. It may respond that they are consistent, thus cstablishing
the correctness of the program; that they are inconsistent, implying
an error in either the program or the invariants; or that there.is
insuificient information to decice. In the last casc the programmer
can provide rore information by adding auxiliary variables or

strengthening the invariants.
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The deductive systems for RPL anl GPL are primarily inteaded for
partial correctaess proofs. However, a number of other properties are
important for parallel programs, and the informatrion obtaincd from a
partial correctness proof can often be applicd to verify that other
properties also hold. In Chapter 5 we showed how the pre, post, and
resource invariant asscrtions from a partial correctness proof can be
used to establish mutual exclusion, frcedom from dcadlock, and progran
terzination.

Finally, we evaluated the axioms and inference rules by defining
interpreters for the languages RPL and GPL; the interpreters model
the effect of execuring programs on a real computer. The RPL and GPL
deductive systems were shown to be consistent with the interpreters,
i.e., they accurately describe the effects of program execution. For
RPL we also showed that the deductive system was relatively complcte
with respect to the interpreter, i.e., given adequate knowlcdn; about
the data domain of the program, any true partial corrcctness formula
can be preved. Thus, the axioms and inference rules do not omit any
crucial information about program exccution.

Our results suggest scveral directions for future work. One
izportant task is the extension of the deductive system to a more
powerful programming language. A major weakness of RPL and GPL is that
both are limited to programs with a fixed degree of parallelism. Parallel
exccution is initiated by the cobegin statement, which starts a fixed
nuaber of parallel processes. The addition of recursive proccdures
would overcome this limitation, sinco a recursive procedure which

contained a cobegin statement could create an arbitrary number of parallel



processes. Wc conjeciurce that recursive procedures would increase the
complexity of partial correctness proofs only as much as in the
sequential case, i.e., a new rule describing recursion must be added,
but no charge in the existing axioms is necessary. However, rutual
exclusion and decadlock proof techniques ray require more significant
modification.

More generally, it is clear that neither RPL ror G?L is a perfect
language for parallel prograrming. GPL is too powerful to be feasible
for implemcntation, and it does not provide enough structure to aid
the programmer in organizing his program. Although RPL is an icprovezeat
in both these areas, the conditional critical section is still somewhat
incfficient as a synchrenizing operation. Moreover, there are some
problems which do rot fit reasonably intb tne RPL framewcrk -- for
example the rcaders and writers problem discussed in Chapter 5. There
is a nced for new language constructions which can be inmplemented
cificiently and which provide a basis for organizirng programs in‘a clear
and casily verified marner.

Another area in which further work is needed is the verification
of properties other than partial correctness. Although techniques were
presented in Chapter 5 for proving some of thesec properties, there are

many more to consider, e.g., priority scheduling and progress for each

process. Mot all of these properties will be amenable to the axiczatic
approach (sce the discussion at the end of Chapter 5), but the raage
of properties which can be verified using this and other techniques can

cortainly bo cxtended.
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