Set. Reconciliation with Nearly Optimal Communication
Complexity

Yaron Minsky Ari Trachtenberg Richard Zippel

April 25, 2000

Abstract

We consider a fundamental problem that arises in the context of gossip protocols. Specifically,
we consider the problem of efficiently reconciling two similar sets held by different hosts while
minimizing the communication complexity. We provide two surprisingly simple and efficient
protocols that exhibit tractable computational complexity and nearly optimal communication
complexity. These protocols can be adapted to work over a broadcast channel, allowing many
clients to reconcile with one host based on a broadcasted signal. Thus, an arbitrary number of
clients each of whose data differs from that of the host by no more than N bits can be reconciled
by a single broadcast of O(N) bits, independent of the the number of clients and independent
of the size of the data sets.



1 Introduction

Gossip protocols, also known as epidemic algorithms, spread information through a network of
hosts by random contacts between pairs of hosts. Through many such uncoordinated exchanges,
information is spread throughout the system. Gossip protocols, while not a new idea [3, 1], have
recently become the subject of increasing interest as a building block for reliable and scalable
distributed systems.

The information disseminated by a gossip protocol usually consists of a set of distinct entries,
each entry comprising a discrete piece of information about a system. Examples of information
disseminated by gossip protocols include: addresses of participating hosts [5, 7, 11, 21]; locations
of resources [20]; bibliographic data [5]; and broadcast messages [1, 5, 6, 9]. When a pair of hosts
exchange information, they must reconcile their respective data sets, so that each ends up knowing
the other’s information. What makes this reconciliation difficult is that the hosts do not know a
priori which data elements need to be transmitted.

We formalize the problem of reconciling two hosts’ data sets as follows: given a pair of hosts
A and B, each with a set of length-b bitstrings, how can each host determine the union of the
two sets with a minimal amount of communication—both with respect to the number of exchanges
between the two hosts and with respect to the number of bits of information exchanged. We call
this the set reconciliation problem. Set reconciliation has applications outside of gossip protocols.
In particular, it can be applied to any situation where unordered databases need to be reconciled.
So, for example, set reconciliation could be used to improve the efficiency of reconciling distributed
file-systems and databases.

This paper presents two surprisingly simple and efficient set reconciliation protocols. The
communication complexity of these protocols is independent of the sizes of the hosts’ sets; it depends
only on the size of the difference between the two sets. Moreover, under certain circumstances, set
reconciliation can be achieved without interaction, using just a single message. Instead of dealing
with sets directly, these protocols encode each set as a polynomial whose roots are the elements of
the set. The advantage of this approach is that some operations on sets, in particular set difference,
can be computed more efficiently from the polynomial encoding.

The set reconciliation problem is related to the well-known problem of error correction over a
noisy channel. The main difference between set reconciliation and traditional error correction is
that in the traditional model for error correction each data item has an implicit index corresponding
to its place in the transmission order. This index is stable, in the sense that transmission errors on
some elements do not affect the indices of the remaining elements. In the context of set reconciliation
there is no such stable indexing.

Set reconciliation is more closely related to the a-edits problem, which is the problem of reconcil-
ing two strings where one string differs from the other by a bounded number of edits, i.e. insertions
or deletions. The a-edits problem was analyzed by Orlitsky [13], and Evfimievski [4] presented a
probabilistic solution. An algorithm for solving the a-edits problem can be used to perform set
reconciliation by treating the hosts’ sets as strings consisting of the set elements listed in lexico-
graphic order. Missing elements then correspond to deletions and extra elements to insertions.
However, the protocols that result from applying results such as those in [4] to set reconciliation
yield solutions that are significantly less efficient than those we present. Note that a solution to
the set-reconciliation problem is not necessarily a solution to the a-edits problem.

Section 2 sets up our definitions and notation, and also presents information-theoretic bounds
on set reconciliation. Section 3 presents a protocol for reconciling two hosts whose sets bear a
subset relationship; that is, one host’s set is a subset of the other host’s set. Finally, Section 4



generalizes this protocol to the general set reconciliation problem. Both protocols achieve nearly
optimal communications complexity and tractable computational complexity.

2 Definitions and Bounds

Consider a pair of hosts A and B that each have a set of length-b bitstrings, denoted S4 and Sp
respectively. Formally, the problem of set reconciliation is to find a sequence of message exchanges
between hosts A and B such that at the end of the exchanges both A and B know the set S4 U Sp.
The problem of subset reconciliation is a special case of set reconciliation where it is assumed that
Sp C Si4. We will measure the complexity of a solution to these problems according to three
criteria: the number of messages sent, the number of bits transmitted, and the computation done
by the two hosts.

Naively, set reconciliation can be accomplished by each host sending its entire set to the other
host. This simple algorithm would require communication of (|S4| + |Sg|)b bits. If we denote the
differences between the two hosts by Aq = S4\ Sp and Ag = Sp\ Sa, then this can be rewritten
as a communication complexity of

2|S4NSg|+ |Aa|+ |Ap| bits.

Our goal in this paper is to describe protocols that accomplish set reconciliation with an exchange
of only O(]A 4| + |Ap|) bits, independently of the size of the hosts’ original sets.

To simplify our notation, we define N = |[S4NSp|, ma = |A4|, mp = |Ap| and m = m4+mp.
Solving set reconciliation demands that host A discern mp integers from the 2° — N — m 4 that
it might be missing. Symmetrically, host B must discern m4 bitstrings among 2° — N — mp
possibilities. This gives the following information-theoretic lower bound on Ii;a,s, the number of
bits that need to be transmitted between A and B for reconciliation:

T ] G

If m = m4 + mp is held constant then this expression is minimized when m4 or mpg is zero, as
appropriate. This follows from the following well-known identity (s.f.r. [2]):

G)C)=00) g

which is true whenever n,j,k > 0 and j + k < n. Assuming, without loss of generality, that
|Sa| > |Sp| then substituting n = 2° — N —m 4, j = mp, and k = m4 eventually yields:

e > 16 [(F 7N, ®

When 2° is at least twice as large as either host set, then the lower bound Equation (3) becomes
(b—1—1logm)-m = bm —mlogm. Surprisingly, we can get very close to this information-theoretic
bound for both the set and subset reconciliation problems, as will be shown in the next two sections.

3 Subset Reconciliation

One case of the subset reconciliation problem has a straightforward solution—when there is only
one bitstring of host A not known to host B (i.e. when m = my = 1). In this case, Protocol 1



reconciles the two sets with a single b-bit message. The key to Protocol 1 is that the two hosts can
recover the parity sum (bitwise exclusive or) of the difference set Ay from the parity sum of Sy
and the parity sum of Sg. Since |A 4| =1 this parity sum is in fact the missing bitstring.

Protocol 1 Subset Reconciliation when my4 =1

1. Host A computes parity 4, the parity sum of its bitstrings, and sends it to B
2. Host B computes parityg, the parity sum of its bitstrings.

3. Host B computes the parity sum of parity 4 and parity g, which is precisely the missing bitstring.

3.1 Characteristic Polynomials

Protocol 1 is limited to the case where m4 = 1 by the fact that the parity sum does not carry enough
information to recover multiple elements of a set. To generalize Protocol 1, we need a generalization
of the parity-sum that provides sufficient information to recover more than one missing bitstring.
The generalization we will use is the characteristic polynomial Xg(Z) of a set S = {z1,%2,... ,Tn},
which we define to be the following univariate polynomial.

Xs(Z) = (Z —x1)(Z — z2)(Z — w3) -+ (Z — wn)

=27" —01(8)Z" 4+ 09(8)Z" 2 + - 4 (=1)"0,(S). @

The coefficients 0;(S) of the characteristic polynomial are known as the elementary symmetric
polynomials of S. The i-th elementary symmetric polynomial of a set S is the sum of products of
all i element subsets of S. Thus, if a set S = {z1,z2,23,... ,Zn} then

o1(S) =z1+ o+ 4+ + T,
02(8) = 122 + T123 + 4+ Ty 1Ty,
03(S) = 17223 + T1Z2T4 + - - - + T _2Tm—1Tm,

om(S) =z122 Ty

Note that the zeros of Xg(Z) are precisely the elements of S. Thus, the elements of S can be
recovered by factoring Xg(Z).

To use the characteristic polynomial in place of the parity sum of Protocol 1, host B must be
able to determine the coefficients of XA ,(Z) given a small amount of information provided by A.
Theorem 3.1 shows how the coefficients of XA ,(Z) can be reconstructed from only the high-order
coefficients of Xg,(Z) and Xg,(Z). Thus, once A transmits the required coefficients of Xg,(Z) to
B, the coefficients of X ,(Z) can be reconstructed by B.

Theorem 3.1 The coefficients of XA ,(Z) can be reconstructed from the coefficients of the ma +1
highest-degree terms of Xg,(Z) and Xg,(Z). In particular, we have the following convolutional
relationship between the coefficients of Xg,(Z), Xg5(Z) and XA ,(Z):

ok(A4) = 0x(Sa) —0k(SB) + | D oi(Aa)or—i(SB) (5)
0<i<k



Proof: Since S4 = Ay U Sp, the characteristic polynomial of S4 can be written as the following
product:

XS, (2) = XA 4 (Z)XSB (2)

Equating the coeflicients on both sides of the equals sign gives:

01(S4) = 01(Aa) +01(SB) (6)

02(Sa) = 02(A4) +01(Aa)o1(SB) + 02(SB) (7)

ok(Sa) = or(Ba)+ Y 0i(Aa)ok-i(SB) + or(Sa). (8)
0<i<k

Equation (5) follows from a simple rearrangement of Equation (8) and can be applied iteratively to
build up the first £ elementary symmetric polynomials of A4 from the first k& elementary symmetric
polynomials of S4 and Sg. These elementary symmetric polynomials are the high-order coefficients
of XA A (Z ) : |

To use characteristic polynomials for set reconciliation, we need to map length-b bitstrings onto
numbers. To eliminate growth in the size of the numbers with which we compute, we use a finite
field, which we denote by IF,. There are two cases of interest: the first is where ¢ is prime and [,
is simply the integers modulo ¢. In this case, each bitstring is then interpreted as a binary integer
less than ¢q. By Bertrand’s Postulate [8, p. 343] there is always at least one prime number between
20 and 2°t1, so elements of [, can be represented using lgg < b+ 1 bits. The second case is where
g = 2°. Elements of [F, are then isomorphic to polynomials cp 108 ey 90t 24 ¢y 3ab 3+, 4
in , where « is the zero of an irreducible polynomial of degree b over F5. In this case, each bitstring
is represented using exactly lg g = b bits.

Using a field of order 2° is more efficient in terms of the number of bits required, since no
overhead is needed to transmit a length-b bitstring. On the other hand, using a prime-order field
may require up to one extra bit per transmission, but is computationally more efficient on most
hardware. For the rest of this paper we will interpret all bitstrings as elements of I, without
specifying a choice of q.

3.2 The Protocol

Protocol 2, which was first described in [19], provides an efficient solution to the subset reconciliation
problem. Note that Protocol 2 only sends m 4 coefficients, and not m 4 + 1, because the highest-
degree coefficient of any characteristic polynomial is always 1. Note also that Protocol 2 assumes
that m 4, the number of missing bitstrings, is known. Since S C S4, the value of m 4 is simply
the difference |Sa| — |Sp| and can be determined with a single b-bit message.

The following example demonstrates Protocol 2 concretely.

Example 1 Consider the set Sq4 = {1,2,3,4,5,6} and its subset Sp = {2,4,6} stored as 3-bit
integers on hosts A and B respectively. We use the prime number ¢ = 11 as the communication
modulus, and all calculations are carried out modulo 11 (i.e. over Fyq ).

e Host B sends |Sg| = 3 to host A.



Protocol 2 Subset Reconciliation when m4 > 1

Assuming S C S4, and host A knows m 4, hosts A and B can reconcile their data sets as follows:

1.

Host A computes the first m4 elementary symmetric polynomials of the elements of its set
S 4 and sends them to host B.

. Host B computes the first m 4 elementary symmetric polynomials of its set Sp.

. Using Theorem 3.1, host B computes the elementary symmetric polynomials of Ay = S4\Sp

and constructs the corresponding characteristic polynomial XA , (Z). The elements of A4 are
precisely the zeros of Xa ,(Z).

3.3

Host A sends to host B the my = |Sa| — |SB| = 3 elementary symmetric polynomial values:

01(Sa)=1424+3+4+5+6=10,
09(S4)=1-24+1-3+---+5-6=10,
03(S4)=1-2-3+1-2-4+---44-5-6=9

Host B then computes its own elementary symmetric polynomial values:

Ul(SB):2+4+6El,
02(53)22-4+2-6—|—4-650,
03(53):2-4-654

Host B uses Equation (5) to compute the elementary symmetric polynomial values of Ay =
SA \ SB N

Ax) =01(54) —01(5B) =9,
JQ(AA) = UQ(SA) - O'Q(SB) - Ul(SA)Ul(SB) = 1,
Ug(AA) = Ug(SA) — U3(SB) — Ul(SA)UQ(SB) - UQ(SA)O'l(SB) =4

Q
A%

Using the equality in Equation (4), host B reconstructs the characteristic polynomial
XA, (Z)=2%-97*+1Z — 4.

The polynomial X ,(Z) is factored as (Z —1)(Z — 3)(Z — 5) and its zeros are precisely the
elements of A = {1,3,5}.

Analysis

Protocol 2 requires two messages: one to determine the size m 4, and the other to transmit m 4
required coefficients. If an upper bound on m4 is known, then the protocol requires only a single
message, whose length depends to the quality of the upper bound.

Including the cost of determining m 4, the protocol needs to transmit only [m 4 lg(q)] +b bits to
the client. As noted earlier, we can either pick ¢ to be a prime, in which case b <lg(q) < b+ 1, or
we can pick g to be 2°, in which case 1g(¢q) = b. Choosing ¢ = 2° gives the following communication
bound, which is close to the information-theoretic lower bound in Equation (3).

Theorem 3.2 Protocol 2 reconciles sets S4 and S using b- (m + 1) bits of communication.



The computational complexity of Protocol 2 is quite tractable. There are two bottlenecks in
the calculations: computation of the elementary symmetric polynomials and finding the zeros of
the characteristic polynomial. The computation of the elementary symmetric polynomials can be
amortized over insertions into host A’s set, since

O'Z'(SAU{.’B}) :O'i(SA)—I-x'O'i_l(SA). (9)

Thus, in order to maintain the values of m elementary symmetric polynomials, host A needs only
O(m) time per insertion for an overall running time of O(m|S4|).

The problem of finding zeros of a polynomial over F, is well studied [12, 16, 17, 22]. Ap-
pendix A describes a practical method for factoring a square-free polynomial of degree m in ex-
pected time O(m3log q); more sophisticated algorithms [10] can bring this asymptotic time down
to O(m'®21ogq), but their practical benefits are not clear.

4 Set Reconciliation

Recall that the subset reconciliation algorithm described in Section 3 works by first recovering
XA ,(Z), the characteristic polynomial of the set of missing bitstrings, and then determining the
roots of that polynomial in order to recover the elements of the difference set A 4. The coefficients
of XA ,(Z) are recovered from the coefficients of the characteristic polynomials of S4 and Sp
respectively.

The approach used in Section 3 does not apply directly to set reconciliation for two reasons:
first, the technique for recovering the characteristic polynomial requires that Sp be a subset of
S4; second, the algorithm relies on the fact that it is easy to determine m, the number of missing
elements. Neither of these assumptions hold in the case of set reconciliation.

To deal with these problems, we adopt an approach based on sampling and rational function
interpolation for recovering the required characteristic polynomials. The following section presents
an overview of our approach.

4.1 Overview

The key to our approach to set reconciliation is the observation that:

X54(2)/X55(Z) = Xa4(2)/X25(2)-

This holds because terms common to both A and B cancel out in the division. Thus, the degrees
of the numerator and denominator of the (reduced) rational function are m4 and mp respectively.

The broad outline of our approach is as follows. Hosts A and B evaluate Xg,(Z) and Xg,(Z)
respectively at the same ™ + 1 sample points, where 7 is an upper bound on m. The two hosts
combine the sampled values so as to compute Xg,(Z)/Xg,(Z), and therefore Xa ,(Z)/XAz(Z),
at the sample points. The hosts then interpolate the sampled values to recover the coefficients of
XA, (Z)/XA,(Z). Finally, by factoring the numerator and the denominator the elements of A4
and Apg are recovered.

Sections 4.2 and 4.3 discuss rational function interpolation and the selection of sample points
in more detail. A concrete protocol is then described in Section 4.4. Finally Section 4.5 discusses
how set reconciliation can be solved without an a priori bound 7@ on m.



4.2 Rational Function Interpolation

A support set is a set of pairs (k;, ;) where the k; are distinct. A support set V' is satisfied by a
function f if f(k;) = r; for every (k;,r;) in V. Rational function interpolation is the problem of
finding a unique rational function that satisfies a given support set given bounds on the degree of
the numerator and the denominator.

In our case, we are interested in recovering only monic rational functions, i.e., rational functions
such that the coefficient of the highest-degree term of both the numerator and denominator is 1.
The following theorem describes conditions under which a monic rational function can be found
that satisfies a given support set, and the complexity of finding that function. The proof is found
in Appendix B.

Theorem 4.1 Choose V' to be a support set of cardinality mi+mo. Then, there is a unique monic
rational function f that satisfies V' whose numerator has degree less than or equal to mq and whose
denominator has degree less than or equal to ms.

The function f can be determined in O((m1+ms)31gq) time using classical Gaussian elimination, as
illustrated in the appendix. Note that Theorem 4.1 requires bounds for the degrees of the numerator
and denominator of the rational function. In our context, this translates to bounds on m4 and mp,
the sizes of the two difference sets. Given |S4| and |Sp|, and a bound 7 on the size of the symmetric
difference, we can compute bounds on my4 and mp. In particular, ma < (m + |S4| — |Sg|)/2 and
mp < (Mm—|Sa|+|SB|)/2, giving an overall bound m 4 +mp < m. Thus, according to Theorem 4.1,
we can recover Xg,(Z)/Xgs,(Z) using T sample points.

4.3 Choosing Sample Points

If a sample point k is chosen that is in the intersection of S4 and Sp, then the value of both the
numerator and the denominator will be zero. As such, the value of Xg, (k)/Xg, (k) is undefined
and the corresponding sample point appears unusable. On the other hand,

XS4 (Z) (10)

XSg (Z ) Z=k
is well defined, because the problematic term (Z — k) cancels out.
We can avoid this peculiarity altogether by choosing sample points outside of S4NSp. However,
restricting the sample space is not strictly necessary. Note that if k is a zero of the square-free

polynomial p(Z), then it is neither a zero nor a singular point of p(Z)/(Z — k). Thus, if k is in
S4 N Sp, the ratio

X5, (Z)[(Z — k)| z=¢
Xsp(2)/(Z = k)| z=k

(11)

is well defined, and is in fact equal to Equation (10).

Thus, instead of simply computing the value of a polynomial p(k) at sample point k, we will
compute a tagged value: either p(k), if p(k) # 0, or p(k)/(Z — k)|z=k otherwise. The tag cor-
responding to the value will mark whether or not p(k) = 0 so that the other host knows which
computation was performed. The key advantage of using tagged values as opposed to picking sam-
ple points over a constrained range is that A and B can agree upon sample points a priori, and
thus the sample points themselves do not need to be communicated.



4.4

A Complete Protocol

Protocol 3 shows a complete protocol that integrates the techniques of Sections 4.2 and 4.3. Notice
that Protocol 3 can be adapted to use over a broadcast channel, so that A could broadcast a single
message to a collection of hosts {B;}, and every B; whose set Sp, did not differ by more than m
from S4 could compute Sy U Sp,.

Protocol 3 Set reconciliation protocol given upper bound on m

Assume that m is an upper bound on m, the size of the symmetric difference between S4 and Sp.

1.

Host A computes the tagged values of Xg,(Z) at points {0,1,2,... ,m}. Host A sends those
values along with 77 and |S4| to host B.

. Host B computes the tagged values of Xg,(Z) at points {0,1,2,... ,7} and the corresponding

values of Xg,(Z)/Xs,(Z).

. Host B interpolates the unique rational function f(Z) that matches the ratios in step 2 and

whose numerator and denominator have degrees no greater than (m + |Sa| — |Sg|)/2 and
(m — |Sa| +|SB|)/2 respectively.

. Host B finds the roots of the numerator and denominator of f(Z), which are the elements of

A 4 and Ap respectively.

. Host B sends the elements of Ag to A.

The following example demonstrates Protocol 3 concretely.
Example 2 Assume that S4 = {1,9,28,33,53,61} and Sp = {1,9,10,28,53}, that m = 3 is an

upper bound on the size of the symmetric difference between S4 and Sp, and that all computations
are done over the finite field Fg7;. The protocol proceeds as follows:

1.

Host A computes the tagged values of its characteristic polynomial
Xs,(2)=(Z—-1)(Z -9)(Z - 28)(Z — 33)(Z — 53)(Z — 61)

at sample points {0,1,2,3}. Note that we use zero and nonzero to tag the values.

ng = Xs,(Z)|z=0 = (nonzero, 41)
m = Xs,(2)/(Z-1)|z=1 = (zero, 85)
nyg = Xs,(Z)|z=2 = (nonzero, 65)
ng = Xs,(Z)|z=3 = (nonzero, 81)

The value ny is computed differently because Xg,(Z)|z=1 =0, so it is correspondingly tagged.
Host A then sends its tagged values to host B.

2. Host B likewise computes the tagged values of its characteristic polynomial

Xs,(2) = (Z —1)(Z — 9)(Z — 10)(Z — 28)(Z — 53) :

dy = Xs,(Z)|z=0 = (nonzero, 9)
b = Xsy(D/(Z -1z =  (zero, 14)
dy = Xs,(Z)|z=2 = (nonzero, 51)
ds = Xs,(Z)|z=3 = (nonzero, 46)

8



3. Host B interpolates the unique monic rational function f(Z) that matches

f(O) = n()/d() = 41/9 = 80
f(l) = nl/dl = 85/14 = 13
f(3) = n3/ds = 81/46 = 84

and has numerator and denominator of degrees at most my < 2 and mp < 1 respectively.
The unique monic rational function satisfying these conditions is:

7% 947 + 173

F(2)=—%1

(12)
4. The roots of the numerator of f(Z) (i.e. 38 and 61) are the elements of Sa \ Sg, and the
trivial root of the denominator (i.e. 10) is the element of Sg\ Sa.

5. Host B sends the the missing element 10 to host A.

For a full reconciliation, Protocol 3 needs to communicate m tagged values and mp missing
bitstrings, for a total of

m([lg(q)] + 1) + mpb < (M + mp)b+ 2m bits.

If 0 is chosen near m = my + mp, then this is just over twice the information-theoretic bound
in Section 2. The computational complexity of Protocol 3 has two components: the cost of eval-
uating the characteristic polynomials Xg,(Z) and Xg,(Z) at the sample points, and the cost of
interpolating and factoring. The cost of evaluating the characteristic polynomial of the set S4 at
m sample points is O(|S|m). Note, however, that the value of the sample points can be maintained
incrementally as the set S4 is built up, with computational cost of O(7) per insertion and deletion;
moreover, the computation of the sample values does not have to be redone for every run of the
reconciliation protocol. The cost of interpolation and factoring is O(m?® log q), as illustrated in the
appendix, although, as before, faster asymptotic times can be achieved with more sophisticated
interpolation and factoring algorithms.

4.5 Probabilistic Verification

The discussion until now has assumed that there is a known bound 72 on m. In the absence of
such a bound, we need some way of detecting that enough samples have been taken to recover the
rational function X ,(Z)/XaA,(Z). The following theorem suggests one way of doing this.

Theorem 4.2 Let f(Z) and g(Z) be distinct monic rational functions over F, whose numerator
and denominator have degree no more than mi1 and mo respectively. If k is a randomly chosen
element of F,, then the probability that f(Z) and g(Z) take on the same values at Z = k is less
than or equal to (m1 +mg —1)/q.

This theorem follows from the fact that distinct monic rational functions with the given degree
bounds cannot agree on more than mi+msq—1 points, which follows from Theorem 4.1. Theorem 4.2
can be used to test probabilistically whether an interpolated rational function g(Z) is in fact equal

to f(Z) = Xa.(Z)/Xas(2)-



To implement such a test, note that |S4| and |Sg| are trivial upper bounds on m4 and mp
respectively. Let g(Z) be a rational function reconstructed from m' sampled values of f(Z). If g(Z)
is not equal to f(Z), then, by Theorem 4.2, the probability that they agree at a randomly selected
evaluation point is no greater than p = (|S4| + |Sg| — 1)/¢. By using enough random evaluation
points, B can determine that it has reconstructed g(Z) = f(Z) with probability 1 — €, for some
e > 0. Note that p is typically quite small, so few evaluation points are needed.

Note that this approach requires sample points to be chosen at random, so both the value and
the sample point need to be sent for each sample, roughly doubling the number of bits transmitted.
In practice, a pseudo-random number generator could be used, allowing for a seed to be sent in
place of all the sample points.

There is also the question of how sample points are transmitted. One approach would be for
A to send each sample point sequentially, until B determines with a sufficient degree of certainty
that the correct rational function has been recovered. The drawback to this approach is that if
r > m samples are needed, then the protocol will require r rounds. Alternately, A could double the
number of sample points each round. This would require only log(r) rounds, at the cost of sending
up to r extra sampled values.

5 Conclusion

We have examined the problem of reconciling two related sets, stored at separate hosts, with low
communication complexity. We have presented a protocol for the set reconciliation generalized
from a special case in which the data stored at one host is a subset of the data stored at the other
host.

Perhaps the most surprising result in the paper is the fact that these protocols can be used
non-interactively if given a bound on the number of elements that differ between the two hosts.
Moreover, the communication complexity of these protocols is remarkably close to the complexity
of set reconciliation when each host knows a priori which elements the other host is missing.

The key to both protocols is the representation of a set by its characteristic polynomial. This
use of polynomials is reminiscent of the use of polynomials in Shamir’s secret sharing protocol [14].
The relationship between secret sharing and set reconciliation deserves further study.

These protocols have been implemented using Victor Shoup’s well known NTL package[15].
Work is in progress to investigate various applications and to see how effective these protocols can
be in practice in reducing the communication load of gossip protocols.

6 Acknowledgments

We are grateful to Ramin Takloo-Bighash, Edward Reingold, Fred Schneider, Lazar Trachtenberg,
and Alexander Vardy for stimulating discussions. The implementation was developed with the help
of Eyal Adler.

References

[1] Apams, R. RFC1036: Standard for interchange of USENET messages, December 1987.

[2] CORMEN, T., LEISERSON, C., AND RIVEST, R. L. Introduction to Algorithms. MIT Press,
1990.

10



[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

DEMERS, A. J., GREENE, D. H., Hausg, C., IrisH, W., AND LARSON, J. Epidemic
algorithms for replicated database maintenance. In Proceedings of the Sizth Annual ACM
Symposium on Principles of Distributed Computing (Vancouver, British Columbia, Canada,
August 1987), no. 6, ACM, pp. 1-12.

EVFIMIEVSKI, A. A probabilistic algorithm for updating files over a communication link.
Theoretical Computer Science (2000), 191-199.

GOLDING, R. A. Weak-Consistency Group Communication and Membership. PhD thesis, UC
Santa Cruz, December 1992. Published as technical report UCSC-CRL-92-52.

Guo, K., HAYDEN, M., RENESSE, R. v., VOGELS, W., AND BirMAN, K. P. Gsgc: An effi-
cient gossip-style garbage collection scheme for scalable reliable multicast. Tech. rep., Cornell
University, December 1997.

HARCHOL-BALTER, M., LEIGHTON, T., AND LEWIN, D. Resource discovery in distributed
networks. In 18th Annual ACM-SIGACT/SIGOPS Symposium on Principles of Distributed
Computing (Atlanta, GA, May 1999).

HARDY, G., AND WRIGHT, E. An Introduction to the Theory of Numbers. Oxford University
Press, 1954.

HAYDEN, M., AND BIRMAN, K. Probabilistic broadcast. Tech. rep., Cornell University, 1996.

KALTOFEN, E., AND SHOUP, V. Subquadratic-time factoring of polynomials over finite fields.
In 27th Annual ACM Symposium on Theory of Computing (1995), vol. 9, pp. 398-406.

MOCKAPETRIS, P. RFC1034: Domain names - concepts and facilities, November 1987.

NAUDIN, P., AND QuitTE, C. Theoretical Computer Science, vol. 191. Elsevier Science B.V.,
1996, ch. Univariate Polynomial Factorization over Finite Fields, pp. 1-36.

ORLITSKY, A. Interactive communication of balanced distributions and correlated files. STAM
Journal on Discrete Mathematics 6, 4 (November 1993), 548-564.

SHAMIR, A. How to share a secret. CACM 22 (Nov. 1979), 612-613.
SHOUP, V. Ntl: A library for doing number theory. http://www.shoup.net.ntl/.

SHoOuUP, V. Factoring polynomials over finite fields: Asymptotic complexity vs. reality. In
Proc. IMACS Symposium (Lille, France, 1993).

SHOUP, V. A new polynomial factorization algorithm and its implementation. Journal of
Symbolic Computation 20 (1995), 363-397.

STOER, J., AND BULIRSCH, R. Introduction to Numerical Analysis, 2nd ed. Springer-Verlag,
New York, 1993.

TRACHTENBERG, A., AND MINSKY, Y. Efficient reconciliation of unordered databases. Tech.
rep., Cornell University, 1999.

VAN RENESSE, R. Captain cook: A scalable navigation service. In preparation.

11



[21] vAN RENESSE, R., MINSKY, Y., AND HAYDEN, M. A gossip-style failure detection service. In
Middleware ’98: IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (1998), N. Davies, K. Raymond, and J. Seitz, Eds., Springer Verlag,
pp. 55—70.

[22] Z1pPEL, R. E. Effective Polynomial Computation. Kluwer Academic Press, Boston, 1993.

A Root Finding of Polynomials

Assume we are given a polynomial f(Z) of degree d over a finite field F,. This appendix shows
how to determine if all the zeros of f(Z) are distinct and lie in F, and, if so, how to find them
quickly. We show how to use classical algorithms to perform zero finding in expected O(d®lgq)
field operations. More sophisticated algorithms improve the asymptotic complexity to as low as
0O(d*#21g q) [10], although their basic structure is similar to that presented here and their practical
benefits are not clear. All of these results are well known (see for instance, [12, 16, 17, 22]). They
are included here for completeness.

The particular type of root finding needed by the set reconciliation protocols involves three
steps. First, determine if f(Z) is square free. Second, verify that all irreducible factors of f(Z) are
linear. And finally, find the linear factors of f(Z).

We can determine if f(Z) is square-free by computing the GCD (greatest common divisor) of
f(Z) and its derivative f'(Z). Using the Euclidean algorithm and classical polynomial algorithms,
this can be done in O(d?) operations in F,. Verifying that f(Z) is the product of d linear factors can
also be done by computing GCD’s. Note that all elements of I, are zeros of Z9—Z. Thus, Z9—Z is
the product of monic linear polynomials over IF,. If f(Z) is square free, it is the product of a linear
polynomials only if f(Z) divides Z¢ — Z. Checking for such a divisibility using classical division
would require O(d - ¢) operations. However, this complexity can be reduced to O(d?log q) by using
repeated squaring to compute h(Z) = Z9 (mod f(Z)) and then testing if h(Z)—Z =0 (mod f(Z)).
The repeated squaring stage dominates the time complexity, since O(logp) squarings are required,
and each squaring involves a polynomial multiplication followed by finding the remainder mod
f(Z). Using classical algorithms each multiply and remainder takes O(d?) time. Thus, O(d? log p)
field operations will be required in all for the verification of divisibility.

Finally, we need to find the linear factors of f(Z). This is done using probabilistic techniques
as follows. We consider two different cases for the field F, (corresponding to the possible choices
for use in our set-reconciliation protocols): one where ¢ is a prime and the other where ¢ = 2¢.
When g is a prime, note that the elements of [F, are zeros of

g—1

20 7= (2% +1)-Z- (25 —1).

So, almost half of the elements of F, are zeros of R(Z) = Z Eal )
A polynomial with similar properties can also be constructed for the field Fy,. Denote by R(Z)
the polynomial

RZ)=2>"+22"+.. .+ 2*+ 22+ 2.
Over the field Fy, we have

R(Z)-(R(Z) +1) = R(2)* + R(Z),
=2* 1+ 2% ...+ 22 + R(2),
72”17

12



So, all the elements of F,; are zeros of R(Z) - (R(Z) + 1), and each element is either a zero of R(Z)
or of R(Z) + 1.

To determine the zeros of f(Z), we chose a random element of a € F; and compute the greatest
common divisor of f(Z) and R(Z — a), which will have almost half the degree of f(Z). Applying
this technique recursively on the two factors of f(Z), with different values for a will further split
the polynomial, ultimately into linear factors. In total, the expected number of GCD required will
be O(d). For odd g, the first GCD is done via repeated squaring in modulus, as in the previous
paragraph. For ¢ = 2¢, the remainder of each of the terms of R(Z) is computed (from lowest to
highest degree) and then summed.

B Rational Interpolation

Let f(Z) be a rational function one variable over the field K:

f(z) = 7" +p1Z" "+t P(Z)
WZ"+ @ Z" g Q(Z)

where the p;,q; € K. If P(Z) and Q(Z) are relatively prime (i.e. they have no common factors
not in K) then we say that f(Z) is reduced. We say that f(Z) is a monic rational function if
po = go = 1. The degree of f(Z) is max(m,n) and we define the degrees of f(Z) to be (m,n).
Two rational functions P;/Q; and P»/Q9 are said to be equivalent if PiQo = P,@Q;. That is, if one
rational function can be reduced to the other by canceling common factors between the numerator
and denominator.

A set of pairs (k;, f;) € K2, where the k; are distinct, is called a support set for an interpolation
problem. We say that a function f(Z) satisfies the support set V if f(k;) = f; for all (k;, f;) € V.

The problem of determining a rational function with bounded degrees that satisfies a support
set is called the rational interpolation problem. Most work on this problem is for rational functions
with floating point coefficients, where accuracy and numerical stability are an issue. There are
two assumptions that distinguish rational interpolation problems studied in this paper. First, the
coefficient domain of our rational functions is a finite field where there are no problems of accuracy
or numerical stability. Second, we know a priori that the desired rational functions are monic.

The first proposition implies that if there is a rational function corresponding to the given
support set,! then there is only one such rational function. The following theorem is an adapta-
tion of a standard theorem on rational interpolation (see [18], Proposition 2.2.1.4), and parallels
Theorem 4.1.

Theorem B.1 (Interpolation of Rational Functions) Let V' be a support set with ma + mp
elements over a field K. Assume there exist two monic rational functions with degrees (ma, mp)
that satisfy the support set. Then the two rational functions are equivalent.

Proof: Denote the two rational functions, by Pi(Z)/Q1(Z) and P>(Z)/Q2(Z). Since both
rational functions satisfy the support set, we have
Pi(k) _ Palk)
Qi(k:)  Qa(ki)’
for every k; in the support set V. Clearing the fractions, we see that the polynomial P(Z) =
P (Z)Q2(Z) — P2(Z)Q1(Z) must vanish at all k; in the support set. Since the degree of P(Z) is

!Not all support sets have corresponding rational functions.

13



my +mp — 1 and it vanishes at m4 + mp points, P(Z) must be identically zero. ]

Assume we have a support set V' = {(h1, f1),--. , (hm, fm)} and that the rational function
P(Z)/Q(Z) satisfies V. Further assume, that P and ) are monic with the structure below:

P(Z)=2™4 4+ p Z™A 4o,
QZ)=2Z" + qZ™ 4+ gy

Each pair (k;, f;) € V gives rise to a linear relation between the coefficients of P and Q:
anA _l_plkszrl + ot Py, = fi(k{"B + qlkzmgfl 4+t qu)_

We may combine m of these relations to form a Generalized Vandermonde system of equations:

b1
EPAT e B 1 AR e ik —fi : JrR{E — Ry
EPATl o ky 1 —fokBTN o —foke  —fy pma | | f2REP — kg
: : : o | :
Ema=l ook 1 —fmk™B o —fpkm —fm : fmk® — kA
mp

(13)
We denote this system of equations by S(my,mp;V). Being a solution of Equation (13) is a
necessary condition for a monic rational function to satisfy the support set {(k1, f1),--- , (km, fm)}-
Assume f(Z) = P(Z)/Q(Z) is a monic, reduced rational function of degrees (m4,mp) that
satisfies the support set V' and that has m 4+mp elements. By Theorem 4.1, f(Z) is the only monic
reduced rational function of degrees (m 4, mp) that satisfies Equation (13). Furthermore, the system
S(ma+£¢,mp+£;V) is singular since the coefficients of P(Z)-s,(Z) and Q(Z) - s¢(Z) are solutions
whenever sy(Z) is a monic polynomial of degree £. There cannot be any other solutions because
that would lead to two inequivalent solutions of Equation (13) of degrees (m 4 + £, mp + £), which
would contradict Theorem 4.1. This system of equations can be solved using classical Gaussian
elimination in O(m?) operations.

To illustrate some of the issues that can arise when solving this system of equations consider
the support set:

Using the first two values gives the linear equations

1 -2 a 1
()6 - )
which is easily solved a1 = 1, by = 2, to yield the rational function
Z+1
Z+2
This low degree rational function actually satisfies the entire support set V. All other degree 1

rational functions that satisfy V are of the form

aZ +a
aZ +2a’

14



The monotonicity assumption eliminates this possibility and thus the corresponding system of
equations in Equation (13) has a unique solution.

If higher degree rational functions are used then the system of equations becomes singular. This
is because the corresponding higher degree rational function will necessarily have additional factors
in the numerator and denominator. This is illustrated below, where we obtain a rational function
whose numerator and denominator are both of degree three.

If P and @ are both degree 3, then we get the following system of linear equations

111 _§ _g —§ ax %

9 31 -x _1 3 ai 2

16 41 @ b BT 2 (14)
LN | 135

25 5 1 2 2 7 by 2

36 6 1 -5 -3 —g/ \b 27

Though the system is singular, but a basis for all of the solutions can be found using any two of
{a1,a9,a3,b1,be,b3}. Using as and a3 as the basis gives a solution of:

a; =1+ a3 — a3, by = 2a3 — ag,
by =2+ as — as, by = 2as3.

For any choice of ay and a3 these values will be a solution of (14). Thus, the rational function
corresponding to the set of equations (14) is

Z3+ (14 a9 —a3)Z? + asZ + a3 _Z+1 Z?+(as—a3)Z+as  Z+1
Z3+ (2+as—0a3)Z%+ (2a2 —a3)Z+2a5 Z+2 Z2+ (az—a3)Z +a3 Z+2
clearing the common factor from the numerator and denominator. So each of the infinite number
of solutions of (14) leads to the same reduced rational functions (Z + 1)/(Z + 2).

In Sections 4.3 and 4.4 tagged values are used to eliminate restrictions on the choice of evaluation
points. In this case, the evaluation points may lead to a zero in the numerator, denominator, or
both. Formulating the rational interpolation problem using points in projective space deals with
these issues most cleanly.

The symmetric closure of a field K is a space K x K where two elements (r1,s1) and (7o, s2)
are equivalent if there exists £, is a non-zero element of K, such that £ = ro and s1£ = s3. The
equivalence class corresponding to (r, s) is denoted by (r, s). The symmetric closure of K is denoted
by K. K can be embedded in K by r — (r,1), and a point (r,s) corresponds to r/s € K unless
s=0.

A projective support set V is a set of pairs (ki, (i, s;)) € K x K where the k; are distinct. A
rational function P(Z)/Q(Z). satisfies V' if

P(ki)si — Q(ki)ri =0

for all (kz, <7'z'73i>) evV.
Using projective support sets, the system of linear equation generated will be of the form

TI'LA—l mB—l pl
Slkl 81 _lel R ] . LB _ g |™MA
A=l pme—1 T1Ry 1Ry
S2KR9 o 82 TT2Re R ’I'kaB —Szk‘mA
pmA _ 1 1
: @ .
TI’lAfl mel °
s1k; --- 81 —Tiky ] . EME _ g fmA
ma—1 mp—1 Tm#y Smly
SmkmA . S _rmkmB . —Tm
dmp

15



At each evaluation point k; the technique of Section 4.3 will yield two typed points (k;, (Atag;, ;))
and (k;, (Btag;,s;)). If Atag; is equal to Btag; then we used a projective support element of
(ki, (i, s;)). If they are different then (k;, (0, s;)) is used if Atag; is equal to zero and (k;, (r;, 0)) if
Btag; is equal to zero.

16



