On the Power of Multiplication
In Random Access Machines

J. Hartmanis and J. Simon
TR 74-213

September, 1974

Paper presented at the 15th Annual Symposium on Switching and

Automata Theory, New Orleans, October 14-16, 1974.

Computer Science Department
Cornell University
Ithaca, New York 14850

i
IETRINT DU

»
..
L

DA

- N . o

MODEL_PAPER 7 1/8 x 9 15/16 PRINT SURFACE FOR 8 1/2 x 11 PAGE ° © TO 75% CoPY
S e iy —_—
ON THE POWER OF MULTIPLICATION IN RANDOM ACCESS MACHINES+
Juris Hartmanis
Janos Simontt
Computer Science Department B _
Cornell University
Ithaca, N.Y. 14850
b
. Abstract ; s
b :
We consider random access machines with a be essentially equivalent if they are polyno-

multiplication operation, having the added
capability of computing logical operations on
bit vectors in parallel. The contents of a
register are considered both as an integer and
as a vector of bits and both arithmetic and
boolean operations may be used on the same
register. We prove that, counting one opera-
tion as a unit of time and considering the
machines as acceptors, deterministic and non-
deterministic polynomial time acceptable lan-
guages are the same, and are exactly the lan-
guages recognizable in polynomial tape by
Turing machines. We observe that the same
measure on machines without multiplication is
polynomially related to Turing machine time--
thus the added computational power due to
multiplication in random access machines is
equivalent to the computational power which
polynomially tape-bounded Turing machine com=
putations have over polynomially time-bounded
computations. Therefore, in this formulation,
it is not harder to multiply than to add if
"and only if PTAPE = PTIME for Turing machines.
We also discuss other instruction sets for
_random access machines and their computational
power. ‘

1

1. Introduction

: In the theory of computational complexity
one tries to classify problems by the amount
of resources needed to compute a solution to
the problem by some idealized computer. "Popu-
lar"™ computer models are Turing machines (Tms)

-[10] and random access machines (RAMs) ([11],

and the amount of resource is usually measured

- by the number of moves or by the memory used

in the computation. One considers both deter-
ministic and nondeterministic models-- in ad-
dition, the instruction repertory of a RAM may
or may not contain indirect addressing, addi-
tion, multiplication, bit operations, shifts,
etc. Also, it was proposed to charge an -
amount proportional to the length of the re-
gister operated upon for each move of a RAM,
instead of a unit cost (3], [1, Ch. 1]. Re-
lationships between these models are central
problems in computational complexity and, with
the exception of the straightforward ones,
largely unknown.

f In this paper we consider these machines
as acceptors. Moreover, as is customary since
{2], we shall pay a lot of attention to poly-
nomial bounds, and will consider two models to

mially related.?t

Within this framework the following is
known: deterministic Tm time (one tape or
many tapes) and any reasonable model of a
deterministic bounded action machine time are
polynomially related ([5]. This equivalence
class contains also deterministic RAM time
(both unit and logarithmic cost) with an in-
struction set to which we may add indirect ad-
dressing, addition and even vector bit opera-
tions. i

Another equivalence class is constituted
by the nondeterministic versions of the above-
mentioned machines. Whether the two classes
are distinct is the famous P = NP question [4].

Memory measures form a third class: Tm
tape, number of bits used in a RAM computation
(with any reasonable instruction set) are all
polynomially related. It is an important re-
sult, due to Savitch [9], that the memory (or
tape) class also contains the nondeterministic
versions of these machines--i.e. nondetermin-
ism gives at most a polynomial reduction in
the usc <of memory. With the excepticn cf this
last result, the proofs of .all these relation-
ships are straightforward.*f As we shall see,
our techniques yield a new proof of this result.

Very recently Pratt, Stockmeyer and Rabin
proved that RAMs with a somewhat unorthodox
instruction set, consisting of shift instruc-
tions, parallel vector operations and addition
(on the index registers) are polynomially e-
quivalent to the third class of memory bounded
computations [8]. However, in order to obtain
their results, they must partition their re-
gisters into two disjoint classes, normal
(vector) and shift registers. The only inter-
action between these is shifting a vector re-
gister by the amount contained in a shift re-
gister. Arithmetics are limited to additions
in the shift register--this model is quite
different from the models considered before.

Whether the three classes of machines are
polynomially related is not known. Other open
problems include the relationships between
RAMs with and without multiplication (unit
time measure), the relationship between the
two time measures for RAMs with multiplica-
tion, the relationship between deterministic

"* This research was supported in part by grant

70/755 fromwFundaqso de Amparo “a Pesquisa do
Estado de S3o Paulo, by Universidade Estadual -

de gampinas, and by the National Science Foune
dation Grant GJ-33171x.

f*On leave of absence from Universidade de
Campinas, Campinas, S.P., Brazil. !

+ Using "translation" techniques, it can be
shown that two models are polynomially rclated
if the class of languages accepted in polyno-
mial bound by the first are also accepted in
polynomial bound by the second and conversely.
See [6] for details.

ttSome of the proofs may be found in [1].

i ad emiata s e

LT d e

. “~well-'nown open problem.
- -.umeasures for RAMs with multiplication are po-
:“ilynomially related if and only if memory and

vitic Tms.

MIDEL PARTR

.and nondeterministic RAMs with multiplication
~and, in general, the amount of power gained
“by adding features to a RAM's instruction set.
z In this paper we obtain the following re-
sults: for RAMs with multiplication (and bit
- operations) nondeterministic and deterministic
4ime models are polynomially related. Note
~that the same question for RAMs without multi-
plication is the P = NP problem.. Furthermore,
:RAMs with multiplication accept in polynomial
time exactly the languages accepted by Turing
~.machines in polynomial tape. This implies
.ithat the power gained by having multiplica-
+tion in a RAM--if any--, a problem discussed
already in [2), is basically the same as the
iimprovement of Tm tape over time, another
Also, the two time

time are polynomially related for determinis-
Our results, together with [8], show
ithat a wide range of enlarged instruction set
we introduce

.

‘RAMs are polynomially related:

- 4several such instruction sets, and prove their

‘requivalence. The fact that all these ma-

~«wchines are equivalent is quite surprising:

for example, we will show that the machine

--‘introduced in [8] may be simulated in a

“istraightforward manner by allowing multipli-
:cation by powers of 2. Since after a polyno-

-:1mial number of steps some of the registers of

-:a RAM with multiplication may contain numbers

 rof -exponential length, it is not clear that
“#we may simulate its computation in polynomial
-~.time by a RAM which can multiply only by pow-

~.ers of two.

“The outline of this paper is the follow-
dng: Section 1 gives an introduction, Sec-—

ion 2 introduces terminology and notation.

"+In Section 3 we prove half of our main result,

‘namely that we can simulate in polynomial tape
ra nondeterministic RAM with multiplication
woperating in polynomial time. This is the
‘hardest proof in the paper: it uses the same
iideas as [8] but it is quite a bit more in-
:volved. We also show that the result is

“i-true even if we add division to the operation

:set of the RAMs. In Section 4 we sketch a
«~proof of the other half of the result, i.e.

i that our RAMs can simulate in polynomial time
ifms with a polynomial tape bound. We prove
.this by considering first an instruction set
iwith apparently less power than RAMs with
‘imultiplication, show how these may simulate
:7Pm tape efficiently by using the programming
i tricks of [8) and show how these machines may
ibe simulated by our other models. The re- .

: sults of these two sections imply that for
‘.our RAMs deterministic and nondeterministic

- . time measures and nondeterministic and deter-

iministic Tm tape measures are all polvnomially
; related. They also show that a wide col-

‘i lection of instruction sets are polynomially

‘related to each other and to Tm tapec. We
' conclude by stating a few corollaries and
+ making some comments on the meaning of our
t-theorems in Section 5.

|) 2. Definitions

A RAM acceptor or RAM with instruction
' set' 0 is a set of registers Ro,Rl,... each

: capable of storing a non-negative integer in

7 1/8 x 9 15/16 PPINT SU“F.CE

. have obvious meanings.

FCR B 1/2 x 11 PAGE T0 75% COFY

binary representation, toqethetnﬁith a finite

program of (possibly labeled) O-instructions.
If no two labels are the same, we say that the
program is deterministic, otherwise it is non-
deterministic. We call a RAM model determin—
istic if we consider only deterministic pro-
grams from the instruction set.

Our first instruction set consists of the
following: !

e Y

R; + Rj (=k) (assignment)
Ri « <Rj> (indirect addressing)
R, Rj + Ry .. (sum)
Ry + Rj = Rk (proper subtraction)
Ry + Rj bool Rk (boolean operations)
if Ri comp Rj label 1 (conditional Jump) ;

else label 2 ° '
accept
reject

comp may be any of <, <, =, >, >, #. For i

boolean operations we consider the integers
as bit strings and do the operations compo-
nentwise. Leading O0s are dropped at the end
of operations: for example, 1l nand 10 = 1.

bool may be any binary boolean operation (e.g.

A, V, eor, nand, D, etc.). accept and reject
An operand of =k 1s a
literal and the constant k itself should be
used. . .

The computation of a RAM starts by put-
ting the input in register Ry, setting all

registers to 0 and executing the first in-
struction of the RAM's program. Instructions
are executed in sequence until a conditional
jump is encountered, after which one of the
instructions with label "label 1" is executed
if the condition is satisfied and one of the
instructions with label "label 2" is executed
otherwise. Execution stops when an accept or
reject instruction is met. A string x €
{0,1T* is accepted by the RAM if there is a
finite computation ending with the execution
of an accept instruction. The complexity

.measures defined for RAMs are:

(unit) time measure: the complexity of

. an accepting computation is the number of in-

structions executed in the accepting sequence.
The complexity of the RAM on input x is the
minimal complexity of accepting computations.

logarithmic, or length time measure: the
complexity of an accepting computation is the
sum of the lengths of the operands of the in-
structions executed in the accepting sequence.
When there are two operands, we take the
length of the longer; when an operand has
length 0 we use 1 in the sum. The complexity
of the RAM on input x is the minimal complex-
ity among accepting computations.

memory measure: the maximum number of
bits uscd at any time in the computation.
(The number of bits used at a given time is
the sum of the number of significant bits of

LS

“

O T T A

“"by the contents of R..

MOLEL PResR

m—— - R e - —— e e =

iall registers in use at that time.)
; Unless otherwise stated, time measure
~will mean unit time measure. We shall call
‘RAMs with instruction set O, RAMls or simply

< RAMs. For a discussion of RAM complexity - -
-measures, see [1] or [3]. :
i These definitions are standard, with the
. =exception of the boolean operators. We argue
_-however that the reason they were left out of
.:earlier RAM definitions (where + was an opera-
“tor) was mainly because RAMs were mostly used
- to represent von Neumann computers working on
numerical problems. All real computers have
-'such capabilities, so if RAMs are to be more
-or less realistic models of them, they should
-have boolean operations. Anyhow, if we define
~RAMs with an instruction set consisting of 0,

..~minus the boolean operators, call it 00, then
" YRAMs with instruction set 00, RAMos, are poly-
- znomially related to RAM;s in all measures.

~:This may be proved easily for the unit time
~smeasure by noting that one can compute a bool-
-+ean function of two bit arguments on a RAMO

~and a boolean function of a bit wvector in time
«-proportional to the length of the operands.
:Since the latter may increase at most by one
‘=<per -operation,- the result follows.
.~We will consider other instruction sets:
-:oz.is O1 plus the instruction
Ry <+ Rj ° Rk
~+which leaves in Ri the contents of Rj followed

(concatenation)

Again, the operands

..q0ay be_literals. We shall call RAMs with in-
“.struction set O, CRAMs (C for concatenation).

i *03 is 01 plus the instruction

ﬁRi -« Rj . Rk {product)

'Mhigh computes the product of the two operands
-r(which may be literals) and stores it in Ri‘

-iRAMs with instruction set O, will be called
MRAMS (M for multiplication?.

' 4
1

] w04'is 03 plus the instruction
’ﬂ%.+ Rj + Rk
-mwhich leaves in register Ry the result of di-
“+4viding Rj by Rk and taking the integer part of
the result. If Rk contains 0 the machine jams
7and rejects. These RAMs will be called PRAMs
i (P for powerful).

Finally, we describe VRAMs, defined in
“[8). As we mentioned before, this model is
iquite different from the previous ones. There
:are two different kinds of registers: shift
‘registers and general (vector) registers. The
-only interaction between the two is by means
‘0of the shift instructions

Vi f Ik (shift right)
vi + Ik (shift left)

S |

(integer division)

7 1/8 x 9 15/16 PRINT SURFACE

. - . .
. i .

FOR 8 1/2 x 11 PAGE TO 75% COPY
rwhich shift the contents of general register
3Vi to the right or left by the amount con-

tained in %hift register 1.

ters we have the instructions of assignment,
.sum, proper subtraction and division by 2; for
general registers we have only boolean opera-
‘tions. 1In addition, we have conditional jumps
using the result of a comparison between two
general registers or between two index regis-
ters to decide which label to jump to. Lit-
erals and indirect addressing may be used in
all operations.

For shift regis-

Our Tm model is the off-line Tm of [10]:
a finite control, a read-only input tape and
a read-write work tape. Time measure is the
number of moves and tape measure the longest
work tape used in the accepting computation
(for nondeterministic models we take the min-
~imum among accepting computations).

Finally, we define the class PTIME -
:<machine>, where <machine> may be Tm, RAM,
:RAMO, CRAM, MRAM, PRAM or VRAM as the class

. of languages for which there is a determinis-
tic machine which accepts the language within
. a polynomial number of steps. The class
PTAPE - <machine> will designate the class of
languages accepted in polynomial storage. We
: shall use the prefix "N" to designate non-de-
iterministic models. We also use "P" or
wppIME" for PTIME-Tm, and "PTAPE" for PTAPE-
. Tm.
As we mentioned before, the following is
itrue:

"Lemma: 1) P = PTIME - RAM = PTIME - RAMO

Moreover, if we define length - PTIME to

: . denote the class PTIME in the length measure,
P = length - PTIME - RAM

) ‘= length - PTIME - CRAM

! = length - PTIME - MRAM

! .= length - PTIME - VRAM

1 2) NP = NPTIME - RAM i
= NPTIME - RAMO
= length - NPTIME - RAM
= length - NPTIME - CRAM

: = length - NPTIME - MRAM

;) = length - NPTIME - VRAM

i ~3) PTAPE = NPTAPE = PTAPE - RAM =

! NPTAPE - RAM
{ for all RAM models.

We shall prove in the next section that
Theorem 1: PTAPE D NPTIME - MRAM

In Section 4 we show that

i Theorem 2: PTIME - CRAM 2 PTAPE.

In the same section we also show that

NPTIME - MRAM 2
PTIME - MRAM
PTIME - VRAM

> PTIME - MRAM

> PTIME - VRAM

5 PTIME - CRAM

! All these containments are straightforward.

i~he set of containments implies our main re-
sults

[N

MOTEL PACER

NPTIME - MRAM = PTIME - MRAM

and
PTIME - MRAM = PTAPE.

It also means that all of the following
coincide:

PTAPE, ;
PTIME - CRAM, NPTIME - CRAM !
PTIME - MRAM, NPTIME - MRAM :
PTIME - VRAM, NPTIME - VRAM

PTIME - PRAM, NPTIME - PRAM.

The last line follows from the proof, at
the end of Section 3, that PRAMs may be simu-
lated in polynomial time by MRAMs. Note that
since Theorem 1 actually says (deterministic)
PTAPE D NPTIME - MRAM, and Theorem 2 that
PTIME = CRAM D NPTAPE, we get a new proof of
Savitch's result [9]) that PTAPE = NPTAPE.

It should be pointed out again, that the

main resultp. yp _ MRAM = PTAPE

in conjunction with the observation that
PTIME - RAMO = PTIME

characterizes the additional power gained by
{one-step) multiplication in RAMs as the dif-
ference, if any, between PTIME and PTAPE for
Turing machine computations.

3. PTAPE D NPTIME - MRAM

In this section we prove our main theorem,
the simulation of MRAMs working in polynomial
time by Turing machines using polynomial tape.
We shall not attempt a very efficient simula-
tion, but we try to make the construction as
clear as possible.

Suppose the MRAM M operates in time nk,
where n is the length of the input. Our Tm
simulator T will write out.in one of its tapes
a guess for the sequence of operations execu-
ted by M in its accepting computation and
check that the sequence is correct. The se-
quence may be written down deterministically, .
by enumerating all such sequences of length

nk in alphabetical order. Since the number
of instructions of M's program is a constant,
the sequence will be of length cnK for some
constant c. To verify that such a sequence
is indeed an accepting computation of M we
need to check that one step follows from the
next when M's program is executed -- which is
only a problem in the case of conditional in-
structions, when we must find out the contents
of a register. We shall define a function
FIND(r,b,t) which will return the value of the
b-th bit of register r at time t. Our theorem
will be proved if this function is computable
in polynomial tape.-- the subject of the re-
mainder of this section. Note that since we
are testing for an accepting sequence, it does
not matter whether we are simulating determin-
istic or nondeterministic machines.

First, let us prove that the arguments of
FIND may be written down in polynomial tape.
Note that in t operations the biggest possible
t
2

nunber that may be generated is a“ , produced

by successive multiplications: a, a2,

7 1/3 x 9 15/1& PRINT SURFACE

1 ‘ﬁl‘ .

P

FO2 8 1/2 x 11 PAGE T0 75% COFr
L o ’ t)
a2~a2 = a4, a‘-a4 = aa, eee s @° where a is
the maximum of x and the biggest literal in
M's program. To address a bit of it, we need
to count up to its length, that is, up to

t
1092(a2) = 2tlogza, which may be done in

%pace log (atlogza). In particular, for t=nk,

space nk+ will suffice, so that b may be

written down in polynomial tape.
Clearly, t may also be written down in
polynomial tape.

There is a small difficulty with r: since
we allow indirect addressing, although in time

nk at most nk registers are accessed, the ad-
t

dress of a register may be as high as 22 ’

which has length 2% and cannot therefore be

written in polynomial tape. However, at the
cost of at most a square factor in time, we

may restrict an MRAM operating in time t to

use only its first t registers: -

Let M' be an arbitrary MRAM. M" will
mimic M' but use only its first 2t registers.
M" uses its registers in pairs: the first
component of the register pair holds an ad-
dress, the address of a register of M'; the
second component has the actual contents of
that register. When M" has to simulate a move
of M' which accesses the register s, M" first
determines whether a first component holding
s exists among the first t register pairs of
M", If so, M" accesses the second component
of that pair. Otherwise, M" creates a new
pair in the first two available locations by
storing s in the first component (register)
and using the second for the s-th register of
M'. Clearly the simulation of a move of M'
takes at most ct steps for some constant ¢, so
that M" operates in time ct2. It uses only
its first 2t registers.

We shall suppose that M uses only its

first nk registers. We have shown that in
that case all arguments of FIND may be written
down in polynomial space.

Now let us describe FIND and prove that
it operates in polynomial tape.

Informally, FIND works as follows: FIND
(r,b,0) is easily computed given the input.
We shall argue inductively. FIND(r,b,t) will
be computed from previous values of FIND --
clearly the only interesting case is when r
was altered in the previous move. For exam-
ple, if the move at t-1l-was r <« pVs, then
FIND(r,b,t) = FIND(p,b,t-1l) V FIND(s,b,t-1).
This recursion in time does not cause any
problens, because we may first compute FIND
(p,b,t-1) and then reuse the tape for a call
of FIND(s,b,t-1), so that if lt;l is the

amount of tape needed to compute FINDs for
times up to t-1, we have the recurrence

- _ k+1

lt = lt_l+ c (20 = cn)
which has the solution lt = c'nk+l.

In the case of shift machines, studied

-

Colioy

MOFL_PAPTR
1n [8], thls is the only recursion necessary.
However, with our machines, in the case of

~-multiplication of two f-digit numbers, we may
-have to compute up to g factors and get the

carry from the previous column in order to ob-
tain the desired bit. Since £ may be
k

regularity of operations in order to be able
‘to. compute within polynomial tape. Also, the

--carry from the previous column may be quite

-big: in the worst case, when we multiply

(1)2 by (1)2 the carry may be &. This is
-$till manageable, since in time nK, 2 < 2n

an accumulator of length nk will suffice. We
also need to generate up to 2 pairs of bits,
multiply them in pairs and add them up. This
may be done as follows: we store the addres-
ses of the two bits being computed, compute
each of the two bits of the product separately

-multiply the two results and update the ad-
-dresses to get the addresses of the two bits
~~of the next product. The product is added to
. an accumulator and the process is repeated un-

-til all product terms have been computed.

“Then we need the carry from the prev;ous C e

column.

“We cannot compute this carry by a recur-

=zsive call of FIND, because since the length of
~the register may be exponential, keeping track

of the recursion would take exponential tape.
-Instead, we compute the carries explicitly
-from the bottom up -~ i.e., we first compute

--the carry at the rightmost column (finding the

bits by recursive calls of FIND on pairs and
smultiplying them), and then, with that carry

-and FIND, we compute the carry from the second

-rightmost column, and so on. The space nceded
.is only for keeping track of which column we
-are at, one recursive call of FIND, one accu-
mulator and one previous carry holder. Each
of these may be written down in space nk*l, so
‘that we have the recursion

zt = lt’i + cnk+l, with 29 = nk+l

2k+1

--which implies l < cn ’

-and the 51mu1at10n of multiplication may be
-carried out in polynomial space.

The argument for + is similar but much

~easier, since only 2 bits and a carry of at

-most 1 are involved.

A-bastard PL/I (PL/B?) of FIND follows:

-FIND. PROCEDURE (r,b,t), returns (digit)

/* We omit the trivial code for t=0 */

/* We suppose FIND has access to global

variables that specify M's action at

i -a)l times */

i if instruction at time t-1 not of the
form g « p op s then return (FIND
(r,b,t-1)) fi

if r # q then return (FIND(r,b,t-1))
/* register was not modlfled at time
t-1 */

. else
i 1f op = boolean operation
then /* compute relevant bits from
operands */
! . BIT 1 = FIND(p,b,t-1)
, BIT 2 = FIND(s,b,t-1)
return (BIT 1 op BIT 2)

7 1/3 x 9 15/16 PRINT SURFACE FOR 8 1/2 x 11 PAGE

e e e N

2" s we must be able to take advantage of the

TO 75% copy

R . |

else
ifop= -
then /* loop through columns
until current one is
reached */ !

COLUMN = 0 ;
CARRY = 0 i
while COLUMN < b do
FIRSTPTR = 0 /* addres-
ses of
bits to
be mul-
tiplied*/
SECONDPTR = COLUMN
ACUM = 0 '

“while SECONDPTR > 0 do
/* add up products

in ACUM */

BIT 1 = FIND (p,FIRST-
PTR, t-1)

BIT 2 = FIND (s, SECOND-
PTR, t-1)

ACUM = ACUM+BIT 1+BIT2
FIRSTPTR = FIRSTPTR+1l
SECONDPTR = SECONDPTR

" ‘end

ACUM = ACUM + CARRY
/* get total sum in
~ .column */

_ CARRY = if AQQM>O then
"Tacu - 1)72
else 0 /*shift
right by 1 */ fi

end

return (ACUM mod 2)
else /* op = + */

* compute carries from right
to left, as for « */

COLUMN = 0

CARRY = 0

while COLUMN < b do
ACUM = 0
BIT 1 = FIND(p,COLUMN,t~-1)
BIT 2 = FIND(s,COLUMN, t-1)
ACUM = BIT..14BIT2 + CARRY
CARRY = 1f ACUM >0’ then

{ACUM -~ 1)/27 el else

0 fi
) “end
return (ACUM mod 2)
g5 T
fi " end: FIND.

Let us analyze the tape requirements of FIND.

All the inputs are representable in tape

+ .
nk 1. Moreover, no loop control variable ex-~

ceeds an input variable; the same is true of
FIRSTPTR and SECONDPTR.. Also, we saw that the
greatest possible carry is of order 2n"™, and

therefore representable in tape nk. Therefore

all variables are representable in space an+1
in any activation of FIND. The only possible
problem arises with the recursion: however
note that we have only one active call at a
time in every activation of FIND and it has
its t parameter smaller by one than the t of
its calling routine. Thus, at most nkK activa-
tions of FIND may be present at any given
time, and since each of them occupies at most

cnk+l squares of tape, the whole procedure

e s s s bl - 48w’ ool e

MILEL PreTY

o T 4 - -
works in space cn2k . :

; This ends the proof of our theorem.

i - The features of FIND that carry the proof
through are:

: 1) the possibility of computing the re}e-
vant digits of results of previou; computations
one at a time; even though there is an expo- '

_nential number of them, the rule for their

formation is easy.

2) the fact that the the carry may‘be
computed explicitly, in an orderly fashion
from right to left. In this way, the only in-
formation needed from one column to the next
is the carry from the previous column which,
luckily, is just small enough to be represent-

oa

--able in polynomial space.

For the benefit of the reader who got
lost in the details: we have proven

Theorem 1+ Polynomial time bounded non-

~deterministic MRAM-recognizable languages are
.recognizable in polynomial tape by Turing ma-

.chines (deterministically).

In the next section we show the converse.

In the remainder of this section we ex-—
+tend the simulation to PRAMs. First note that
.a straightforward extension of the technique
used to prove Theorem 1 fails: to compute

-the carries in a bit-by-bit simulation of the

division algorithm we may need exponential
.space, a fact that the reader may want to
verify by himself. However, in‘[l, Ch. 8].an
-algorithm is presented which, given an n-bit
integer p, computes 2 N=%/p in 0(log n) opera-
tions. This number is basically the recipro-
.cal of p: to find [a/p] we find "1/p", mul-
tiply by a and shift by an appropriate amount.
.A shift corresponds to a division by 2, fqr
which, unlike general division, our techniques
of simulation by Tms do work. The computa-
« tion of the reciprocal is done by a recursive
- technique: it is easy to get the first (most
- significant) digit of b = 1/p. At stage 1,

.we have an approximation bi to b satisfying,:f

: b = bi + (l/p)(l—bip).
! Using bi as an approximation for 1/p, we ob-
: tain the recursive formula

bi+1 = bi + bi(l—bip). .
: Note that the method converges quadratlcalgy
- and may be programmed to yield 1/p to 2k bits

- from an approximation to k bits in a'constant
: number of operations (Algorithm 8.1 in [1]).

‘To obtain the result [a/p], we nee§ Fo
.- compute 1/p to an accuracy of logza+1 digits.

. Since, as we saw, in t operations a is of or-
t .
- der 22 , we neced to get 2t+l bits of 1/p,
which may be done in O(t) operations. Thus
an MRAM acceptor may simulate a PRAM acceptor
.'with a loss of cfficiency of at most a square
factor. .

4. PTAPE C PTIME - MRAM

In this section we outline a proof that
polynomial tape bounded Tm acceptable

€

R

7 1/8 x 9 15/16 PPINT SUFACE FOR & 1/2 x 11 PAGE

-in a single register.

o

TO 75% CoPY
I TS TTITTTIT T TTT Ty T T T T e H
languages are recognizable in polynomia) time
by MRAMs, i.e.

Theorem 2:NPTAPE C PTIME-CRAM C PTIME -
— MRAM. -

The proof is based on a collection of
programming tricks (or fast algorithms) and we
gnly outline the techniques, hoping that the
interested reader will be capable of filling
in the details. Complete proofs (at least
almost complete) for the VRAM case may be
found in [8). We shall use CRAMs in our con-
§tructions, augmented, for simplicity, by the
instruction SUBSTR. SUBSTR(A,B) produces A
with its initial substring of length length (B)
deleted (e.g.SUBSTR(10011,11) = 0ll). Later we
shall show how to do without this operator.

The essential idea of the proof is the
following:

) for any.given Tm, T, operating in pdlyno-
mial tape on input x, a CRAM can first gencrate

-all possible configurations of this Tm computa-

tion (a configuration of T on input x consists
of the state of T, the contents of the work~
tape and the positions of T's heads). From
this set of all possible configurations, the
CRAM can obtain the matrix of the relation
"follow in one move"” -- i.e. if A is the matrix
of the relation then aij = 1 iff T passes from .

the i-th to the j~th configuration in one move.
Clearly, x is accepted by T iff a* = 1 where
A* is the transitive closure of A"and b and e
are initial and accepting final configurations
respectively. To make matters simple we shall
suppose without loss of generality that T has
only one accepting configuration e. We shall
see that parallel bit operations, together -
with operations that expand rapidly the length
of a register, enable us to do each‘'of these
steps in polynomial time on a CRAM.

First we indicate how to compute effi-
ciently the transitive closure of a matrix A.
We suppose that initially the whole matrix is
Remember that A% =
IVAVASVYAIV ... VARV ..., where A is
n by n and Al is the i-th power of A in the
“and-or" multiplication (i.e. if C = A+B,

' n
i3 T v, 2ikh Pyl
only the products (I V A), (I V A)z,

fforeover, we may compute

(1 v a2 vads @xva?,. .. vhere the ex-
ponent of (I V A) is a power of 2., Since
there are only log n of these ((I V A)n+k =

(T Vv A)n) transitive closure of n by n matri-
ces can be done in time log n times the time
for multiplication. Throughout this section,
"multiplication" will mean "A" and "multipli-
cation of matrices", "and-or" multiplication.
Also, for simplicity, we assume n to be a pow-
er of 2,

To multiply two matrices efficiently, we
observe that jif we have several copies of the
matrix stored in the same register in a conve-
nient way, we can obtain all products in a
single "A" operation: all we need is that for
all i,j, and k, a,, be in the same bit position

as b ik
=Z Tkj. For example, if we have

PRSI S-S PRID RN ST PN P ToY

MOLEL _PAPER 71/8 x 9 15/16

U T,
(xow 0 of A)™ (row 1 of A)"...(row n-1 of)=
. n n
;(ao,oao,l“'ao,n-l) (al,oal,l'“al,n—l) ces

: n . -
“anyl,oan—l,l“‘an-l,n-l) in one register
-i(where (row i)™ means n-fold concatenation)and
{(colum 0 of B) (column 1 of B)...

i - n =

5 (;olumn n-1 of B)] [(bo,obl,O"'bn—l,O)

H n
by 1by, 10+ +Ppo1, 10 ®o,n-10 Py, n-1?)
4n the other, the "A" of the two registers
yields all terms aikA bkj’ Supposing we are

.iable to produce these forms of the matrices
-easily, all we have to do is collect terms and
add (V) them up. To collect terms, if we are
able to take advantage of the parallel opera-
‘tions at their fullest, we should not have to
.. :do more than log n operations, since each cij

45 the sum of n products. Note that in our
case € o is the sum of the first n bits, S0,1
’ ’

.:0f the next n, and in general cij is the sum
tof bits i*n + jen to.iwm + (3+1)n.

We use the following idea: to add up a
.rrow vector of bits, take the second half of
-~the row, add it in parallel to the first half
_and call the procedure recursively for the new
_first half. The reader is encouraged to write
_a routine, using the mask M' = on/21n/2 to se-

- .lJect the second half (n is the length of the
. ~vector) and prefixing strings of 0s to regis-

-ters to get proper alignment. It is possible

- .—to design the algorithm in such a way that

. this procedure may be done in parallel for

--several vectors, stored concatenated to each
other in a single register. In particular if
-one starts with n2 copies of the mask MY, then
-the following procedure obtains all terms of
-the matrix product C = A+B from all the prod-
ucts aikA bkj‘ ‘

i

<, P: PROC
ADDUR: BROC /2. /20’
; K = n/2
I while K > 1. do
: . B = AAM
; A= ((0X.n)VB)AM
: K = K/2
i M= (0X.M)AM
% ' end
i end : ADDUP

_AADDUP uses o¥ ana K/2 as primitive operations,

‘but K/2 = SUBSTR(K,1) and 0X may be obtained

-by successive concatenations of a string with
‘itself: after p steps we get a string of 0s

‘of length 2P.

In order to perform matrix multiplica-
:tions, we have to show that we can efficiently
rexpand a matrix from some standard input form
+ (say stored by rows) into the forms used in
; forming the product. The idea is again the
:same: use masks and concatenations to get
. lots of elements in the places where we need
sthem ,in parallel. For example, to get

(row o)n(row 1)2... (row n—l)n

+ from (row 0) (row 1) ... (row n-1)
iwe first take the second half away, so that

N

PRINT SURFACE

FOR 8 1/2 x 11 PAGE TO 75% cory

we may put the middle row in its final pi&ce,‘
: 2 2
using the mask M' = o /2;0°/2,

B=M'AA-=0...0
. 2h/2,0%n/2,1°°*3n-1,n-1°

We have to s}ide B under A in such a way that
2p/2,0 Occupies the n3/2-th bit position.

To put B_in its place, all we need is:

2 P

z = o" /2 t ;

2 !

suIFT = o" /2 i
K=n

|

while K> 1 do
SHIFT = SHIFT.SHIFT
K = K/2

end "3/2

/*SHIFT is now 0 */

SHIFT = SUBSTR(SHIFT,2) /* now SHIFT is

3 2
n~/2 -
0 / n/2 __ exactly the
amount we need to move B by */

. We get the desired result by setting A =
(A A qM")VB=a a oo Y 00 ga
: 0,070,1 n/2 -1,n-1 } ***“n/2,0

" position
n3/2
This is the first step in our method, but

it is reasonably clear how to proceed: the
next mask should be

(0n2/4 1n2/4 0n2/4 1n2/4)n
.that we may obtain by: !
2
(o™ /4

2n/2,1°"*2n-1,n-1°

N = .M') eor M'
2
M' = SuBSTR(N,0" /%)
and the second halves set B = AAM' will have

to bg shifted by n2/4 (n-1) (remember, the
previous iteration shifted B by n2 /2 (n-1).

This will put rows n/4 and 3n/4 in their pla-
ces. 'The reader should have no difficulty
writing down an efficient program which pro-
duces: 2 2

| A= (row 0)0" ™(row 1)0" ""... (row n-1)
E(the program outlined is not optimal and will
run in time O((log n)2)). i

i Now:it is fairly easy to get the matrix in
Ithe desired form in O(log n) duplications.

! Basically the same trick works to obtain
tbe column form from the stored-by-row form:
first we produce, as before, the form

2_ 2
(row 0)0™ ""(row 1)0™ "™...(row n-1)
vfrom wh;ch we git (using the same technique)
a o~ n- n-1 n-1 n-1
0,00 725,10 "3,20 Te-e3p 300 T2 o0
':'an-l,n—l
(i.e. position of a .= n2i + nj),

j from which,

t k

0" =0
However we may use lk and, in
concatenations do (lk.A) eor 1k= Ok.A, so that

we will use 0k

Strictly speaking, this is illegal.
in our RAMs.

as an abbreviation.

[T

JT RSN S

e b ettt A b ARt b s St e w

- ~~terpret the encodings as integers.

‘-updated.

MDEL PAPCR

by using the mask o” /2 1" /2 and again the
.same tricks, one obtains A in column order.

:*Concatenation of this with itself log n times
-gives us the form needed for matrix multipli-
:cation in O(log n) operations.

We would like to emphasize that the rou-

:tines presented above are not the most effi-
scient or most economical in terms of storage.
. We just wanted to give a hint of the basic
‘technique and hope that the interested reader
.-will be able to derive the complete programs
himself, by using the tricks shown. 1In any

case, we consider that we have outlined a
proof that traneltlve closure may be computed
.in 0((log n)2) moves.

We still have to convince the reader that
~given a polynomial tape bounded Tm with input
X, we can obtain the matrix of the "follow in
--one move" relation easily. We shall do this
in an even sketchier way than our exposition
-0f the method for computing transitive closure.

If a Tm operates on an input gf length n

--in tape nk, there are at most 0(2") different
:<configurations. Let us take a convenient en-
~-coding of these in the alphabet {0,1} and in-
By conven-.
‘dent encoding we mean one that is linear in
“#he.length of the tape used by the machine,

~~where the positions of the heads and the state

~-may be easily found, and which may be easily
Then, if we generate all the inte-

~gers in the range 0 - (2™ - 1) (where c de-

- pends only on the encoding) we shall have pro-
duced encodings of all configurations, togeth-
-er with numbers that are not encodings of any
~~configuration. The rcader might amuse himself

- by writing a CRAM program that produces all
integers between 0 and m = 2°-1 in time p.
i(Hint: for a straightforward program get

ofm = 2P) 1202 then (10P"1)™2, then
01m/4 m/4 m/d m/4 and 0(10p -1 m/4 m/4(10p l)rﬁ

“*V them together, etc.)

-Now, it is well known that in
“tion of the Tm the character under
write head, the two symbols in the squares im-
mediately to the right and left of it, the
-'state.of the finite control and the position
‘of the input head - determine any next

--configuration. Then we test whether the con-
- figuration cj follows from c; as follows:

the opera-
the read-

suppose C; and c. are stored in registers R

and S. We first build a pattern which picks
-up head positions (i.e., once we build the
‘pattern, we obtain from R and S, in a constant
-number of moves, bit vectors which have a 1 at
the position scanned by the head and 0s every-
where else -- moreover the sequence of moves
is indepcndent from the contents of R and S.
-For example, suppose that the hecad position is
indicated by the pattern 11011 appearing be-
ginning at some position p = 0 (mod 5) in the
encoding of the configuration, which we suppose
of length &' = 5. Then M = (00100)% is a

mask with the property that T = Mh eor R will

‘have 11111 starting at a position p = 0 (mod5)
iff R had 11011 there. Using a procedure sim-
ilar to ADDUP, we get a vector which is 1 only

71/8x39 15/16 PRINT SURFACE

.constant nunber of moves,
'squares of R that matter for the determination

‘Or C..

‘tion,- and (cocl...c

rithm: -
‘procedure which runs in polynomial time,

‘The basic idea is

8

FOR 8 1/2 x 11 PAGE TO 75% COrY

T

at such positions and 0 everywhere else). Now,
again in a manner that does not depend on
where the head is in ci, we may, in another

obtain the three

of the next configuration, as well as the
state of the finite control. We save this in-
formation and zero the corresponding bits in
the encodings, both in R and S. All of this
can be done in a constant number of moves,
which are independent of the contents of R.and
S.

To verify that the transition was a per-
missible move of the Tm we have to check that

.the non-blank portions of R and S are identi- .
‘cal and that the blanked-out bits satisfy a
.move rule.

The latter is verified by table
look-up, where the size of the table depends
only on the Tm but not on the ihnput, while the
former is checked by first taking R eor S (R
and S have now 0s where a move might change R)
and using a version of ADDUP to verify that
the result consists only of 0s. This will
take only O(log n) moves.

Thus, we know how to detect the fact that
cj follows from c; in O(log %) CRAM moves,

where £ is the length of the configuration and
the moves do not depend on the contents of c;
This is important, because it shows

that if we have c, in R,

ch“'cjk
test simul-

io€i1---Cix-
in S, we may, in O(log %) moves,

‘taneously whether cjk follows from Cix* Now,

the way to generate the transition matrix in
time O0(log n) where n is the length of the in-
put is easy enough to guess: first we gene-
rate all integers in the range
k

0 -‘(2“ -1), call these configurations c;.
Then, as in the matrix product routine, we
form m m m

(cq) écl) ceelep)
means m-fold concatena-

where m=2". and (ci)m

m—l)m in O(log m) = 0(nk)

operations, and in O(nK) operations determine

simultaneously for all i and j whether cj fol-
lows from ¢y (i.%. obtain a vector of bits
This com-

which is 1 iff"cj follows from ci).
pletes the description of our simulation algo-
putting everything together we have a
since
. nk 2

the matrix may be computed in o((log 27)%
moves and its transitive closure in .
0((log 2")) = O(n) moves.

This completes the outline of the proof
for the special CRAM used.

Finally, some comments about the instruc-
tion sets necessary to do this simulation. In
our programs we used, besides parallel bit op-
erations, the following: concatenation (.),
SUBSTR, and loop control operations (compari-
sons and divisions by 2). We first show, as
we have promised, how to eliminate SUBSTR
simple, and we used it im-

plicitly in ADDUP: the SUBSTR operation is

MODEL PR 7 1/8 x 9 15/16
used to drop off an initial substring of a
string to obtain alignment -- but the same ef-
fect can be obtained by concatenating a string
of 0s of the same length to the other -string.
“his has the disadvantage that now we have a
certain amount of useless garbage preceding
certain variables, but that can be taken care
of by the following:

) first, it is easy to see that we may al-
ways assume that the initial segment is a

-string of O0s, since for any prefix P, (P.A)eor
i - olength (P) As

second, we maintain, for each variable,
an associated "garbage indicator" -- another
register which contains a string of 1s of
length equal to the useless initial segment.

- yhenever a variable with a nonempty garbage
indicator is used in conjunction with others,
if the operation is a boolean one we prefix
the other operand with the garbage indicator

.stransformed into 0s. If we want to form C=A.B

n1+n2+length(h)

.B)
nl+n2
c=CV ((GB,.A') eor Gg,) (=0

n)
~:but we have only A' = 0 “.A, B' = 0 “.B, .
ny i) |
AVGA.= 1, GB,= 1 ¢, we form C = A'.B' :
ny o, P2 !
(= 0 “.A.0 “.B) i
!

C=Ceor A (=0
.A.B)
6= Gp-Gp-

In both cases we have only a constant a-
:mount of overhead per operation. Thus SUBSTR
:is not necessary.
the loop control, it is aqain easy
division by 2 is not necessary,
SUBSTR(,1). Thus the main theo-
section may be written:

As for
~+to see that
:since it is

-:xem of this

CRAMs without arithmetic instructions
may simulate PTAPE in polynomial time.

We now sketch proofs of how our more pow-
-erful RAM models may simulate CRAMs.

1) VRAMs
Clearly A.B is the same as A V (B 4 length(a))
-All we have to show is that the necessary
lengths are attainable in polynomial time for
‘polynomial time bounded CRAM computations.

Initially we store the lengths of all
.constants used in the CRAM program in the
‘VRAM's program. The length of the input may
be obtained in linear time. The longest
+string obtainable in t moves from a set S of
'strings, by a CRAM, is 2tlcngth(so), where S0

is the longest string in S. It is easy to de-
‘vise a binary search type VRAM algorithm that
will find the length of a string in time

0 ((log length(x))?).

operates in time nk, we
its steps in at most

Thus, if a CRAM
may simulate each of

0(n2k) VRAM steps and, therefore, the whole

computation in time O(n3k). Again, the simu-
Jdation technique is not optimal, but, we hope,
transparent.

2) MRaMs

PRINT SURFACE

9

PR faeiams o ue PP PR -t
FOR 8 1/2 x 11 PAGE T0 75% CoPY
First we note that "shift left" instruc-
tions are unnecessary for VRAM acceptors: the
‘aproof is identical to the argument given to
show that SUBSTR is not necessary for CRAMs--
roughly, that one shifts everybody else right
‘instead of shifting one register left, and
takes into account that initial segments of
some registers should be considered garbage.
‘With this in mind, all we have to simulate is
the instruction

Vo Vg +J (shift right)

J k
Clearly, this is equivalent to the MRAM in-
struction Ik .

Vj “« Vi - 2
and all we have to show is that it is possible

I
to have 2 k in an MRAM register when Ik is

used in a VRAM shift instruction. We shall
argue, as in the CRAM case, that the contents
.of Ik cannot be too big: since the only op-

,eration that increases the contents of an in-
idex register is addition, the program that
icreates the biggest possible number in an in-
+dex register in t steps of a VRAM's computa-
-ition consists of adding a register repeatedly
-‘to itself. If the initial contents of the

‘register was k, we produce 2tk after t opera-
tions. Therefore, in general, we must have
rat time t all index registers containing num-
+bers of length t + c at most, c a constant
‘depending only on the machine. But we may
generate all numbers of the form 2m,

.length(m) < t+c in time polynomial in t: we
get the powers of 2 by multiplying 2 by itself
and include those factors in the final product
for which m has a 1 bit.

. “This proves the inclusion PTIME 2 MRAM
: PTIME - VRAM and concludes the chain of im-

plications proving PTAPE C PTIME - MRAM, the
- objective of this section?

5. Conclusions and Comments

After the programminy details of the pre-
wious two sections, it might be useful to re-
.state the results of this paper. 7 defined
a reasonable RAM model -- the MRAM —- that has
multiplication as a primitive operation, and
proved two important facts about their power
as recognizers:

1) deterministic and nondeterministic
time complexity classes arc polynomially re-
lated (or PTIME - MRAM = NPTIME - MRAM) .

2) time-bounded computations are polyno-
mially related to Tm tape (i.e. PTIME -~ MRAM=
PTAPE) .

Since it can be proven that RAM time and
Tm time are polynomially related, we also
_proved

3) RAM running times with and without
‘multiplication are polynomially related if and
-only if Tm time and tape measures arec polyno-—
mially related, i.e. PTIME = PTAPE iff
“PTIME = MRAM = PTIME - RAMl.

This last observation is interesting,
since it seems to imply that the elusive dif-
ference between time and memory measurces for
ifms might perhaps be attacked by "algcbraic"
techniques developed in "low level" complexity
'theory. We obtained no results in this

Dy

B
i~
'

WONTL PATED

. direction: the sort of problem for which lower

bounds on the number of multiplications are
known compute functions, and for transducers
we do already know that tape is more powerful
-than time.

We also note that RAMs may simulate MRAMs
~in polynomial time, as long as MRAMs opecrate
in polynomial space and time. Therefore MRAMs
are more powerful than :RAMs if and only if the
-unit and logarithmic time measures are not

_ polynomially related--i.e. if (in our "polyno-

mial smearing" language) the two are distinct
measures.

Many "if and only if" type categories
“follow, in the same vein, from 1),2) and 3).
For example:

*The set of regular expressions whose

=complements are non-empty ([l Ch. 11]) is ac-

-cepted in polynomial time by a deterministic
Tm iff every language recognized by an MRAM in
‘polynomial time is recognized by a determinis-
.:tic RAM in polynomial time."

The reader may write down many of these:
.some of them sound gquite surprising at first.

As we saw, if MRAMs are different from
“RAMs, they must use more than a polynomial a-
smount of storage (in our simulation it was an
.exponential amount). This suggests asking

- -whether it is sufficient to have a RAMl and

. exponential tape to get an MRAM's power, or,

—.equivalently, to look at operations that make

"RAM - PTIME classes eqguivalent to PTAPE. The
- answer, as we saw, is that almost anything
-that expands the length of registers fast e-
:nough will do, as long as we have parallel bit
~operations: multiplication, concatenation or
shifting all have this property. In particu--
.lar, one of our CRAM models has nothing but
concatenation, tests and parallel bit opera-
~tions (no indirect addressing). On the other
‘hand, we saw that adding more and more power-
-ful operations (indirect addressing, shifts by
‘shift registers, division by 2, SUBSTR, multi-
:plication, integer division) do not make the
.model more powerful, once we have a fast mem-
sory-augmenting device. The stability of this
class of RAMs makes -them a nice characteriza-
:tion of memory-bound complexity classes. We
,also think they might be useful for studying
‘parallelism.

'
1

! Minsky suggested [7) that one of the ob-
.jectives of thcoretical computer science
:should be the study of trade-offs (e.g. be-
“tween memory and time, nondeterminism and time
-etc.). Our constructions trade exponential
.storage for polynomial time (simulation of Tms
:by MRAMs) and polynomial tape for exponential
‘time in the other simulation. Whether this

. trade-off is real or the result of bad pro-
~gramming is not known, since P = PTAPE? is an
‘open problem. If P ¥ PTAPE, then PTAPE would
provide us with a class of languages which
~have a trade-off property: they may be reccog-
‘nized either in polynomial time or in polyno-
mial storage, but not simultaneously.

Corollary: PTIME # PTAPE iff there exists
a language I, which can be recognized by MRAMS
in polynomial time and polynomial memory, but
ipot simultancously.

7 1/8 x 9 15/, PRINT SURFACE

FOR 8 1/2 x 11 PAGE TO 7%% COPY

Note that if such an L exists, any tape
complete problem may be chosen to be it, for
example L = {R|R a restricted regular expres-
sion, R = I*} [6].

We finalize by exhibiting a hierarchy of

‘well-known problems in terms of restricted

RAMSs. -

Lemma: The class of languages recognized by

-comp, (#),*,bool
-eomp, () ,*,bool

ggg\g, {%) . ('.') lggg%'

The restricted RAMs below are (instructions
in brackets may be removed):
‘instruction set restriction language
comp, (), (%) ,bool, (N) PTIME PTAPE
Goa b
»Sggp,(%),(;),(éggl), NPTIME NP
Ti.a.) 4 - _
gomp, ()¢ (*) . (bgel) , PTIME P
(i.a.),+

t+

none . - . _ csl

deterministic dcsl

time<(log n)i LG*+*

(i.a.) ,+,

comp, * ~division NLOG-TAPE
==== =only by 2 .
comp, ~ ~division
=== only by 2,

" -deterministic DLOG-TAPE
comp, * 2 registers..#Regular

. only sets

Lines 4 and 5 were observed by [12]; line
6 is obtained by noting that Theorers 1 and 2
hold when strengthened to time and tape con-
structible bounds greater than &g iogarithm;
7 and § follow from the characterization of
logarithmic space-recognizable languages as
the ones accepted by k-head finite automata
for some k. R :

T
T+
Tt

indirect addressing
context sensitive languages

1G = {languages recognizable in tape
‘(log n)? for some i}

‘Biblioqraphy

{1} Aho, A., J.E. Hopcroft and J.D. Ullman:
The design and analveis of computer al-
gorithms. Addison-i.sley, Reading, Mass.
1974. .

[2] Cobham, A.: The intrinsic computational
difficulty of functions. Proc. Inter.
conf. on Logic, Philosophy and Methodolo-
gy of Science, Y. Bar Hillel ed. (North
Holland, Amsterdam 1265) pp. 24-30.

[3)] Cook, S.: Linear time simulation of de-
terministic two-way pushdown automata.
Information Processing 71 (North Holland
Amsterdam, 1972) pp. 75-80.

[4) Cook, S.: The complexity of thecrem-prov-
ing procedures. Proc. 3rd Ann. ACM Symp.
Theory Comp. pp. 151-158.

[5) Cook, S. and S.O. Aanderaa: On the mini-
mum computation time of functions. Trans
AMS v, 142 (1969) pp. 291-314.

i

M{rl f’c‘. R

l6] Hartmanis, J. and H. Hunt: The lba problem

.and its importance in the theory of com-

puting. TR 73-171 Dept. Comp. Sci. Cor~.. .

nell University (1973).

[7] Mlnsky, M.: Form and content in computer

science. JACM v. 17 n. 2 (1970) pp. 197—
215.

[8] Pratt, V., L. Stockmeyer and M.O. Rabin:

|

A characterlzatlon of the power of vector
machines. Proc. 6th Ann. ACM Symp. Theory
Comp. pp. 122-134.

[9] savitch, W.J.: Relationships between non

‘(10
1)

123

deterministic and deterministic tape com-
plexities. JCSS v. 4 n. 2 (1970) pp. 177-
192.

Stearns, R.E., J. Hartmanis and P.M.
Lewis: Hierarchies of memory limited com-
putations. IEEE SWAT Conf. Record (1965)
pp. 1790190. ’
Sheperdson, J.C. and H.E. Sturgis: Com-
putability of recursive functions. JACM
v. 10 (1963) pp. 217-225.

Warkentin, J.C. and P.C. Fischer:Prede-
cessor machines and regressive functions.
Proc. 4th Ann. ACM Symp. Theory Comp.

pp. 81-87.

Acknowledgments !

The authors would like to thank Dr. John

Hopcroft and Zvi Galil for many useful dis-
cussions. 1In particular the algorithm for
simulation of division by using multiplica-
tion in Section 3 was brought to our attention

by Professor Hopcroft.

T1/% x 9 18/15 . PRINT SURFACE

|

#

FOR

$1/2 » 11 PAGE

T0 75% CoPY

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

